1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
|
//=== lib/CodeGen/GlobalISel/AArch64PreLegalizerCombiner.cpp --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass does combining of machine instructions at the generic MI level,
// before the legalizer.
//
//===----------------------------------------------------------------------===//
#include "AArch64GlobalISelUtils.h"
#include "AArch64TargetMachine.h"
#include "llvm/CodeGen/GlobalISel/Combiner.h"
#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
#include "llvm/CodeGen/GlobalISel/CombinerInfo.h"
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "aarch64-prelegalizer-combiner"
using namespace llvm;
using namespace MIPatternMatch;
/// Return true if a G_FCONSTANT instruction is known to be better-represented
/// as a G_CONSTANT.
static bool matchFConstantToConstant(MachineInstr &MI,
MachineRegisterInfo &MRI) {
assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT);
Register DstReg = MI.getOperand(0).getReg();
const unsigned DstSize = MRI.getType(DstReg).getSizeInBits();
if (DstSize != 32 && DstSize != 64)
return false;
// When we're storing a value, it doesn't matter what register bank it's on.
// Since not all floating point constants can be materialized using a fmov,
// it makes more sense to just use a GPR.
return all_of(MRI.use_nodbg_instructions(DstReg),
[](const MachineInstr &Use) { return Use.mayStore(); });
}
/// Change a G_FCONSTANT into a G_CONSTANT.
static void applyFConstantToConstant(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT);
MachineIRBuilder MIB(MI);
const APFloat &ImmValAPF = MI.getOperand(1).getFPImm()->getValueAPF();
MIB.buildConstant(MI.getOperand(0).getReg(), ImmValAPF.bitcastToAPInt());
MI.eraseFromParent();
}
/// Try to match a G_ICMP of a G_TRUNC with zero, in which the truncated bits
/// are sign bits. In this case, we can transform the G_ICMP to directly compare
/// the wide value with a zero.
static bool matchICmpRedundantTrunc(MachineInstr &MI, MachineRegisterInfo &MRI,
GISelKnownBits *KB, Register &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_ICMP && KB);
auto Pred = (CmpInst::Predicate)MI.getOperand(1).getPredicate();
if (!ICmpInst::isEquality(Pred))
return false;
Register LHS = MI.getOperand(2).getReg();
LLT LHSTy = MRI.getType(LHS);
if (!LHSTy.isScalar())
return false;
Register RHS = MI.getOperand(3).getReg();
Register WideReg;
if (!mi_match(LHS, MRI, m_GTrunc(m_Reg(WideReg))) ||
!mi_match(RHS, MRI, m_SpecificICst(0)))
return false;
LLT WideTy = MRI.getType(WideReg);
if (KB->computeNumSignBits(WideReg) <=
WideTy.getSizeInBits() - LHSTy.getSizeInBits())
return false;
MatchInfo = WideReg;
return true;
}
static bool applyICmpRedundantTrunc(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &Builder,
GISelChangeObserver &Observer,
Register &WideReg) {
assert(MI.getOpcode() == TargetOpcode::G_ICMP);
LLT WideTy = MRI.getType(WideReg);
// We're going to directly use the wide register as the LHS, and then use an
// equivalent size zero for RHS.
Builder.setInstrAndDebugLoc(MI);
auto WideZero = Builder.buildConstant(WideTy, 0);
Observer.changingInstr(MI);
MI.getOperand(2).setReg(WideReg);
MI.getOperand(3).setReg(WideZero.getReg(0));
Observer.changedInstr(MI);
return true;
}
/// \returns true if it is possible to fold a constant into a G_GLOBAL_VALUE.
///
/// e.g.
///
/// %g = G_GLOBAL_VALUE @x -> %g = G_GLOBAL_VALUE @x + cst
static bool matchFoldGlobalOffset(MachineInstr &MI, MachineRegisterInfo &MRI,
std::pair<uint64_t, uint64_t> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_GLOBAL_VALUE);
MachineFunction &MF = *MI.getMF();
auto &GlobalOp = MI.getOperand(1);
auto *GV = GlobalOp.getGlobal();
if (GV->isThreadLocal())
return false;
// Don't allow anything that could represent offsets etc.
if (MF.getSubtarget<AArch64Subtarget>().ClassifyGlobalReference(
GV, MF.getTarget()) != AArch64II::MO_NO_FLAG)
return false;
// Look for a G_GLOBAL_VALUE only used by G_PTR_ADDs against constants:
//
// %g = G_GLOBAL_VALUE @x
// %ptr1 = G_PTR_ADD %g, cst1
// %ptr2 = G_PTR_ADD %g, cst2
// ...
// %ptrN = G_PTR_ADD %g, cstN
//
// Identify the *smallest* constant. We want to be able to form this:
//
// %offset_g = G_GLOBAL_VALUE @x + min_cst
// %g = G_PTR_ADD %offset_g, -min_cst
// %ptr1 = G_PTR_ADD %g, cst1
// ...
