1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
|
//===--- AArch64CallLowering.cpp - Call lowering --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the lowering of LLVM calls to machine code calls for
/// GlobalISel.
///
//===----------------------------------------------------------------------===//
#include "AArch64CallLowering.h"
#include "AArch64ISelLowering.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64Subtarget.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/MachineValueType.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#define DEBUG_TYPE "aarch64-call-lowering"
using namespace llvm;
AArch64CallLowering::AArch64CallLowering(const AArch64TargetLowering &TLI)
: CallLowering(&TLI) {}
static void applyStackPassedSmallTypeDAGHack(EVT OrigVT, MVT &ValVT,
MVT &LocVT) {
// If ValVT is i1/i8/i16, we should set LocVT to i8/i8/i16. This is a legacy
// hack because the DAG calls the assignment function with pre-legalized
// register typed values, not the raw type.
//
// This hack is not applied to return values which are not passed on the
// stack.
if (OrigVT == MVT::i1 || OrigVT == MVT::i8)
ValVT = LocVT = MVT::i8;
else if (OrigVT == MVT::i16)
ValVT = LocVT = MVT::i16;
}
// Account for i1/i8/i16 stack passed value hack
static LLT getStackValueStoreTypeHack(const CCValAssign &VA) {
const MVT ValVT = VA.getValVT();
return (ValVT == MVT::i8 || ValVT == MVT::i16) ? LLT(ValVT)
: LLT(VA.getLocVT());
}
namespace {
struct AArch64IncomingValueAssigner
: public CallLowering::IncomingValueAssigner {
AArch64IncomingValueAssigner(CCAssignFn *AssignFn_,
CCAssignFn *AssignFnVarArg_)
: IncomingValueAssigner(AssignFn_, AssignFnVarArg_) {}
bool assignArg(unsigned ValNo, EVT OrigVT, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
const CallLowering::ArgInfo &Info, ISD::ArgFlagsTy Flags,
CCState &State) override {
applyStackPassedSmallTypeDAGHack(OrigVT, ValVT, LocVT);
return IncomingValueAssigner::assignArg(ValNo, OrigVT, ValVT, LocVT,
LocInfo, Info, Flags, State);
}
};
struct AArch64OutgoingValueAssigner
: public CallLowering::OutgoingValueAssigner {
const AArch64Subtarget &Subtarget;
/// Track if this is used for a return instead of function argument
/// passing. We apply a hack to i1/i8/i16 stack passed values, but do not use
/// stack passed returns for them and cannot apply the type adjustment.
bool IsReturn;
AArch64OutgoingValueAssigner(CCAssignFn *AssignFn_,
CCAssignFn *AssignFnVarArg_,
const AArch64Subtarget &Subtarget_,
bool IsReturn)
: OutgoingValueAssigner(AssignFn_, AssignFnVarArg_),
Subtarget(Subtarget_), IsReturn(IsReturn) {}
bool assignArg(unsigned ValNo, EVT OrigVT, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
const CallLowering::ArgInfo &Info, ISD::ArgFlagsTy Flags,
CCState &State) override {
bool IsCalleeWin = Subtarget.isCallingConvWin64(State.getCallingConv());
bool UseVarArgsCCForFixed = IsCalleeWin && State.isVarArg();
if (!State.isVarArg() && !UseVarArgsCCForFixed && !IsReturn)
applyStackPassedSmallTypeDAGHack(OrigVT, ValVT, LocVT);
bool Res;
if (Info.IsFixed && !UseVarArgsCCForFixed)
Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
else
Res = AssignFnVarArg(ValNo, ValVT, LocVT, LocInfo, Flags, State);
StackOffset = State.getNextStackOffset();
return Res;
}
};
struct IncomingArgHandler : public CallLowering::IncomingValueHandler {
IncomingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI)
: IncomingValueHandler(MIRBuilder, MRI) {}
Register getStackAddress(uint64_t Size, int64_t Offset,
MachinePointerInfo &MPO,
ISD::ArgFlagsTy Flags) override {
auto &MFI = MIRBuilder.getMF().getFrameInfo();
// Byval is assumed to be writable memory, but other stack passed arguments
// are not.
const bool IsImmutable = !Flags.isByVal();
int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable);
MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
auto AddrReg = MIRBuilder.buildFrameIndex(LLT::pointer(0, 64), FI);
return AddrReg.getReg(0);
}
LLT getStackValueStoreType(const DataLayout &DL, const CCValAssign &VA,
ISD::ArgFlagsTy Flags) const override {
// For pointers, we just need to fixup the integer types reported in the
// CCValAssign.
if (Flags.isPointer())
return CallLowering::ValueHandler::getStackValueStoreType(DL, VA, Flags);
return getStackValueStoreTypeHack(VA);
}
void assignValueToReg(Register ValVReg, Register PhysReg,
CCValAssign VA) override {
markPhysRegUsed(PhysReg);
IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA);
}
void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
MachinePointerInfo &MPO, CCValAssign &VA) override {
MachineFunction &MF = MIRBuilder.getMF();
LLT ValTy(VA.getValVT());
LLT LocTy(VA.getLocVT());
// Fixup the types for the DAG compatibility hack.
if (VA.getValVT() == MVT::i8 || VA.getValVT() == MVT::i16)
std::swap(ValTy, LocTy);
else {
// The calling code knows if this is a pointer or not, we're only touching
// the LocTy for the i8/i16 hack.
