1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
|
//=== AArch64PostLegalizerLowering.cpp --------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Post-legalization lowering for instructions.
///
/// This is used to offload pattern matching from the selector.
///
/// For example, this combiner will notice that a G_SHUFFLE_VECTOR is actually
/// a G_ZIP, G_UZP, etc.
///
/// General optimization combines should be handled by either the
/// AArch64PostLegalizerCombiner or the AArch64PreLegalizerCombiner.
///
//===----------------------------------------------------------------------===//
#include "AArch64GlobalISelUtils.h"
#include "AArch64Subtarget.h"
#include "AArch64TargetMachine.h"
#include "GISel/AArch64LegalizerInfo.h"
#include "MCTargetDesc/AArch64MCTargetDesc.h"
#include "TargetInfo/AArch64TargetInfo.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/CodeGen/GlobalISel/Combiner.h"
#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
#include "llvm/CodeGen/GlobalISel/CombinerInfo.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#define DEBUG_TYPE "aarch64-postlegalizer-lowering"
using namespace llvm;
using namespace MIPatternMatch;
using namespace AArch64GISelUtils;
/// Represents a pseudo instruction which replaces a G_SHUFFLE_VECTOR.
///
/// Used for matching target-supported shuffles before codegen.
struct ShuffleVectorPseudo {
unsigned Opc; ///< Opcode for the instruction. (E.g. G_ZIP1)
Register Dst; ///< Destination register.
SmallVector<SrcOp, 2> SrcOps; ///< Source registers.
ShuffleVectorPseudo(unsigned Opc, Register Dst,
std::initializer_list<SrcOp> SrcOps)
: Opc(Opc), Dst(Dst), SrcOps(SrcOps){};
ShuffleVectorPseudo() {}
};
/// Check if a vector shuffle corresponds to a REV instruction with the
/// specified blocksize.
static bool isREVMask(ArrayRef<int> M, unsigned EltSize, unsigned NumElts,
unsigned BlockSize) {
assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
"Only possible block sizes for REV are: 16, 32, 64");
assert(EltSize != 64 && "EltSize cannot be 64 for REV mask.");
unsigned BlockElts = M[0] + 1;
// If the first shuffle index is UNDEF, be optimistic.
if (M[0] < 0)
BlockElts = BlockSize / EltSize;
if (BlockSize <= EltSize || BlockSize != BlockElts * EltSize)
return false;
for (unsigned i = 0; i < NumElts; ++i) {
// Ignore undef indices.
if (M[i] < 0)
continue;
if (static_cast<unsigned>(M[i]) !=
(i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
return false;
}
return true;
}
/// Determines if \p M is a shuffle vector mask for a TRN of \p NumElts.
/// Whether or not G_TRN1 or G_TRN2 should be used is stored in \p WhichResult.
static bool isTRNMask(ArrayRef<int> M, unsigned NumElts,
unsigned &WhichResult) {
if (NumElts % 2 != 0)
return false;
WhichResult = (M[0] == 0 ? 0 : 1);
for (unsigned i = 0; i < NumElts; i += 2) {
if ((M[i] >= 0 && static_cast<unsigned>(M[i]) != i + WhichResult) ||
(M[i + 1] >= 0 &&
static_cast<unsigned>(M[i + 1]) != i + NumElts + WhichResult))
return false;
}
return true;
}
/// Check if a G_EXT instruction can handle a shuffle mask \p M when the vector
/// sources of the shuffle are different.
static Optional<std::pair<bool, uint64_t>> getExtMask(ArrayRef<int> M,
unsigned NumElts) {
// Look for the first non-undef element.
auto FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
if (FirstRealElt == M.end())
return None;
// Use APInt to handle overflow when calculating expected element.
unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
// The following shuffle indices must be the successive elements after the
// first real element.
if (any_of(
make_range(std::next(FirstRealElt), M.end()),
[&ExpectedElt](int Elt) { return Elt != ExpectedElt++ && Elt >= 0; }))
return None;
// The index of an EXT is the first element if it is not UNDEF.
// Watch out for the beginning UNDEFs. The EXT index should be the expected
// value of the first element. E.g.
// <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
// <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
// ExpectedElt is the last mask index plus 1.
uint64_t Imm = ExpectedElt.getZExtValue();
bool ReverseExt = false;
// There are two difference cases requiring to reverse input vectors.
// For example, for vector <4 x i32> we have the following cases,
// Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
// Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
// For both cases, we finally use mask <5, 6, 7, 0>, which requires
// to reverse two input vectors.
if (Imm < NumElts)
ReverseExt = true;
else
Imm -= NumElts;
return std::make_pair(ReverseExt, Imm);
}
/// Determines if \p M is a shuffle vector mask for a UZP of \p NumElts.
/// Whether or not G_UZP1 or G_UZP2 should be used is stored in \p WhichResult.
static bool isUZPMask(ArrayRef<int> M, unsigned NumElts,
unsigned &WhichResult) {
WhichResult = (M[0] == 0 ? 0 : 1);
for (unsigned i = 0; i != NumElts; ++i) {
// Skip undef indices.
if (M[i] < 0)
continue;
if (static_cast<unsigned>(M[i]) != 2 * i + WhichResult)
return false;
}
return true;
}
/// \return true if \p M is a zip mask for a shuffle vector of \p NumElts.
