1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
//===-- AMDGPUAnnotateUniformValues.cpp - ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass adds amdgpu.uniform metadata to IR values so this information
/// can be used during instruction selection.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/InitializePasses.h"
#define DEBUG_TYPE "amdgpu-annotate-uniform"
using namespace llvm;
namespace {
class AMDGPUAnnotateUniformValues : public FunctionPass,
public InstVisitor<AMDGPUAnnotateUniformValues> {
LegacyDivergenceAnalysis *DA;
MemorySSA *MSSA;
AliasAnalysis *AA;
DenseMap<Value*, GetElementPtrInst*> noClobberClones;
bool isEntryFunc;
public:
static char ID;
AMDGPUAnnotateUniformValues() :
FunctionPass(ID) { }
bool doInitialization(Module &M) override;
bool runOnFunction(Function &F) override;
StringRef getPassName() const override {
return "AMDGPU Annotate Uniform Values";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<LegacyDivergenceAnalysis>();
AU.addRequired<MemorySSAWrapperPass>();
AU.addRequired<AAResultsWrapperPass>();
AU.setPreservesAll();
}
void visitBranchInst(BranchInst &I);
void visitLoadInst(LoadInst &I);
bool isClobberedInFunction(LoadInst * Load);
};
} // End anonymous namespace
INITIALIZE_PASS_BEGIN(AMDGPUAnnotateUniformValues, DEBUG_TYPE,
"Add AMDGPU uniform metadata", false, false)
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(AMDGPUAnnotateUniformValues, DEBUG_TYPE,
"Add AMDGPU uniform metadata", false, false)
char AMDGPUAnnotateUniformValues::ID = 0;
static void setUniformMetadata(Instruction *I) {
I->setMetadata("amdgpu.uniform", MDNode::get(I->getContext(), {}));
}
static void setNoClobberMetadata(Instruction *I) {
I->setMetadata("amdgpu.noclobber", MDNode::get(I->getContext(), {}));
}
bool AMDGPUAnnotateUniformValues::isClobberedInFunction(LoadInst *Load) {
MemorySSAWalker *Walker = MSSA->getWalker();
SmallVector<MemoryAccess *> WorkList{Walker->getClobberingMemoryAccess(Load)};
SmallSet<MemoryAccess *, 8> Visited;
MemoryLocation Loc(MemoryLocation::get(Load));
const auto isReallyAClobber = [this, Load](MemoryDef *Def) -> bool {
Instruction *DefInst = Def->getMemoryInst();
LLVM_DEBUG(dbgs() << " Def: " << *DefInst << '\n');
if (isa<FenceInst>(DefInst))
return false;
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
switch (II->getIntrinsicID()) {
case Intrinsic::amdgcn_s_barrier:
case Intrinsic::amdgcn_wave_barrier:
return false;
default:
break;
}
}
// Ignore atomics not aliasing with the original load, any atomic is a
// universal MemoryDef from MSSA's point of view too, just like a fence.
const auto checkNoAlias = [this, Load](auto I) -> bool {
return I && AA->isNoAlias(I->getPointerOperand(),
Load->getPointerOperand());
};
if (checkNoAlias(dyn_cast<AtomicCmpXchgInst>(DefInst)) ||
checkNoAlias(dyn_cast<AtomicRMWInst>(DefInst)))
return false;
return true;
};
LLVM_DEBUG(dbgs() << "Checking clobbering of: " << *Load << '\n');
// Start with a nearest dominating clobbering access, it will be either
// live on entry (nothing to do, load is not clobbered), MemoryDef, or
// MemoryPhi if several MemoryDefs can define this memory state. In that
// case add all Defs to WorkList and continue going up and checking all
// the definitions of this memory location until the root. When all the
// defs are exhausted and came to the entry state we have no clobber.
// Along the scan ignore barriers and fences which are considered clobbers
// by the MemorySSA, but not really writing anything into the memory.
while (!WorkList.empty()) {
MemoryAccess *MA = WorkList.pop_back_val();
if (!Visited.insert(MA).second)
continue;
if (MSSA->isLiveOnEntryDef(MA))
continue;
if (MemoryDef *Def = dyn_cast<MemoryDef>(MA)) {
if (isReallyAClobber(Def)) {
LLVM_DEBUG(dbgs() << " -> load is clobbered\n");
return true;
}
WorkList.push_back(
Walker->getClobberingMemoryAccess(Def->getDefiningAccess(), Loc));
continue;
}
const MemoryPhi *Phi = cast<MemoryPhi>(MA);
for (auto &Use : Phi->incoming_values())
WorkList.push_back(cast<MemoryAccess>(&Use));
}
LLVM_DEBUG(dbgs() << " -> no clobber\n");
return false;
}
void AMDGPUAnnotateUniformValues::visitBranchInst(BranchInst &I) {
if (DA->isUniform(&I))
setUniformMetadata(&I);
}
void AMDGPUAnnotateUniformValues::visitLoadInst(LoadInst &I) {
Value *Ptr = I.getPointerOperand();
if (!DA->isUniform(Ptr))
return;
// We're tracking up to the Function boundaries, and cannot go beyond because
// of FunctionPass restrictions. We can ensure that is memory not clobbered
// for memory operations that are live in to entry points only.
Instruction *PtrI = dyn_cast<Instruction>(Ptr);
if (!isEntryFunc) {
if (PtrI)
setUniformMetadata(PtrI);
return;
}
bool NotClobbered = false;
bool GlobalLoad = I.getPointerAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
if (PtrI)
NotClobbered = GlobalLoad && !isClobberedInFunction(&I);
else if (isa<Argument>(Ptr) || isa<GlobalValue>(Ptr)) {
if (GlobalLoad && !isClobberedInFunction(&I)) {
NotClobbered = true;
// Lookup for the existing GEP
if (noClobberClones.count(Ptr)) {
PtrI = noClobberClones[Ptr];
} else {
// Create GEP of the Value
Function *F = I.getParent()->getParent();
Value *Idx = Constant::getIntegerValue(
Type::getInt32Ty(Ptr->getContext()), APInt(64, 0));
// Insert GEP at the entry to make it dominate all uses
PtrI = GetElementPtrInst::Create(I.getType(), Ptr,
ArrayRef<Value *>(Idx), Twine(""),
F->getEntryBlock().getFirstNonPHI());
}
I.replaceUsesOfWith(Ptr, PtrI);
}
}
if (PtrI) {
setUniformMetadata(PtrI);
if (NotClobbered)
setNoClobberMetadata(PtrI);
}
}
bool AMDGPUAnnotateUniformValues::doInitialization(Module &M) {
return false;
}
bool AMDGPUAnnotateUniformValues::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
DA = &getAnalysis<LegacyDivergenceAnalysis>();
MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
isEntryFunc = AMDGPU::isEntryFunctionCC(F.getCallingConv());
visit(F);
noClobberClones.clear();
return true;
}
FunctionPass *
llvm::createAMDGPUAnnotateUniformValues() {
return new AMDGPUAnnotateUniformValues();
}
|