assert(LocTy.getSizeInBits() == MemTy.getSizeInBits());
LocTy = MemTy;
}
auto MMO = MF.getMachineMemOperand(
MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, LocTy,
inferAlignFromPtrInfo(MF, MPO));
switch (VA.getLocInfo()) {
case CCValAssign::LocInfo::ZExt:
MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, ValVReg, Addr, *MMO);
return;
case CCValAssign::LocInfo::SExt:
MIRBuilder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, ValVReg, Addr, *MMO);
return;
default:
MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
return;
}
}
/// How the physical register gets marked varies between formal
/// parameters (it's a basic-block live-in), and a call instruction
/// (it's an implicit-def of the BL).
virtual void markPhysRegUsed(MCRegister PhysReg) = 0;
};
struct FormalArgHandler : public IncomingArgHandler {
FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI)
: IncomingArgHandler(MIRBuilder, MRI) {}
void markPhysRegUsed(MCRegister PhysReg) override {
MIRBuilder.getMRI()->addLiveIn(PhysReg);
MIRBuilder.getMBB().addLiveIn(PhysReg);
}
};
struct CallReturnHandler : public IncomingArgHandler {
CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
MachineInstrBuilder MIB)
: IncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {}
void markPhysRegUsed(MCRegister PhysReg) override {
MIB.addDef(PhysReg, RegState::Implicit);
}
MachineInstrBuilder MIB;
};
/// A special return arg handler for "returned" attribute arg calls.
struct ReturnedArgCallReturnHandler : public CallReturnHandler {
ReturnedArgCallReturnHandler(MachineIRBuilder &MIRBuilder,
MachineRegisterInfo &MRI,
MachineInstrBuilder MIB)
: CallReturnHandler(MIRBuilder, MRI, MIB) {}
void markPhysRegUsed(MCRegister PhysReg) override {}
};
struct OutgoingArgHandler : public CallLowering::OutgoingValueHandler {
OutgoingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
MachineInstrBuilder MIB, bool IsTailCall = false,
int FPDiff = 0)
: OutgoingValueHandler(MIRBuilder, MRI), MIB(MIB), IsTailCall(IsTailCall),
FPDiff(FPDiff),
Subtarget(MIRBuilder.getMF().getSubtarget<AArch64Subtarget>()) {}
Register getStackAddress(uint64_t Size, int64_t Offset,
MachinePointerInfo &MPO,
ISD::ArgFlagsTy Flags) override {
MachineFunction &MF = MIRBuilder.getMF();
LLT p0 = LLT::pointer(0, 64);
LLT s64 = LLT::scalar(64);
if (IsTailCall) {
assert(!Flags.isByVal() && "byval unhandled with tail calls");
Offset += FPDiff;
int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
auto FIReg = MIRBuilder.buildFrameIndex(p0, FI);
MPO = MachinePointerInfo::getFixedStack(MF, FI);
return FIReg.getReg(0);
}
if (!SPReg)
SPReg = MIRBuilder.buildCopy(p0, Register(AArch64::SP)).getReg(0);
auto OffsetReg = MIRBuilder.buildConstant(s64, Offset);
auto AddrReg = MIRBuilder.buildPtrAdd(p0, SPReg, OffsetReg);
MPO = MachinePointerInfo::getStack(MF, Offset);
return AddrReg.getReg(0);
}
/// We need to fixup the reported store size for certain value types because
/// we invert the interpretation of ValVT and LocVT in certain cases. This is
/// for compatability with the DAG call lowering implementation, which we're
/// currently building on top of.
LLT getStackValueStoreType(const DataLayout &DL, const CCValAssign &VA,
ISD::ArgFlagsTy Flags) const override {
if (Flags.isPointer())
return CallLowering::ValueHandler::getStackValueStoreType(DL, VA, Flags);
return getStackValueStoreTypeHack(VA);
}
void assignValueToReg(Register ValVReg, Register PhysReg,
CCValAssign VA) override {
MIB.addUse(PhysReg, RegState::Implicit);
Register ExtReg = extendRegister(ValVReg, VA);
MIRBuilder.buildCopy(PhysReg, ExtReg);
}
void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
MachinePointerInfo &MPO, CCValAssign &VA) override {
MachineFunction &MF = MIRBuilder.getMF();
auto MMO = MF.getMachineMemOperand(MPO, MachineMemOperand::MOStore, MemTy,
inferAlignFromPtrInfo(MF, MPO));
MIRBuilder.buildStore(ValVReg, Addr, *MMO);
}
void assignValueToAddress(const CallLowering::ArgInfo &Arg, unsigned RegIndex,
Register Addr, LLT MemTy, MachinePointerInfo &MPO,
CCValAssign &VA) override {
unsigned MaxSize = MemTy.getSizeInBytes() * 8;
// For varargs, we always want to extend them to 8 bytes, in which case
// we disable setting a max.
if (!Arg.IsFixed)
MaxSize = 0;
Register ValVReg = Arg.Regs[RegIndex];
if (VA.getLocInfo() != CCValAssign::LocInfo::FPExt) {
MVT LocVT = VA.getLocVT();
MVT ValVT = VA.getValVT();
if (VA.getValVT() == MVT::i8 || VA.getValVT() == MVT::i16) {
std::swap(ValVT, LocVT);
MemTy = LLT(VA.getValVT());
}
ValVReg = extendRegister(ValVReg, VA, MaxSize);
} else {
// The store does not cover the full allocated stack slot.