/// Whether or not G_ZIP1 or G_ZIP2 should be used is stored in \p WhichResult.
static bool isZipMask(ArrayRef<int> M, unsigned NumElts,
unsigned &WhichResult) {
if (NumElts % 2 != 0)
return false;
// 0 means use ZIP1, 1 means use ZIP2.
WhichResult = (M[0] == 0 ? 0 : 1);
unsigned Idx = WhichResult * NumElts / 2;
for (unsigned i = 0; i != NumElts; i += 2) {
if ((M[i] >= 0 && static_cast<unsigned>(M[i]) != Idx) ||
(M[i + 1] >= 0 && static_cast<unsigned>(M[i + 1]) != Idx + NumElts))
return false;
Idx += 1;
}
return true;
}
/// Helper function for matchINS.
///
/// \returns a value when \p M is an ins mask for \p NumInputElements.
///
/// First element of the returned pair is true when the produced
/// G_INSERT_VECTOR_ELT destination should be the LHS of the G_SHUFFLE_VECTOR.
///
/// Second element is the destination lane for the G_INSERT_VECTOR_ELT.
static Optional<std::pair<bool, int>> isINSMask(ArrayRef<int> M,
int NumInputElements) {
if (M.size() != static_cast<size_t>(NumInputElements))
return None;
int NumLHSMatch = 0, NumRHSMatch = 0;
int LastLHSMismatch = -1, LastRHSMismatch = -1;
for (int Idx = 0; Idx < NumInputElements; ++Idx) {
if (M[Idx] == -1) {
++NumLHSMatch;
++NumRHSMatch;
continue;
}
M[Idx] == Idx ? ++NumLHSMatch : LastLHSMismatch = Idx;
M[Idx] == Idx + NumInputElements ? ++NumRHSMatch : LastRHSMismatch = Idx;
}
const int NumNeededToMatch = NumInputElements - 1;
if (NumLHSMatch == NumNeededToMatch)
return std::make_pair(true, LastLHSMismatch);
if (NumRHSMatch == NumNeededToMatch)
return std::make_pair(false, LastRHSMismatch);
return None;
}
/// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with a
/// G_REV instruction. Returns the appropriate G_REV opcode in \p Opc.
static bool matchREV(MachineInstr &MI, MachineRegisterInfo &MRI,
ShuffleVectorPseudo &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
LLT Ty = MRI.getType(Dst);
unsigned EltSize = Ty.getScalarSizeInBits();
// Element size for a rev cannot be 64.
if (EltSize == 64)
return false;
unsigned NumElts = Ty.getNumElements();
// Try to produce G_REV64
if (isREVMask(ShuffleMask, EltSize, NumElts, 64)) {
MatchInfo = ShuffleVectorPseudo(AArch64::G_REV64, Dst, {Src});
return true;
}
// TODO: Produce G_REV32 and G_REV16 once we have proper legalization support.
// This should be identical to above, but with a constant 32 and constant
// 16.
return false;
}
/// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with
/// a G_TRN1 or G_TRN2 instruction.
static bool matchTRN(MachineInstr &MI, MachineRegisterInfo &MRI,
ShuffleVectorPseudo &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
unsigned WhichResult;
ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
Register Dst = MI.getOperand(0).getReg();
unsigned NumElts = MRI.getType(Dst).getNumElements();
if (!isTRNMask(ShuffleMask, NumElts, WhichResult))
return false;
unsigned Opc = (WhichResult == 0) ? AArch64::G_TRN1 : AArch64::G_TRN2;
Register V1 = MI.getOperand(1).getReg();
Register V2 = MI.getOperand(2).getReg();
MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
return true;
}
/// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with
/// a G_UZP1 or G_UZP2 instruction.
///
/// \param [in] MI - The shuffle vector instruction.
/// \param [out] MatchInfo - Either G_UZP1 or G_UZP2 on success.
static bool matchUZP(MachineInstr &MI, MachineRegisterInfo &MRI,
ShuffleVectorPseudo &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
unsigned WhichResult;
ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
Register Dst = MI.getOperand(0).getReg();
unsigned NumElts = MRI.getType(Dst).getNumElements();
if (!isUZPMask(ShuffleMask, NumElts, WhichResult))
return false;
unsigned Opc = (WhichResult == 0) ? AArch64::G_UZP1 : AArch64::G_UZP2;
Register V1 = MI.getOperand(1).getReg();
Register V2 = MI.getOperand(2).getReg();
MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
return true;
}
static bool matchZip(MachineInstr &MI, MachineRegisterInfo &MRI,
ShuffleVectorPseudo &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
unsigned WhichResult;
ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
Register Dst = MI.getOperand(0).getReg();
unsigned NumElts = MRI.getType(Dst).getNumElements();
if (!isZipMask(ShuffleMask, NumElts, WhichResult))
return false;
unsigned Opc = (WhichResult == 0) ? AArch64::G_ZIP1 : AArch64::G_ZIP2;
Register V1 = MI.getOperand(1).getReg();
Register V2 = MI.getOperand(2).getReg();
MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
return true;
}
/// Helper function for matchDup.
static bool matchDupFromInsertVectorElt(int Lane, MachineInstr &MI,
MachineRegisterInfo &MRI,
ShuffleVectorPseudo &MatchInfo) {
if (Lane != 0)
return false;
// Try to match a vector splat operation into a dup instruction.