Register Dst = MI.getOperand(0).getReg();
uint64_t MinOffset = -1ull;
for (auto &UseInstr : MRI.use_nodbg_instructions(Dst)) {
if (UseInstr.getOpcode() != TargetOpcode::G_PTR_ADD)
return false;
auto Cst = getIConstantVRegValWithLookThrough(
UseInstr.getOperand(2).getReg(), MRI);
if (!Cst)
return false;
MinOffset = std::min(MinOffset, Cst->Value.getZExtValue());
}
// Require that the new offset is larger than the existing one to avoid
// infinite loops.
uint64_t CurrOffset = GlobalOp.getOffset();
uint64_t NewOffset = MinOffset + CurrOffset;
if (NewOffset <= CurrOffset)
return false;
// Check whether folding this offset is legal. It must not go out of bounds of
// the referenced object to avoid violating the code model, and must be
// smaller than 2^20 because this is the largest offset expressible in all
// object formats. (The IMAGE_REL_ARM64_PAGEBASE_REL21 relocation in COFF
// stores an immediate signed 21 bit offset.)
//
// This check also prevents us from folding negative offsets, which will end
// up being treated in the same way as large positive ones. They could also
// cause code model violations, and aren't really common enough to matter.
if (NewOffset >= (1 << 20))
return false;
Type *T = GV->getValueType();
if (!T->isSized() ||
NewOffset > GV->getParent()->getDataLayout().getTypeAllocSize(T))
return false;
MatchInfo = std::make_pair(NewOffset, MinOffset);
return true;
}
static bool applyFoldGlobalOffset(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B,
GISelChangeObserver &Observer,
std::pair<uint64_t, uint64_t> &MatchInfo) {
// Change:
//
// %g = G_GLOBAL_VALUE @x
// %ptr1 = G_PTR_ADD %g, cst1
// %ptr2 = G_PTR_ADD %g, cst2
// ...
// %ptrN = G_PTR_ADD %g, cstN
//
// To:
//
// %offset_g = G_GLOBAL_VALUE @x + min_cst
// %g = G_PTR_ADD %offset_g, -min_cst
// %ptr1 = G_PTR_ADD %g, cst1
// ...
// %ptrN = G_PTR_ADD %g, cstN
//
// Then, the original G_PTR_ADDs should be folded later on so that they look
// like this:
//
// %ptrN = G_PTR_ADD %offset_g, cstN - min_cst
uint64_t Offset, MinOffset;
std::tie(Offset, MinOffset) = MatchInfo;
B.setInstrAndDebugLoc(MI);
Observer.changingInstr(MI);
auto &GlobalOp = MI.getOperand(1);
auto *GV = GlobalOp.getGlobal();
GlobalOp.ChangeToGA(GV, Offset, GlobalOp.getTargetFlags());
Register Dst = MI.getOperand(0).getReg();
Register NewGVDst = MRI.cloneVirtualRegister(Dst);
MI.getOperand(0).setReg(NewGVDst);
Observer.changedInstr(MI);
B.buildPtrAdd(
Dst, NewGVDst,
B.buildConstant(LLT::scalar(64), -static_cast<int64_t>(MinOffset)));
return true;
}
static bool tryToSimplifyUADDO(MachineInstr &MI, MachineIRBuilder &B,
CombinerHelper &Helper,
GISelChangeObserver &Observer) {
// Try simplify G_UADDO with 8 or 16 bit operands to wide G_ADD and TBNZ if
// result is only used in the no-overflow case. It is restricted to cases
// where we know that the high-bits of the operands are 0. If there's an
// overflow, then the the 9th or 17th bit must be set, which can be checked
// using TBNZ.
//
// Change (for UADDOs on 8 and 16 bits):
//
// %z0 = G_ASSERT_ZEXT _
// %op0 = G_TRUNC %z0
// %z1 = G_ASSERT_ZEXT _
// %op1 = G_TRUNC %z1
// %val, %cond = G_UADDO %op0, %op1
// G_BRCOND %cond, %error.bb
//
// error.bb:
// (no successors and no uses of %val)
//
// To:
//
// %z0 = G_ASSERT_ZEXT _
// %z1 = G_ASSERT_ZEXT _
// %add = G_ADD %z0, %z1
// %val = G_TRUNC %add
// %bit = G_AND %add, 1 << scalar-size-in-bits(%op1)
// %cond = G_ICMP NE, %bit, 0
// G_BRCOND %cond, %error.bb
auto &MRI = *B.getMRI();
MachineOperand *DefOp0 = MRI.getOneDef(MI.getOperand(2).getReg());
MachineOperand *DefOp1 = MRI.getOneDef(MI.getOperand(3).getReg());
Register Op0Wide;
Register Op1Wide;
if (!mi_match(DefOp0->getParent(), MRI, m_GTrunc(m_Reg(Op0Wide))) ||
!mi_match(DefOp1->getParent(), MRI, m_GTrunc(m_Reg(Op1Wide))))
return false;
LLT WideTy0 = MRI.getType(Op0Wide);
LLT WideTy1 = MRI.getType(Op1Wide);
Register ResVal = MI.getOperand(0).getReg();
LLT OpTy = MRI.getType(ResVal);
MachineInstr *Op0WideDef = MRI.getVRegDef(Op0Wide);
MachineInstr *Op1WideDef = MRI.getVRegDef(Op1Wide);
unsigned OpTySize = OpTy.getScalarSizeInBits();
// First check that the G_TRUNC feeding the G_UADDO are no-ops, because the
// inputs have been zero-extended.