MemTy = LLT(VA.getValVT());
}
assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA);
}
MachineInstrBuilder MIB;
bool IsTailCall;
/// For tail calls, the byte offset of the call's argument area from the
/// callee's. Unused elsewhere.
int FPDiff;
// Cache the SP register vreg if we need it more than once in this call site.
Register SPReg;
const AArch64Subtarget &Subtarget;
};
} // namespace
static bool doesCalleeRestoreStack(CallingConv::ID CallConv, bool TailCallOpt) {
return (CallConv == CallingConv::Fast && TailCallOpt) ||
CallConv == CallingConv::Tail || CallConv == CallingConv::SwiftTail;
}
bool AArch64CallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
const Value *Val,
ArrayRef<Register> VRegs,
FunctionLoweringInfo &FLI,
Register SwiftErrorVReg) const {
auto MIB = MIRBuilder.buildInstrNoInsert(AArch64::RET_ReallyLR);
assert(((Val && !VRegs.empty()) || (!Val && VRegs.empty())) &&
"Return value without a vreg");
bool Success = true;
if (!VRegs.empty()) {
MachineFunction &MF = MIRBuilder.getMF();
const Function &F = MF.getFunction();
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
MachineRegisterInfo &MRI = MF.getRegInfo();
const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(F.getCallingConv());
auto &DL = F.getParent()->getDataLayout();
LLVMContext &Ctx = Val->getType()->getContext();
SmallVector<EVT, 4> SplitEVTs;
ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
assert(VRegs.size() == SplitEVTs.size() &&
"For each split Type there should be exactly one VReg.");
SmallVector<ArgInfo, 8> SplitArgs;
CallingConv::ID CC = F.getCallingConv();
for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
Register CurVReg = VRegs[i];
ArgInfo CurArgInfo = ArgInfo{CurVReg, SplitEVTs[i].getTypeForEVT(Ctx), 0};
setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
// i1 is a special case because SDAG i1 true is naturally zero extended
// when widened using ANYEXT. We need to do it explicitly here.
if (MRI.getType(CurVReg).getSizeInBits() == 1) {
CurVReg = MIRBuilder.buildZExt(LLT::scalar(8), CurVReg).getReg(0);
} else if (TLI.getNumRegistersForCallingConv(Ctx, CC, SplitEVTs[i]) ==
1) {
// Some types will need extending as specified by the CC.
MVT NewVT = TLI.getRegisterTypeForCallingConv(Ctx, CC, SplitEVTs[i]);
if (EVT(NewVT) != SplitEVTs[i]) {
unsigned ExtendOp = TargetOpcode::G_ANYEXT;
if (F.getAttributes().hasRetAttr(Attribute::SExt))
ExtendOp = TargetOpcode::G_SEXT;
else if (F.getAttributes().hasRetAttr(Attribute::ZExt))
ExtendOp = TargetOpcode::G_ZEXT;
LLT NewLLT(NewVT);
LLT OldLLT(MVT::getVT(CurArgInfo.Ty));
CurArgInfo.Ty = EVT(NewVT).getTypeForEVT(Ctx);
// Instead of an extend, we might have a vector type which needs
// padding with more elements, e.g. <2 x half> -> <4 x half>.
if (NewVT.isVector()) {
if (OldLLT.isVector()) {
if (NewLLT.getNumElements() > OldLLT.getNumElements()) {
// We don't handle VA types which are not exactly twice the
// size, but can easily be done in future.
if (NewLLT.getNumElements() != OldLLT.getNumElements() * 2) {
LLVM_DEBUG(dbgs() << "Outgoing vector ret has too many elts");
return false;
}
auto Undef = MIRBuilder.buildUndef({OldLLT});
CurVReg =
MIRBuilder.buildMerge({NewLLT}, {CurVReg, Undef}).getReg(0);
} else {
// Just do a vector extend.
CurVReg = MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg})
.getReg(0);
}
} else if (NewLLT.getNumElements() == 2) {
// We need to pad a <1 x S> type to <2 x S>. Since we don't have
// <1 x S> vector types in GISel we use a build_vector instead
// of a vector merge/concat.
auto Undef = MIRBuilder.buildUndef({OldLLT});
CurVReg =
MIRBuilder
.buildBuildVector({NewLLT}, {CurVReg, Undef.getReg(0)})
.getReg(0);
} else {
LLVM_DEBUG(dbgs() << "Could not handle ret ty\n");
return false;
}
} else {
// If the split EVT was a <1 x T> vector, and NewVT is T, then we
// don't have to do anything since we don't distinguish between the
// two.
if (NewLLT != MRI.getType(CurVReg)) {
// A scalar extend.