// We're looking for this pattern:
//
// %scalar:gpr(s64) = COPY $x0
// %undef:fpr(<2 x s64>) = G_IMPLICIT_DEF
// %cst0:gpr(s32) = G_CONSTANT i32 0
// %zerovec:fpr(<2 x s32>) = G_BUILD_VECTOR %cst0(s32), %cst0(s32)
// %ins:fpr(<2 x s64>) = G_INSERT_VECTOR_ELT %undef, %scalar(s64), %cst0(s32)
// %splat:fpr(<2 x s64>) = G_SHUFFLE_VECTOR %ins(<2 x s64>), %undef, %zerovec(<2 x s32>)
//
// ...into:
// %splat = G_DUP %scalar
// Begin matching the insert.
auto *InsMI = getOpcodeDef(TargetOpcode::G_INSERT_VECTOR_ELT,
MI.getOperand(1).getReg(), MRI);
if (!InsMI)
return false;
// Match the undef vector operand.
if (!getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, InsMI->getOperand(1).getReg(),
MRI))
return false;
// Match the index constant 0.
if (!mi_match(InsMI->getOperand(3).getReg(), MRI, m_ZeroInt()))
return false;
MatchInfo = ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(),
{InsMI->getOperand(2).getReg()});
return true;
}
/// Helper function for matchDup.
static bool matchDupFromBuildVector(int Lane, MachineInstr &MI,
MachineRegisterInfo &MRI,
ShuffleVectorPseudo &MatchInfo) {
assert(Lane >= 0 && "Expected positive lane?");
// Test if the LHS is a BUILD_VECTOR. If it is, then we can just reference the
// lane's definition directly.
auto *BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR,
MI.getOperand(1).getReg(), MRI);
if (!BuildVecMI)
return false;
Register Reg = BuildVecMI->getOperand(Lane + 1).getReg();
MatchInfo =
ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(), {Reg});
return true;
}
static bool matchDup(MachineInstr &MI, MachineRegisterInfo &MRI,
ShuffleVectorPseudo &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
auto MaybeLane = getSplatIndex(MI);
if (!MaybeLane)
return false;
int Lane = *MaybeLane;
// If this is undef splat, generate it via "just" vdup, if possible.
if (Lane < 0)
Lane = 0;
if (matchDupFromInsertVectorElt(Lane, MI, MRI, MatchInfo))
return true;
if (matchDupFromBuildVector(Lane, MI, MRI, MatchInfo))
return true;
return false;
}
static bool matchEXT(MachineInstr &MI, MachineRegisterInfo &MRI,
ShuffleVectorPseudo &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
Register Dst = MI.getOperand(0).getReg();
auto ExtInfo = getExtMask(MI.getOperand(3).getShuffleMask(),
MRI.getType(Dst).getNumElements());
if (!ExtInfo)
return false;
bool ReverseExt;
uint64_t Imm;
std::tie(ReverseExt, Imm) = *ExtInfo;
Register V1 = MI.getOperand(1).getReg();
Register V2 = MI.getOperand(2).getReg();
if (ReverseExt)
std::swap(V1, V2);
uint64_t ExtFactor = MRI.getType(V1).getScalarSizeInBits() / 8;
Imm *= ExtFactor;
MatchInfo = ShuffleVectorPseudo(AArch64::G_EXT, Dst, {V1, V2, Imm});
return true;
}
/// Replace a G_SHUFFLE_VECTOR instruction with a pseudo.
/// \p Opc is the opcode to use. \p MI is the G_SHUFFLE_VECTOR.
static bool applyShuffleVectorPseudo(MachineInstr &MI,
ShuffleVectorPseudo &MatchInfo) {
MachineIRBuilder MIRBuilder(MI);
MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst}, MatchInfo.SrcOps);
MI.eraseFromParent();
return true;
}
/// Replace a G_SHUFFLE_VECTOR instruction with G_EXT.
/// Special-cased because the constant operand must be emitted as a G_CONSTANT
/// for the imported tablegen patterns to work.
static bool applyEXT(MachineInstr &MI, ShuffleVectorPseudo &MatchInfo) {
MachineIRBuilder MIRBuilder(MI);
// Tablegen patterns expect an i32 G_CONSTANT as the final op.
auto Cst =
MIRBuilder.buildConstant(LLT::scalar(32), MatchInfo.SrcOps[2].getImm());
MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst},
{MatchInfo.SrcOps[0], MatchInfo.SrcOps[1], Cst});
MI.eraseFromParent();
return true;
}
/// Match a G_SHUFFLE_VECTOR with a mask which corresponds to a
/// G_INSERT_VECTOR_ELT and G_EXTRACT_VECTOR_ELT pair.