if (Op0WideDef->getOpcode() != TargetOpcode::G_ASSERT_ZEXT ||
Op1WideDef->getOpcode() != TargetOpcode::G_ASSERT_ZEXT ||
OpTySize != Op0WideDef->getOperand(2).getImm() ||
OpTySize != Op1WideDef->getOperand(2).getImm())
return false;
// Only scalar UADDO with either 8 or 16 bit operands are handled.
if (!WideTy0.isScalar() || !WideTy1.isScalar() || WideTy0 != WideTy1 ||
OpTySize >= WideTy0.getScalarSizeInBits() ||
(OpTySize != 8 && OpTySize != 16))
return false;
// The overflow-status result must be used by a branch only.
Register ResStatus = MI.getOperand(1).getReg();
if (!MRI.hasOneNonDBGUse(ResStatus))
return false;
MachineInstr *CondUser = &*MRI.use_instr_nodbg_begin(ResStatus);
if (CondUser->getOpcode() != TargetOpcode::G_BRCOND)
return false;
// Make sure the computed result is only used in the no-overflow blocks.
MachineBasicBlock *CurrentMBB = MI.getParent();
MachineBasicBlock *FailMBB = CondUser->getOperand(1).getMBB();
if (!FailMBB->succ_empty() || CondUser->getParent() != CurrentMBB)
return false;
if (any_of(MRI.use_nodbg_instructions(ResVal),
[&MI, FailMBB, CurrentMBB](MachineInstr &I) {
return &MI != &I &&
(I.getParent() == FailMBB || I.getParent() == CurrentMBB);
}))
return false;
// Remove G_ADDO.
B.setInstrAndDebugLoc(*MI.getNextNode());
MI.eraseFromParent();
// Emit wide add.
Register AddDst = MRI.cloneVirtualRegister(Op0Wide);
B.buildInstr(TargetOpcode::G_ADD, {AddDst}, {Op0Wide, Op1Wide});
// Emit check of the 9th or 17th bit and update users (the branch). This will
// later be folded to TBNZ.
Register CondBit = MRI.cloneVirtualRegister(Op0Wide);
B.buildAnd(
CondBit, AddDst,
B.buildConstant(LLT::scalar(32), OpTySize == 8 ? 1 << 8 : 1 << 16));
B.buildICmp(CmpInst::ICMP_NE, ResStatus, CondBit,
B.buildConstant(LLT::scalar(32), 0));
// Update ZEXts users of the result value. Because all uses are in the
// no-overflow case, we know that the top bits are 0 and we can ignore ZExts.