CurVReg = MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg})
.getReg(0);
}
}
}
}
if (CurVReg != CurArgInfo.Regs[0]) {
CurArgInfo.Regs[0] = CurVReg;
// Reset the arg flags after modifying CurVReg.
setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
}
splitToValueTypes(CurArgInfo, SplitArgs, DL, CC);
}
AArch64OutgoingValueAssigner Assigner(AssignFn, AssignFn, Subtarget,
/*IsReturn*/ true);
OutgoingArgHandler Handler(MIRBuilder, MRI, MIB);
Success = determineAndHandleAssignments(Handler, Assigner, SplitArgs,
MIRBuilder, CC, F.isVarArg());
}
if (SwiftErrorVReg) {
MIB.addUse(AArch64::X21, RegState::Implicit);
MIRBuilder.buildCopy(AArch64::X21, SwiftErrorVReg);
}
MIRBuilder.insertInstr(MIB);
return Success;
}
/// Helper function to compute forwarded registers for musttail calls. Computes
/// the forwarded registers, sets MBB liveness, and emits COPY instructions that
/// can be used to save + restore registers later.
static void handleMustTailForwardedRegisters(MachineIRBuilder &MIRBuilder,
CCAssignFn *AssignFn) {
MachineBasicBlock &MBB = MIRBuilder.getMBB();
MachineFunction &MF = MIRBuilder.getMF();
MachineFrameInfo &MFI = MF.getFrameInfo();
if (!MFI.hasMustTailInVarArgFunc())
return;
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
const Function &F = MF.getFunction();
assert(F.isVarArg() && "Expected F to be vararg?");
// Compute the set of forwarded registers. The rest are scratch.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(F.getCallingConv(), /*IsVarArg=*/true, MF, ArgLocs,
F.getContext());
SmallVector<MVT, 2> RegParmTypes;
RegParmTypes.push_back(MVT::i64);
RegParmTypes.push_back(MVT::f128);
// Later on, we can use this vector to restore the registers if necessary.
SmallVectorImpl<ForwardedRegister> &Forwards =
FuncInfo->getForwardedMustTailRegParms();
CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, AssignFn);
// Conservatively forward X8, since it might be used for an aggregate
// return.
if (!CCInfo.isAllocated(AArch64::X8)) {
Register X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass);
Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64));
}
// Add the forwards to the MachineBasicBlock and MachineFunction.
for (const auto &F : Forwards) {
MBB.addLiveIn(F.PReg);
MIRBuilder.buildCopy(Register(F.VReg), Register(F.PReg));
}
}
bool AArch64CallLowering::fallBackToDAGISel(const MachineFunction &MF) const {
auto &F = MF.getFunction();
if (isa<ScalableVectorType>(F.getReturnType()))
return true;
if (llvm::any_of(F.args(), [](const Argument &A) {
return isa<ScalableVectorType>(A.getType());
}))
return true;
const auto &ST = MF.getSubtarget<AArch64Subtarget>();
if (!ST.hasNEON() || !ST.hasFPARMv8()) {
LLVM_DEBUG(dbgs() << "Falling back to SDAG because we don't support no-NEON\n");
return true;
}
return false;
}
bool AArch64CallLowering::lowerFormalArguments(
MachineIRBuilder &MIRBuilder, const Function &F,
ArrayRef<ArrayRef<Register>> VRegs, FunctionLoweringInfo &FLI) const {
MachineFunction &MF = MIRBuilder.getMF();
MachineBasicBlock &MBB = MIRBuilder.getMBB();
MachineRegisterInfo &MRI = MF.getRegInfo();
auto &DL = F.getParent()->getDataLayout();
SmallVector<ArgInfo, 8> SplitArgs;
SmallVector<std::pair<Register, Register>> BoolArgs;
unsigned i = 0;
for (auto &Arg : F.args()) {
if (DL.getTypeStoreSize(Arg.getType()).isZero())
continue;
ArgInfo OrigArg{VRegs[i], Arg, i};
setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, F);
// i1 arguments are zero-extended to i8 by the caller. Emit a
// hint to reflect this.
if (OrigArg.Ty->isIntegerTy(1)) {
assert(OrigArg.Regs.size() == 1 &&
MRI.getType(OrigArg.Regs[0]).getSizeInBits() == 1 &&
"Unexpected registers used for i1 arg");
if (!OrigArg.Flags[0].isZExt()) {
// Lower i1 argument as i8, and insert AssertZExt + Trunc later.
Register OrigReg = OrigArg.Regs[0];
Register WideReg = MRI.createGenericVirtualRegister(LLT::scalar(8));
OrigArg.Regs[0] = WideReg;
BoolArgs.push_back({OrigReg, WideReg});
}
}
if (Arg.hasAttribute(Attribute::SwiftAsync))
MF.getInfo<AArch64FunctionInfo>()->setHasSwiftAsyncContext(true);
splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv());
++i;
}
if (!MBB.empty())
MIRBuilder.setInstr(*MBB.begin());
const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
CCAssignFn *AssignFn =
TLI.CCAssignFnForCall(F.getCallingConv(), /*IsVarArg=*/false);
AArch64IncomingValueAssigner Assigner(AssignFn, AssignFn);
FormalArgHandler Handler(MIRBuilder, MRI);
if (!determineAndHandleAssignments(Handler, Assigner, SplitArgs, MIRBuilder,
F.getCallingConv(), F.isVarArg()))
return false;
if (!BoolArgs.empty()) {
for (auto &KV : BoolArgs) {
Register OrigReg = KV.first;
Register WideReg = KV.second;
LLT WideTy = MRI.getType(WideReg);
assert(MRI.getType(OrigReg).getScalarSizeInBits() == 1 &&
"Unexpected bit size of a bool arg");
MIRBuilder.buildTrunc(
OrigReg, MIRBuilder.buildAssertZExt(WideTy, WideReg, 1).getReg(0));
}
}
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
uint64_t StackOffset = Assigner.StackOffset;
if (F.isVarArg()) {
auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
if (!Subtarget.isTargetDarwin()) {
// FIXME: we need to reimplement saveVarArgsRegisters from
// AArch64ISelLowering.
return false;
}
// We currently pass all varargs at 8-byte alignment, or 4 in ILP32.