///
/// e.g.
/// %shuf = G_SHUFFLE_VECTOR %left, %right, shufflemask(0, 0)
///
/// Can be represented as
///
/// %extract = G_EXTRACT_VECTOR_ELT %left, 0
/// %ins = G_INSERT_VECTOR_ELT %left, %extract, 1
///
static bool matchINS(MachineInstr &MI, MachineRegisterInfo &MRI,
std::tuple<Register, int, Register, int> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
Register Dst = MI.getOperand(0).getReg();
int NumElts = MRI.getType(Dst).getNumElements();
auto DstIsLeftAndDstLane = isINSMask(ShuffleMask, NumElts);
if (!DstIsLeftAndDstLane)
return false;
bool DstIsLeft;
int DstLane;
std::tie(DstIsLeft, DstLane) = *DstIsLeftAndDstLane;
Register Left = MI.getOperand(1).getReg();
Register Right = MI.getOperand(2).getReg();
Register DstVec = DstIsLeft ? Left : Right;
Register SrcVec = Left;
int SrcLane = ShuffleMask[DstLane];
if (SrcLane >= NumElts) {
SrcVec = Right;
SrcLane -= NumElts;
}
MatchInfo = std::make_tuple(DstVec, DstLane, SrcVec, SrcLane);
return true;
}
static bool applyINS(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &Builder,
std::tuple<Register, int, Register, int> &MatchInfo) {
Builder.setInstrAndDebugLoc(MI);
Register Dst = MI.getOperand(0).getReg();
auto ScalarTy = MRI.getType(Dst).getElementType();
Register DstVec, SrcVec;
int DstLane, SrcLane;
std::tie(DstVec, DstLane, SrcVec, SrcLane) = MatchInfo;
auto SrcCst = Builder.buildConstant(LLT::scalar(64), SrcLane);
auto Extract = Builder.buildExtractVectorElement(ScalarTy, SrcVec, SrcCst);
auto DstCst = Builder.buildConstant(LLT::scalar(64), DstLane);
Builder.buildInsertVectorElement(Dst, DstVec, Extract, DstCst);
MI.eraseFromParent();
return true;
}
/// isVShiftRImm - Check if this is a valid vector for the immediate
/// operand of a vector shift right operation. The value must be in the range:
/// 1 <= Value <= ElementBits for a right shift.
static bool isVShiftRImm(Register Reg, MachineRegisterInfo &MRI, LLT Ty,
int64_t &Cnt) {
assert(Ty.isVector() && "vector shift count is not a vector type");
MachineInstr *MI = MRI.getVRegDef(Reg);
auto Cst = getAArch64VectorSplatScalar(*MI, MRI);
if (!Cst)
return false;
Cnt = *Cst;
int64_t ElementBits = Ty.getScalarSizeInBits();
return Cnt >= 1 && Cnt <= ElementBits;
}
/// Match a vector G_ASHR or G_LSHR with a valid immediate shift.
static bool matchVAshrLshrImm(MachineInstr &MI, MachineRegisterInfo &MRI,
int64_t &Imm) {
assert(MI.getOpcode() == TargetOpcode::G_ASHR ||
MI.getOpcode() == TargetOpcode::G_LSHR);
LLT Ty = MRI.getType(MI.getOperand(1).getReg());
if (!Ty.isVector())
return false;
return isVShiftRImm(MI.getOperand(2).getReg(), MRI, Ty, Imm);
}
static bool applyVAshrLshrImm(MachineInstr &MI, MachineRegisterInfo &MRI,
int64_t &Imm) {
unsigned Opc = MI.getOpcode();
assert(Opc == TargetOpcode::G_ASHR || Opc == TargetOpcode::G_LSHR);
unsigned NewOpc =
Opc == TargetOpcode::G_ASHR ? AArch64::G_VASHR : AArch64::G_VLSHR;
MachineIRBuilder MIB(MI);
auto ImmDef = MIB.buildConstant(LLT::scalar(32), Imm);
MIB.buildInstr(NewOpc, {MI.getOperand(0)}, {MI.getOperand(1), ImmDef});
MI.eraseFromParent();
return true;
}
/// Determine if it is possible to modify the \p RHS and predicate \p P of a
/// G_ICMP instruction such that the right-hand side is an arithmetic immediate.
///
/// \returns A pair containing the updated immediate and predicate which may
/// be used to optimize the instruction.
///
/// \note This assumes that the comparison has been legalized.