B.buildZExtOrTrunc(ResVal, AddDst);
for (MachineOperand &U : make_early_inc_range(MRI.use_operands(ResVal))) {
Register WideReg;
if (mi_match(U.getParent(), MRI, m_GZExt(m_Reg(WideReg)))) {
auto OldR = U.getParent()->getOperand(0).getReg();
Observer.erasingInstr(*U.getParent());
U.getParent()->eraseFromParent();
Helper.replaceRegWith(MRI, OldR, AddDst);
}
}
return true;
}
class AArch64PreLegalizerCombinerHelperState {
protected:
CombinerHelper &Helper;
public:
AArch64PreLegalizerCombinerHelperState(CombinerHelper &Helper)
: Helper(Helper) {}
};
#define AARCH64PRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS
#include "AArch64GenPreLegalizeGICombiner.inc"
#undef AARCH64PRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS
namespace {
#define AARCH64PRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H
#include "AArch64GenPreLegalizeGICombiner.inc"
#undef AARCH64PRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H
class AArch64PreLegalizerCombinerInfo : public CombinerInfo {
GISelKnownBits *KB;
MachineDominatorTree *MDT;
AArch64GenPreLegalizerCombinerHelperRuleConfig GeneratedRuleCfg;
public:
AArch64PreLegalizerCombinerInfo(bool EnableOpt, bool OptSize, bool MinSize,
GISelKnownBits *KB, MachineDominatorTree *MDT)
: CombinerInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false,
/*LegalizerInfo*/ nullptr, EnableOpt, OptSize, MinSize),
KB(KB), MDT(MDT) {
if (!GeneratedRuleCfg.parseCommandLineOption())
report_fatal_error("Invalid rule identifier");
}
virtual bool combine(GISelChangeObserver &Observer, MachineInstr &MI,
MachineIRBuilder &B) const override;
};
bool AArch64PreLegalizerCombinerInfo::combine(GISelChangeObserver &Observer,
MachineInstr &MI,
MachineIRBuilder &B) const {
CombinerHelper Helper(Observer, B, KB, MDT);
AArch64GenPreLegalizerCombinerHelper Generated(GeneratedRuleCfg, Helper);
if (Generated.tryCombineAll(Observer, MI, B))
return true;
unsigned Opc = MI.getOpcode();
switch (Opc) {
case TargetOpcode::G_CONCAT_VECTORS:
return Helper.tryCombineConcatVectors(MI);
case TargetOpcode::G_SHUFFLE_VECTOR:
return Helper.tryCombineShuffleVector(MI);
case TargetOpcode::G_UADDO:
return tryToSimplifyUADDO(MI, B, Helper, Observer);
case TargetOpcode::G_MEMCPY_INLINE:
return Helper.tryEmitMemcpyInline(MI);
case TargetOpcode::G_MEMCPY:
case TargetOpcode::G_MEMMOVE:
case TargetOpcode::G_MEMSET: {
// If we're at -O0 set a maxlen of 32 to inline, otherwise let the other
// heuristics decide.
unsigned MaxLen = EnableOpt ? 0 : 32;
// Try to inline memcpy type calls if optimizations are enabled.
if (Helper.tryCombineMemCpyFamily(MI, MaxLen))
return true;
if (Opc == TargetOpcode::G_MEMSET)
return llvm::AArch64GISelUtils::tryEmitBZero(MI, B, EnableMinSize);
return false;
}
}
return false;
}
#define AARCH64PRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP
#include "AArch64GenPreLegalizeGICombiner.inc"
#undef AARCH64PRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP
// Pass boilerplate
// ================
class AArch64PreLegalizerCombiner : public MachineFunctionPass {
public:
static char ID;
AArch64PreLegalizerCombiner();
StringRef getPassName() const override { return "AArch64PreLegalizerCombiner"; }
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
};
} // end anonymous namespace
void AArch64PreLegalizerCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetPassConfig>();
AU.setPreservesCFG();
getSelectionDAGFallbackAnalysisUsage(AU);
AU.addRequired<GISelKnownBitsAnalysis>();
AU.addPreserved<GISelKnownBitsAnalysis>();
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<GISelCSEAnalysisWrapperPass>();
AU.addPreserved<GISelCSEAnalysisWrapperPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
AArch64PreLegalizerCombiner::AArch64PreLegalizerCombiner()
: MachineFunctionPass(ID) {
initializeAArch64PreLegalizerCombinerPass(*PassRegistry::getPassRegistry());
}
bool AArch64PreLegalizerCombiner::runOnMachineFunction(MachineFunction &MF) {
if (MF.getProperties().hasProperty(
MachineFunctionProperties::Property::FailedISel))
return false;
auto &TPC = getAnalysis<TargetPassConfig>();
// Enable CSE.
GISelCSEAnalysisWrapper &Wrapper =
getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
auto *CSEInfo = &Wrapper.get(TPC.getCSEConfig());
const Function &F = MF.getFunction();
bool EnableOpt =
MF.getTarget().getOptLevel() != CodeGenOpt::None && !skipFunction(F);
GISelKnownBits *KB = &getAnalysis<GISelKnownBitsAnalysis>().get(MF);
MachineDominatorTree *MDT = &getAnalysis<MachineDominatorTree>();
AArch64PreLegalizerCombinerInfo PCInfo(EnableOpt, F.hasOptSize(),
F.hasMinSize(), KB, MDT);
Combiner C(PCInfo, &TPC);
return C.combineMachineInstrs(MF, CSEInfo);
}
char AArch64PreLegalizerCombiner::ID = 0;
INITIALIZE_PASS_BEGIN(AArch64PreLegalizerCombiner, DEBUG_TYPE,
"Combine AArch64 machine instrs before legalization",
false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(GISelKnownBitsAnalysis)
INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
INITIALIZE_PASS_END(AArch64PreLegalizerCombiner, DEBUG_TYPE,
"Combine AArch64 machine instrs before legalization", false,
false)
namespace llvm {
FunctionPass *createAArch64PreLegalizerCombiner() {
return new AArch64PreLegalizerCombiner();
}
} // end namespace llvm
|