StackOffset =
alignTo(Assigner.StackOffset, Subtarget.isTargetILP32() ? 4 : 8);
auto &MFI = MIRBuilder.getMF().getFrameInfo();
FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
}
if (doesCalleeRestoreStack(F.getCallingConv(),
MF.getTarget().Options.GuaranteedTailCallOpt)) {
// We have a non-standard ABI, so why not make full use of the stack that
// we're going to pop? It must be aligned to 16 B in any case.
StackOffset = alignTo(StackOffset, 16);
// If we're expected to restore the stack (e.g. fastcc), then we'll be
// adding a multiple of 16.
FuncInfo->setArgumentStackToRestore(StackOffset);
// Our own callers will guarantee that the space is free by giving an
// aligned value to CALLSEQ_START.
}
// When we tail call, we need to check if the callee's arguments
// will fit on the caller's stack. So, whenever we lower formal arguments,
// we should keep track of this information, since we might lower a tail call
// in this function later.
FuncInfo->setBytesInStackArgArea(StackOffset);
auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
if (Subtarget.hasCustomCallingConv())
Subtarget.getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);
handleMustTailForwardedRegisters(MIRBuilder, AssignFn);
// Move back to the end of the basic block.
MIRBuilder.setMBB(MBB);
return true;
}
/// Return true if the calling convention is one that we can guarantee TCO for.
static bool canGuaranteeTCO(CallingConv::ID CC, bool GuaranteeTailCalls) {
return (CC == CallingConv::Fast && GuaranteeTailCalls) ||
CC == CallingConv::Tail || CC == CallingConv::SwiftTail;
}
/// Return true if we might ever do TCO for calls with this calling convention.
static bool mayTailCallThisCC(CallingConv::ID CC) {
switch (CC) {
case CallingConv::C:
case CallingConv::PreserveMost:
case CallingConv::Swift:
case CallingConv::SwiftTail:
case CallingConv::Tail:
case CallingConv::Fast:
return true;
default:
return false;
}
}
/// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
/// CC.
static std::pair<CCAssignFn *, CCAssignFn *>
getAssignFnsForCC(CallingConv::ID CC, const AArch64TargetLowering &TLI) {
return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
}
bool AArch64CallLowering::doCallerAndCalleePassArgsTheSameWay(
CallLoweringInfo &Info, MachineFunction &MF,
SmallVectorImpl<ArgInfo> &InArgs) const {
const Function &CallerF = MF.getFunction();
CallingConv::ID CalleeCC = Info.CallConv;
CallingConv::ID CallerCC = CallerF.getCallingConv();
// If the calling conventions match, then everything must be the same.
if (CalleeCC == CallerCC)
return true;
// Check if the caller and callee will handle arguments in the same way.
const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
CCAssignFn *CalleeAssignFnFixed;
CCAssignFn *CalleeAssignFnVarArg;
std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) =
getAssignFnsForCC(CalleeCC, TLI);
CCAssignFn *CallerAssignFnFixed;
CCAssignFn *CallerAssignFnVarArg;
std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) =
getAssignFnsForCC(CallerCC, TLI);
AArch64IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed,
CalleeAssignFnVarArg);
AArch64IncomingValueAssigner CallerAssigner(CallerAssignFnFixed,
CallerAssignFnVarArg);
if (!resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner))
return false;
// Make sure that the caller and callee preserve all of the same registers.
auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv()) {
TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved);
TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved);
}
return TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved);
}
bool AArch64CallLowering::areCalleeOutgoingArgsTailCallable(
CallLoweringInfo &Info, MachineFunction &MF,
SmallVectorImpl<ArgInfo> &OutArgs) const {
// If there are no outgoing arguments, then we are done.
if (OutArgs.empty())
return true;
const Function &CallerF = MF.getFunction();
LLVMContext &Ctx = CallerF.getContext();
CallingConv::ID CalleeCC = Info.CallConv;
CallingConv::ID CallerCC = CallerF.getCallingConv();
const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
CCAssignFn *AssignFnFixed;
CCAssignFn *AssignFnVarArg;
std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
// We have outgoing arguments. Make sure that we can tail call with them.
SmallVector<CCValAssign, 16> OutLocs;
CCState OutInfo(CalleeCC, false, MF, OutLocs, Ctx);
AArch64OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg,
Subtarget, /*IsReturn*/ false);
if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo)) {
LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n");
return false;
}
// Make sure that they can fit on the caller's stack.
const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) {
LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n");
return false;
}
// Verify that the parameters in callee-saved registers match.
// TODO: Port this over to CallLowering as general code once swiftself is
// supported.
auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
MachineRegisterInfo &MRI = MF.getRegInfo();
if (Info.IsVarArg) {
// Be conservative and disallow variadic memory operands to match SDAG's
// behaviour.
// FIXME: If the caller's calling convention is C, then we can
// potentially use its argument area. However, for cases like fastcc,
// we can't do anything.
for (unsigned i = 0; i < OutLocs.size(); ++i) {
auto &ArgLoc = OutLocs[i];
if (ArgLoc.isRegLoc())
continue;
LLVM_DEBUG(
dbgs()
<< "... Cannot tail call vararg function with stack arguments\n");
return false;
}
}
return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs);
}
bool AArch64CallLowering::isEligibleForTailCallOptimization(
MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
SmallVectorImpl<ArgInfo> &InArgs,
SmallVectorImpl<ArgInfo> &OutArgs) const {
// Must pass all target-independent checks in order to tail call optimize.
if (!Info.IsTailCall)
return false;
CallingConv::ID CalleeCC = Info.CallConv;
MachineFunction &MF = MIRBuilder.getMF();
const Function &CallerF = MF.getFunction();
LLVM_DEBUG(dbgs() << "Attempting to lower call as tail call\n");
if (Info.SwiftErrorVReg) {
// TODO: We should handle this.