Optional<std::pair<uint64_t, CmpInst::Predicate>>
tryAdjustICmpImmAndPred(Register RHS, CmpInst::Predicate P,
const MachineRegisterInfo &MRI) {
const auto &Ty = MRI.getType(RHS);
if (Ty.isVector())
return None;
unsigned Size = Ty.getSizeInBits();
assert((Size == 32 || Size == 64) && "Expected 32 or 64 bit compare only?");
// If the RHS is not a constant, or the RHS is already a valid arithmetic
// immediate, then there is nothing to change.
auto ValAndVReg = getIConstantVRegValWithLookThrough(RHS, MRI);
if (!ValAndVReg)
return None;
uint64_t C = ValAndVReg->Value.getZExtValue();
if (isLegalArithImmed(C))
return None;
// We have a non-arithmetic immediate. Check if adjusting the immediate and
// adjusting the predicate will result in a legal arithmetic immediate.
switch (P) {
default:
return None;
case CmpInst::ICMP_SLT:
case CmpInst::ICMP_SGE:
// Check for
//
// x slt c => x sle c - 1
// x sge c => x sgt c - 1
//
// When c is not the smallest possible negative number.
if ((Size == 64 && static_cast<int64_t>(C) == INT64_MIN) ||
(Size == 32 && static_cast<int32_t>(C) == INT32_MIN))
return None;
P = (P == CmpInst::ICMP_SLT) ? CmpInst::ICMP_SLE : CmpInst::ICMP_SGT;
C -= 1;
break;
case CmpInst::ICMP_ULT:
case CmpInst::ICMP_UGE:
// Check for
//
// x ult c => x ule c - 1
// x uge c => x ugt c - 1
//
// When c is not zero.
if (C == 0)
return None;
P = (P == CmpInst::ICMP_ULT) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
C -= 1;
break;
case CmpInst::ICMP_SLE:
case CmpInst::ICMP_SGT:
// Check for
//
// x sle c => x slt c + 1
// x sgt c => s sge c + 1
//
// When c is not the largest possible signed integer.
if ((Size == 32 && static_cast<int32_t>(C) == INT32_MAX) ||
(Size == 64 && static_cast<int64_t>(C) == INT64_MAX))
return None;
P = (P == CmpInst::ICMP_SLE) ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGE;
C += 1;
break;
case CmpInst::ICMP_ULE:
case CmpInst::ICMP_UGT:
// Check for
//
// x ule c => x ult c + 1
// x ugt c => s uge c + 1
//
// When c is not the largest possible unsigned integer.
if ((Size == 32 && static_cast<uint32_t>(C) == UINT32_MAX) ||
(Size == 64 && C == UINT64_MAX))
return None;
P = (P == CmpInst::ICMP_ULE) ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
C += 1;
break;
}
// Check if the new constant is valid, and return the updated constant and
// predicate if it is.
if (Size == 32)
C = static_cast<uint32_t>(C);
if (!isLegalArithImmed(C))
return None;
return {{C, P}};
}
/// Determine whether or not it is possible to update the RHS and predicate of
/// a G_ICMP instruction such that the RHS will be selected as an arithmetic
/// immediate.
///
/// \p MI - The G_ICMP instruction
/// \p MatchInfo - The new RHS immediate and predicate on success
///
/// See tryAdjustICmpImmAndPred for valid transformations.
bool matchAdjustICmpImmAndPred(
MachineInstr &MI, const MachineRegisterInfo &MRI,
std::pair<uint64_t, CmpInst::Predicate> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_ICMP);
Register RHS = MI.getOperand(3).getReg();
auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
if (auto MaybeNewImmAndPred = tryAdjustICmpImmAndPred(RHS, Pred, MRI)) {
MatchInfo = *MaybeNewImmAndPred;
return true;
}
return false;
}
bool applyAdjustICmpImmAndPred(
MachineInstr &MI, std::pair<uint64_t, CmpInst::Predicate> &MatchInfo,
MachineIRBuilder &MIB, GISelChangeObserver &Observer) {
MIB.setInstrAndDebugLoc(MI);
MachineOperand &RHS = MI.getOperand(3);
MachineRegisterInfo &MRI = *MIB.getMRI();
auto Cst = MIB.buildConstant(MRI.cloneVirtualRegister(RHS.getReg()),
MatchInfo.first);
Observer.changingInstr(MI);
RHS.setReg(Cst->getOperand(0).getReg());
MI.getOperand(1).setPredicate(MatchInfo.second);
Observer.changedInstr(MI);
return true;
}
bool matchDupLane(MachineInstr &MI, MachineRegisterInfo &MRI,
std::pair<unsigned, int> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
Register Src1Reg = MI.getOperand(1).getReg();
const LLT SrcTy = MRI.getType(Src1Reg);
const LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
auto LaneIdx = getSplatIndex(MI);
if (!LaneIdx)
return false;
// The lane idx should be within the first source vector.
if (*LaneIdx >= SrcTy.getNumElements())
return false;
if (DstTy != SrcTy)
return false;
LLT ScalarTy = SrcTy.getElementType();
unsigned ScalarSize = ScalarTy.getSizeInBits();
unsigned Opc = 0;
switch (SrcTy.getNumElements()) {
case 2:
if (ScalarSize == 64)
Opc = AArch64::G_DUPLANE64;
else if (ScalarSize == 32)
Opc = AArch64::G_DUPLANE32;
break;
case 4:
if (ScalarSize == 32)
Opc = AArch64::G_DUPLANE32;
break;
case 8:
if (ScalarSize == 16)
Opc = AArch64::G_DUPLANE16;
break;
case 16:
if (ScalarSize == 8)
Opc = AArch64::G_DUPLANE8;
break;
default:
break;
}
if (!Opc)
return false;
MatchInfo.first = Opc;
MatchInfo.second = *LaneIdx;
return true;
}
bool applyDupLane(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B, std::pair<unsigned, int> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
Register Src1Reg = MI.getOperand(1).getReg();
const LLT SrcTy = MRI.getType(Src1Reg);
B.setInstrAndDebugLoc(MI);
auto Lane = B.buildConstant(LLT::scalar(64), MatchInfo.second);
Register DupSrc = MI.getOperand(1).getReg();
// For types like <2 x s32>, we can use G_DUPLANE32, with a <4 x s32> source.