// Note that this is also handled by the check for no outgoing arguments.
// Proactively disabling this though, because the swifterror handling in
// lowerCall inserts a COPY *after* the location of the call.
LLVM_DEBUG(dbgs() << "... Cannot handle tail calls with swifterror yet.\n");
return false;
}
if (!mayTailCallThisCC(CalleeCC)) {
LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
return false;
}
// Byval parameters hand the function a pointer directly into the stack area
// we want to reuse during a tail call. Working around this *is* possible (see
// X86).
//
// FIXME: In AArch64ISelLowering, this isn't worked around. Can/should we try
// it?
//
// On Windows, "inreg" attributes signify non-aggregate indirect returns.
// In this case, it is necessary to save/restore X0 in the callee. Tail
// call opt interferes with this. So we disable tail call opt when the
// caller has an argument with "inreg" attribute.
//
// FIXME: Check whether the callee also has an "inreg" argument.
//
// When the caller has a swifterror argument, we don't want to tail call
// because would have to move into the swifterror register before the
// tail call.
if (any_of(CallerF.args(), [](const Argument &A) {
return A.hasByValAttr() || A.hasInRegAttr() || A.hasSwiftErrorAttr();
})) {
LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval, "
"inreg, or swifterror arguments\n");
return false;
}
// Externally-defined functions with weak linkage should not be
// tail-called on AArch64 when the OS does not support dynamic
// pre-emption of symbols, as the AAELF spec requires normal calls
// to undefined weak functions to be replaced with a NOP or jump to the
// next instruction. The behaviour of branch instructions in this
// situation (as used for tail calls) is implementation-defined, so we
// cannot rely on the linker replacing the tail call with a return.
if (Info.Callee.isGlobal()) {
const GlobalValue *GV = Info.Callee.getGlobal();
const Triple &TT = MF.getTarget().getTargetTriple();
if (GV->hasExternalWeakLinkage() &&
(!TT.isOSWindows() || TT.isOSBinFormatELF() ||
TT.isOSBinFormatMachO())) {
LLVM_DEBUG(dbgs() << "... Cannot tail call externally-defined function "
"with weak linkage for this OS.\n");
return false;
}
}
// If we have -tailcallopt, then we're done.
if (canGuaranteeTCO(CalleeCC, MF.getTarget().Options.GuaranteedTailCallOpt))
return CalleeCC == CallerF.getCallingConv();
// We don't have -tailcallopt, so we're allowed to change the ABI (sibcall).
// Try to find cases where we can do that.
// I want anyone implementing a new calling convention to think long and hard
// about this assert.
assert((!Info.IsVarArg || CalleeCC == CallingConv::C) &&
"Unexpected variadic calling convention");
// Verify that the incoming and outgoing arguments from the callee are
// safe to tail call.
if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
LLVM_DEBUG(
dbgs()
<< "... Caller and callee have incompatible calling conventions.\n");
return false;
}
if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
return false;
LLVM_DEBUG(
dbgs() << "... Call is eligible for tail call optimization.\n");
return true;
}
static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
bool IsTailCall) {
if (!IsTailCall)
return IsIndirect ? getBLRCallOpcode(CallerF) : (unsigned)AArch64::BL;
if (!IsIndirect)
return AArch64::TCRETURNdi;
// When BTI is enabled, we need to use TCRETURNriBTI to make sure that we use
// x16 or x17.
if (CallerF.getInfo<AArch64FunctionInfo>()->branchTargetEnforcement())
return AArch64::TCRETURNriBTI;
return AArch64::TCRETURNri;
}
static const uint32_t *
getMaskForArgs(SmallVectorImpl<AArch64CallLowering::ArgInfo> &OutArgs,
AArch64CallLowering::CallLoweringInfo &Info,
const AArch64RegisterInfo &TRI, MachineFunction &MF) {
const uint32_t *Mask;
if (!OutArgs.empty() && OutArgs[0].Flags[0].isReturned()) {
// For 'this' returns, use the X0-preserving mask if applicable
Mask = TRI.getThisReturnPreservedMask(MF, Info.CallConv);
if (!Mask) {
OutArgs[0].Flags[0].setReturned(false);
Mask = TRI.getCallPreservedMask(MF, Info.CallConv);
}
} else {
Mask = TRI.getCallPreservedMask(MF, Info.CallConv);
}
return Mask;
}
bool AArch64CallLowering::lowerTailCall(
MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
SmallVectorImpl<ArgInfo> &OutArgs) const {
MachineFunction &MF = MIRBuilder.getMF();
const Function &F = MF.getFunction();
MachineRegisterInfo &MRI = MF.getRegInfo();
const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
// True when we're tail calling, but without -tailcallopt.
bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt &&
Info.CallConv != CallingConv::Tail &&
Info.CallConv != CallingConv::SwiftTail;
// TODO: Right now, regbankselect doesn't know how to handle the rtcGPR64
// register class. Until we can do that, we should fall back here.
if (MF.getInfo<AArch64FunctionInfo>()->branchTargetEnforcement()) {
LLVM_DEBUG(
dbgs() << "Cannot lower indirect tail calls with BTI enabled yet.\n");
return false;
}
// Find out which ABI gets to decide where things go.
CallingConv::ID CalleeCC = Info.CallConv;
CCAssignFn *AssignFnFixed;
CCAssignFn *AssignFnVarArg;
std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
MachineInstrBuilder CallSeqStart;
if (!IsSibCall)
CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);
unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true);
auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
MIB.add(Info.Callee);
// Byte offset for the tail call. When we are sibcalling, this will always
// be 0.
MIB.addImm(0);
// Tell the call which registers are clobbered.
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
auto TRI = Subtarget.getRegisterInfo();
const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC);
if (Subtarget.hasCustomCallingConv())
TRI->UpdateCustomCallPreservedMask(MF, &Mask);
MIB.addRegMask(Mask);
if (TRI->isAnyArgRegReserved(MF))
TRI->emitReservedArgRegCallError(MF);
// FPDiff is the byte offset of the call's argument area from the callee's.
// Stores to callee stack arguments will be placed in FixedStackSlots offset
// by this amount for a tail call. In a sibling call it must be 0 because the
// caller will deallocate the entire stack and the callee still expects its
// arguments to begin at SP+0.
int FPDiff = 0;
// This will be 0 for sibcalls, potentially nonzero for tail calls produced
// by -tailcallopt. For sibcalls, the memory operands for the call are
// already available in the caller's incoming argument space.
unsigned NumBytes = 0;
if (!IsSibCall) {
// We aren't sibcalling, so we need to compute FPDiff. We need to do this
// before handling assignments, because FPDiff must be known for memory
// arguments.
unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
SmallVector<CCValAssign, 16> OutLocs;
CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());
AArch64OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg,
Subtarget, /*IsReturn*/ false);
if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo))
return false;
// The callee will pop the argument stack as a tail call. Thus, we must
// keep it 16-byte aligned.
NumBytes = alignTo(OutInfo.getNextStackOffset(), 16);
// FPDiff will be negative if this tail call requires more space than we
// would automatically have in our incoming argument space. Positive if we
// actually shrink the stack.
FPDiff = NumReusableBytes - NumBytes;
// Update the required reserved area if this is the tail call requiring the
// most argument stack space.
if (FPDiff < 0 && FuncInfo->getTailCallReservedStack() < (unsigned)-FPDiff)
FuncInfo->setTailCallReservedStack(-FPDiff);
// The stack pointer must be 16-byte aligned at all times it's used for a
// memory operation, which in practice means at *all* times and in
// particular across call boundaries. Therefore our own arguments started at
// a 16-byte aligned SP and the delta applied for the tail call should
// satisfy the same constraint.
assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
}
const auto &Forwards = FuncInfo->getForwardedMustTailRegParms();
AArch64OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg,
Subtarget, /*IsReturn*/ false);
// Do the actual argument marshalling.
OutgoingArgHandler Handler(MIRBuilder, MRI, MIB,
/*IsTailCall*/ true, FPDiff);
if (!determineAndHandleAssignments(Handler, Assigner, OutArgs, MIRBuilder,
CalleeCC, Info.IsVarArg))
return false;
Mask = getMaskForArgs(OutArgs, Info, *TRI, MF);
if (Info.IsVarArg && Info.IsMustTailCall) {
// Now we know what's being passed to the function. Add uses to the call for
// the forwarded registers that we *aren't* passing as parameters. This will
// preserve the copies we build earlier.
for (const auto &F : Forwards) {
Register ForwardedReg = F.PReg;
// If the register is already passed, or aliases a register which is
// already being passed, then skip it.
if (any_of(MIB->uses(), [&ForwardedReg, &TRI](const MachineOperand &Use) {
if (!Use.isReg())
return false;
return TRI->regsOverlap(Use.getReg(), ForwardedReg);
}))
continue;
// We aren't passing it already, so we should add it to the call.
MIRBuilder.buildCopy(ForwardedReg, Register(F.VReg));
MIB.addReg(ForwardedReg, RegState::Implicit);
}
}
// If we have -tailcallopt, we need to adjust the stack. We'll do the call
// sequence start and end here.
if (!IsSibCall) {
MIB->getOperand(1).setImm(FPDiff);
CallSeqStart.addImm(0).addImm(0);
// End the call sequence *before* emitting the call. Normally, we would
// tidy the frame up after the call. However, here, we've laid out the
// parameters so that when SP is reset, they will be in the correct
// location.
MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP).addImm(0).addImm(0);
}
// Now we can add the actual call instruction to the correct basic block.
MIRBuilder.insertInstr(MIB);
// If Callee is a reg, since it is used by a target specific instruction,
// it must have a register class matching the constraint of that instruction.
if (Info.Callee.isReg())
constrainOperandRegClass(MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
*MF.getSubtarget().getRegBankInfo(), *MIB,
MIB->getDesc(), Info.Callee, 0);
MF.getFrameInfo().setHasTailCall();
Info.LoweredTailCall = true;
return true;
}
bool AArch64CallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
CallLoweringInfo &Info) const {
MachineFunction &MF = MIRBuilder.getMF();
const Function &F = MF.getFunction();
MachineRegisterInfo &MRI = MF.getRegInfo();
auto &DL = F.getParent()->getDataLayout();
const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
SmallVector<ArgInfo, 8> OutArgs;
for (auto &OrigArg : Info.OrigArgs) {
splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv);
// AAPCS requires that we zero-extend i1 to 8 bits by the caller.
if (OrigArg.Ty->isIntegerTy(1)) {
ArgInfo &OutArg = OutArgs.back();
assert(OutArg.Regs.size() == 1 &&
MRI.getType(OutArg.Regs[0]).getSizeInBits() == 1 &&
"Unexpected registers used for i1 arg");
// We cannot use a ZExt ArgInfo flag here, because it will
// zero-extend the argument to i32 instead of just i8.