// To do this, we can use a G_CONCAT_VECTORS to do the widening.
if (SrcTy == LLT::fixed_vector(2, LLT::scalar(32))) {
assert(MRI.getType(MI.getOperand(0).getReg()).getNumElements() == 2 &&
"Unexpected dest elements");
auto Undef = B.buildUndef(SrcTy);
DupSrc = B.buildConcatVectors(
SrcTy.changeElementCount(ElementCount::getFixed(4)),
{Src1Reg, Undef.getReg(0)})
.getReg(0);
}
B.buildInstr(MatchInfo.first, {MI.getOperand(0).getReg()}, {DupSrc, Lane});
MI.eraseFromParent();
return true;
}
static bool matchBuildVectorToDup(MachineInstr &MI, MachineRegisterInfo &MRI) {
assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
auto Splat = getAArch64VectorSplat(MI, MRI);
if (!Splat)
return false;
if (Splat->isReg())
return true;
// Later, during selection, we'll try to match imported patterns using
// immAllOnesV and immAllZerosV. These require G_BUILD_VECTOR. Don't lower
// G_BUILD_VECTORs which could match those patterns.
int64_t Cst = Splat->getCst();
return (Cst != 0 && Cst != -1);
}
static bool applyBuildVectorToDup(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B) {
B.setInstrAndDebugLoc(MI);
B.buildInstr(AArch64::G_DUP, {MI.getOperand(0).getReg()},
{MI.getOperand(1).getReg()});
MI.eraseFromParent();
return true;
}
/// \returns how many instructions would be saved by folding a G_ICMP's shift
/// and/or extension operations.
static unsigned getCmpOperandFoldingProfit(Register CmpOp,
const MachineRegisterInfo &MRI) {
// No instructions to save if there's more than one use or no uses.
if (!MRI.hasOneNonDBGUse(CmpOp))
return 0;
// FIXME: This is duplicated with the selector. (See: selectShiftedRegister)
auto IsSupportedExtend = [&](const MachineInstr &MI) {
if (MI.getOpcode() == TargetOpcode::G_SEXT_INREG)
return true;
if (MI.getOpcode() != TargetOpcode::G_AND)
return false;
auto ValAndVReg =
getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
if (!ValAndVReg)
return false;
uint64_t Mask = ValAndVReg->Value.getZExtValue();
return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF);
};
MachineInstr *Def = getDefIgnoringCopies(CmpOp, MRI);
if (IsSupportedExtend(*Def))
return 1;
unsigned Opc = Def->getOpcode();
if (Opc != TargetOpcode::G_SHL && Opc != TargetOpcode::G_ASHR &&
Opc != TargetOpcode::G_LSHR)
return 0;
auto MaybeShiftAmt =
getIConstantVRegValWithLookThrough(Def->getOperand(2).getReg(), MRI);
if (!MaybeShiftAmt)
return 0;
uint64_t ShiftAmt = MaybeShiftAmt->Value.getZExtValue();
MachineInstr *ShiftLHS =
getDefIgnoringCopies(Def->getOperand(1).getReg(), MRI);
// Check if we can fold an extend and a shift.
// FIXME: This is duplicated with the selector. (See:
// selectArithExtendedRegister)
if (IsSupportedExtend(*ShiftLHS))
return (ShiftAmt <= 4) ? 2 : 1;
LLT Ty = MRI.getType(Def->getOperand(0).getReg());
if (Ty.isVector())
return 0;
unsigned ShiftSize = Ty.getSizeInBits();
if ((ShiftSize == 32 && ShiftAmt <= 31) ||
(ShiftSize == 64 && ShiftAmt <= 63))
return 1;
return 0;
}
/// \returns true if it would be profitable to swap the LHS and RHS of a G_ICMP
/// instruction \p MI.
static bool trySwapICmpOperands(MachineInstr &MI,
const MachineRegisterInfo &MRI) {
assert(MI.getOpcode() == TargetOpcode::G_ICMP);
// Swap the operands if it would introduce a profitable folding opportunity.
// (e.g. a shift + extend).
//
// For example:
// lsl w13, w11, #1
// cmp w13, w12
// can be turned into:
// cmp w12, w11, lsl #1
// Don't swap if there's a constant on the RHS, because we know we can fold
// that.