OutArg.Regs[0] =
MIRBuilder.buildZExt(LLT::scalar(8), OutArg.Regs[0]).getReg(0);
LLVMContext &Ctx = MF.getFunction().getContext();
OutArg.Ty = Type::getInt8Ty(Ctx);
}
}
SmallVector<ArgInfo, 8> InArgs;
if (!Info.OrigRet.Ty->isVoidTy())
splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv);
// If we can lower as a tail call, do that instead.
bool CanTailCallOpt =
isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);
// We must emit a tail call if we have musttail.
if (Info.IsMustTailCall && !CanTailCallOpt) {
// There are types of incoming/outgoing arguments we can't handle yet, so
// it doesn't make sense to actually die here like in ISelLowering. Instead,
// fall back to SelectionDAG and let it try to handle this.
LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
return false;
}
Info.IsTailCall = CanTailCallOpt;
if (CanTailCallOpt)
return lowerTailCall(MIRBuilder, Info, OutArgs);
// Find out which ABI gets to decide where things go.
CCAssignFn *AssignFnFixed;
CCAssignFn *AssignFnVarArg;
std::tie(AssignFnFixed, AssignFnVarArg) =
getAssignFnsForCC(Info.CallConv, TLI);
MachineInstrBuilder CallSeqStart;
CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);
// Create a temporarily-floating call instruction so we can add the implicit
// uses of arg registers.
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
unsigned Opc = 0;
// A call to a returns twice function like setjmp must be followed by a bti
// instruction.
if (Info.CB && Info.CB->getAttributes().hasFnAttr(Attribute::ReturnsTwice) &&
!Subtarget.noBTIAtReturnTwice() &&
MF.getInfo<AArch64FunctionInfo>()->branchTargetEnforcement())
Opc = AArch64::BLR_BTI;
else
Opc = getCallOpcode(MF, Info.Callee.isReg(), false);
auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
MIB.add(Info.Callee);
// Tell the call which registers are clobbered.
const uint32_t *Mask;
const auto *TRI = Subtarget.getRegisterInfo();
AArch64OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg,
Subtarget, /*IsReturn*/ false);
// Do the actual argument marshalling.
OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, /*IsReturn*/ false);
if (!determineAndHandleAssignments(Handler, Assigner, OutArgs, MIRBuilder,
Info.CallConv, Info.IsVarArg))
return false;
Mask = getMaskForArgs(OutArgs, Info, *TRI, MF);
if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv())
TRI->UpdateCustomCallPreservedMask(MF, &Mask);
MIB.addRegMask(Mask);
if (TRI->isAnyArgRegReserved(MF))
TRI->emitReservedArgRegCallError(MF);
// Now we can add the actual call instruction to the correct basic block.
MIRBuilder.insertInstr(MIB);
// If Callee is a reg, since it is used by a target specific
// instruction, it must have a register class matching the
// constraint of that instruction.
if (Info.Callee.isReg())
constrainOperandRegClass(MF, *TRI, MRI, *Subtarget.getInstrInfo(),
*Subtarget.getRegBankInfo(), *MIB, MIB->getDesc(),
Info.Callee, 0);
// Finally we can copy the returned value back into its virtual-register. In
// symmetry with the arguments, the physical register must be an
// implicit-define of the call instruction.
if (!Info.OrigRet.Ty->isVoidTy()) {
CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv);
CallReturnHandler Handler(MIRBuilder, MRI, MIB);
bool UsingReturnedArg =
!OutArgs.empty() && OutArgs[0].Flags[0].isReturned();
AArch64OutgoingValueAssigner Assigner(RetAssignFn, RetAssignFn, Subtarget,
/*IsReturn*/ false);
ReturnedArgCallReturnHandler ReturnedArgHandler(MIRBuilder, MRI, MIB);
if (!determineAndHandleAssignments(
UsingReturnedArg ? ReturnedArgHandler : Handler, Assigner, InArgs,
MIRBuilder, Info.CallConv, Info.IsVarArg,
UsingReturnedArg ? makeArrayRef(OutArgs[0].Regs) : None))
return false;
}
if (Info.SwiftErrorVReg) {
MIB.addDef(AArch64::X21, RegState::Implicit);
MIRBuilder.buildCopy(Info.SwiftErrorVReg, Register(AArch64::X21));
}
uint64_t CalleePopBytes =
doesCalleeRestoreStack(Info.CallConv,
MF.getTarget().Options.GuaranteedTailCallOpt)
? alignTo(Assigner.StackOffset, 16)
: 0;
CallSeqStart.addImm(Assigner.StackOffset).addImm(0);
MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP)
.addImm(Assigner.StackOffset)
.addImm(CalleePopBytes);
return true;
}
bool AArch64CallLowering::isTypeIsValidForThisReturn(EVT Ty) const {
return Ty.getSizeInBits() == 64;
}
|