Register RHS = MI.getOperand(3).getReg();
auto RHSCst = getIConstantVRegValWithLookThrough(RHS, MRI);
if (RHSCst && isLegalArithImmed(RHSCst->Value.getSExtValue()))
return false;
Register LHS = MI.getOperand(2).getReg();
auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
auto GetRegForProfit = [&](Register Reg) {
MachineInstr *Def = getDefIgnoringCopies(Reg, MRI);
return isCMN(Def, Pred, MRI) ? Def->getOperand(2).getReg() : Reg;
};
// Don't have a constant on the RHS. If we swap the LHS and RHS of the
// compare, would we be able to fold more instructions?
Register TheLHS = GetRegForProfit(LHS);
Register TheRHS = GetRegForProfit(RHS);
// If the LHS is more likely to give us a folding opportunity, then swap the
// LHS and RHS.
return (getCmpOperandFoldingProfit(TheLHS, MRI) >
getCmpOperandFoldingProfit(TheRHS, MRI));
}
static bool applySwapICmpOperands(MachineInstr &MI,
GISelChangeObserver &Observer) {
auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
Register LHS = MI.getOperand(2).getReg();
Register RHS = MI.getOperand(3).getReg();
Observer.changedInstr(MI);
MI.getOperand(1).setPredicate(CmpInst::getSwappedPredicate(Pred));
MI.getOperand(2).setReg(RHS);
MI.getOperand(3).setReg(LHS);
Observer.changedInstr(MI);
return true;
}
/// \returns a function which builds a vector floating point compare instruction
/// for a condition code \p CC.
/// \param [in] IsZero - True if the comparison is against 0.
/// \param [in] NoNans - True if the target has NoNansFPMath.
static std::function<Register(MachineIRBuilder &)>
getVectorFCMP(AArch64CC::CondCode CC, Register LHS, Register RHS, bool IsZero,
bool NoNans, MachineRegisterInfo &MRI) {
LLT DstTy = MRI.getType(LHS);
assert(DstTy.isVector() && "Expected vector types only?");
assert(DstTy == MRI.getType(RHS) && "Src and Dst types must match!");
switch (CC) {
default:
llvm_unreachable("Unexpected condition code!");
case AArch64CC::NE:
return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
auto FCmp = IsZero
? MIB.buildInstr(AArch64::G_FCMEQZ, {DstTy}, {LHS})
: MIB.buildInstr(AArch64::G_FCMEQ, {DstTy}, {LHS, RHS});
return MIB.buildNot(DstTy, FCmp).getReg(0);
};
case AArch64CC::EQ:
return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
return IsZero
? MIB.buildInstr(AArch64::G_FCMEQZ, {DstTy}, {LHS}).getReg(0)
: MIB.buildInstr(AArch64::G_FCMEQ, {DstTy}, {LHS, RHS})
.getReg(0);
};
case AArch64CC::GE:
return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
return IsZero
? MIB.buildInstr(AArch64::G_FCMGEZ, {DstTy}, {LHS}).getReg(0)
: MIB.buildInstr(AArch64::G_FCMGE, {DstTy}, {LHS, RHS})
.getReg(0);
};
case AArch64CC::GT:
return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
return IsZero
? MIB.buildInstr(AArch64::G_FCMGTZ, {DstTy}, {LHS}).getReg(0)
: MIB.buildInstr(AArch64::G_FCMGT, {DstTy}, {LHS, RHS})
.getReg(0);
};
case AArch64CC::LS:
return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
return IsZero
? MIB.buildInstr(AArch64::G_FCMLEZ, {DstTy}, {LHS}).getReg(0)
: MIB.buildInstr(AArch64::G_FCMGE, {DstTy}, {RHS, LHS})
.getReg(0);
};
case AArch64CC::MI:
return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
return IsZero
? MIB.buildInstr(AArch64::G_FCMLTZ, {DstTy}, {LHS}).getReg(0)
: MIB.buildInstr(AArch64::G_FCMGT, {DstTy}, {RHS, LHS})
.getReg(0);
};
}
}
/// Try to lower a vector G_FCMP \p MI into an AArch64-specific pseudo.
static bool lowerVectorFCMP(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &MIB) {
assert(MI.getOpcode() == TargetOpcode::G_FCMP);
const auto &ST = MI.getMF()->getSubtarget<AArch64Subtarget>();
Register Dst = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(Dst);
if (!DstTy.isVector() || !ST.hasNEON())
return false;
const auto Pred =
static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
Register LHS = MI.getOperand(2).getReg();
// TODO: Handle v4s16 case.
unsigned EltSize = MRI.getType(LHS).getScalarSizeInBits();
if (EltSize != 32 && EltSize != 64)
return false;
Register RHS = MI.getOperand(3).getReg();
auto Splat = getAArch64VectorSplat(*MRI.getVRegDef(RHS), MRI);
// Compares against 0 have special target-specific pseudos.
bool IsZero = Splat && Splat->isCst() && Splat->getCst() == 0;
bool Invert;
AArch64CC::CondCode CC, CC2;
changeVectorFCMPPredToAArch64CC(Pred, CC, CC2, Invert);
bool NoNans = ST.getTargetLowering()->getTargetMachine().Options.NoNaNsFPMath;
// Instead of having an apply function, just build here to simplify things.
MIB.setInstrAndDebugLoc(MI);
auto Cmp = getVectorFCMP(CC, LHS, RHS, IsZero, NoNans, MRI);
Register CmpRes;
if (CC2 == AArch64CC::AL)
CmpRes = Cmp(MIB);
else {
auto Cmp2 = getVectorFCMP(CC2, LHS, RHS, IsZero, NoNans, MRI);
auto Cmp2Dst = Cmp2(MIB);
auto Cmp1Dst = Cmp(MIB);
CmpRes = MIB.buildOr(DstTy, Cmp1Dst, Cmp2Dst).getReg(0);
}
if (Invert)
CmpRes = MIB.buildNot(DstTy, CmpRes).getReg(0);
MRI.replaceRegWith(Dst, CmpRes);
MI.eraseFromParent();
return false;
}
static bool matchFormTruncstore(MachineInstr &MI, MachineRegisterInfo &MRI,
Register &SrcReg) {
assert(MI.getOpcode() == TargetOpcode::G_STORE);
Register DstReg = MI.getOperand(0).getReg();
if (MRI.getType(DstReg).isVector())
return false;
// Match a store of a truncate.
if (!mi_match(DstReg, MRI, m_GTrunc(m_Reg(SrcReg))))
return false;
// Only form truncstores for value types of max 64b.
return MRI.getType(SrcReg).getSizeInBits() <= 64;
}
static bool applyFormTruncstore(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B,
GISelChangeObserver &Observer,
Register &SrcReg) {
assert(MI.getOpcode() == TargetOpcode::G_STORE);
Observer.changingInstr(MI);
MI.getOperand(0).setReg(SrcReg);
Observer.changedInstr(MI);
return true;
}
#define AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_DEPS
#include "AArch64GenPostLegalizeGILowering.inc"
#undef AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_DEPS
namespace {
#define AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_H
#include "AArch64GenPostLegalizeGILowering.inc"
#undef AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_H
class AArch64PostLegalizerLoweringInfo : public CombinerInfo {
public:
AArch64GenPostLegalizerLoweringHelperRuleConfig GeneratedRuleCfg;
AArch64PostLegalizerLoweringInfo(bool OptSize, bool MinSize)
: CombinerInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false,
/*LegalizerInfo*/ nullptr, /*OptEnabled = */ true, OptSize,
MinSize) {
if (!GeneratedRuleCfg.parseCommandLineOption())
report_fatal_error("Invalid rule identifier");
}
virtual bool combine(GISelChangeObserver &Observer, MachineInstr &MI,
MachineIRBuilder &B) const override;
};
bool AArch64PostLegalizerLoweringInfo::combine(GISelChangeObserver &Observer,
MachineInstr &MI,
MachineIRBuilder &B) const {
CombinerHelper Helper(Observer, B);
AArch64GenPostLegalizerLoweringHelper Generated(GeneratedRuleCfg);
return Generated.tryCombineAll(Observer, MI, B, Helper);
}
#define AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_CPP
#include "AArch64GenPostLegalizeGILowering.inc"
#undef AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_CPP
class AArch64PostLegalizerLowering : public MachineFunctionPass {
public:
static char ID;
AArch64PostLegalizerLowering();
StringRef getPassName() const override {
return "AArch64PostLegalizerLowering";
}
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
};
} // end anonymous namespace
void AArch64PostLegalizerLowering::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetPassConfig>();
AU.setPreservesCFG();
getSelectionDAGFallbackAnalysisUsage(AU);
MachineFunctionPass::getAnalysisUsage(AU);
}
AArch64PostLegalizerLowering::AArch64PostLegalizerLowering()
: MachineFunctionPass(ID) {
initializeAArch64PostLegalizerLoweringPass(*PassRegistry::getPassRegistry());
}
bool AArch64PostLegalizerLowering::runOnMachineFunction(MachineFunction &MF) {
if (MF.getProperties().hasProperty(
MachineFunctionProperties::Property::FailedISel))
return false;
assert(MF.getProperties().hasProperty(
MachineFunctionProperties::Property::Legalized) &&
"Expected a legalized function?");
auto *TPC = &getAnalysis<TargetPassConfig>();
const Function &F = MF.getFunction();
AArch64PostLegalizerLoweringInfo PCInfo(F.hasOptSize(), F.hasMinSize());
Combiner C(PCInfo, TPC);
return C.combineMachineInstrs(MF, /*CSEInfo*/ nullptr);
}
char AArch64PostLegalizerLowering::ID = 0;
INITIALIZE_PASS_BEGIN(AArch64PostLegalizerLowering, DEBUG_TYPE,
"Lower AArch64 MachineInstrs after legalization", false,
false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(AArch64PostLegalizerLowering, DEBUG_TYPE,
"Lower AArch64 MachineInstrs after legalization", false,
false)
namespace llvm {
FunctionPass *createAArch64PostLegalizerLowering() {
return new AArch64PostLegalizerLowering();
}
} // end namespace llvm
|