1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
|
//===-- RISCVInstrInfoD.td - RISC-V 'D' instructions -------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the RISC-V instructions from the standard 'D',
// Double-Precision Floating-Point instruction set extension.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// RISC-V specific DAG Nodes.
//===----------------------------------------------------------------------===//
def SDT_RISCVBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
SDTCisVT<1, i32>,
SDTCisSameAs<1, 2>]>;
def SDT_RISCVSplitF64 : SDTypeProfile<2, 1, [SDTCisVT<0, i32>,
SDTCisVT<1, i32>,
SDTCisVT<2, f64>]>;
def RISCVBuildPairF64 : SDNode<"RISCVISD::BuildPairF64", SDT_RISCVBuildPairF64>;
def RISCVSplitF64 : SDNode<"RISCVISD::SplitF64", SDT_RISCVSplitF64>;
//===----------------------------------------------------------------------===//
// Operand and SDNode transformation definitions.
//===----------------------------------------------------------------------===//
// Zdinx
def GPRPF64AsFPR : AsmOperandClass {
let Name = "GPRPF64AsFPR";
let ParserMethod = "parseGPRAsFPR";
let RenderMethod = "addRegOperands";
}
def GPRF64AsFPR : AsmOperandClass {
let Name = "GPRF64AsFPR";
let ParserMethod = "parseGPRAsFPR";
let RenderMethod = "addRegOperands";
}
def FPR64INX : RegisterOperand<GPRF64> {
let ParserMatchClass = GPRF64AsFPR;
let DecoderMethod = "DecodeGPRRegisterClass";
}
def FPR64IN32X : RegisterOperand<GPRPF64> {
let ParserMatchClass = GPRPF64AsFPR;
}
def DExt : ExtInfo<0, [HasStdExtD]>;
def D64Ext : ExtInfo<0, [HasStdExtD, IsRV64]>;
def ZdinxExt : ExtInfo<1, [HasStdExtZdinx, IsRV64]>;
def Zdinx32Ext : ExtInfo<2, [HasStdExtZdinx, IsRV32]>;
def D : ExtInfo_r<DExt, FPR64>;
def D_INX : ExtInfo_r<ZdinxExt, FPR64INX>;
def D_IN32X : ExtInfo_r<Zdinx32Ext, FPR64IN32X>;
def DD : ExtInfo_rr<DExt, FPR64, FPR64>;
def DD_INX : ExtInfo_rr<ZdinxExt, FPR64INX, FPR64INX>;
def DD_IN32X : ExtInfo_rr<Zdinx32Ext, FPR64IN32X, FPR64IN32X>;
def DF : ExtInfo_rr<DExt, FPR64, FPR32>;
def DF_INX : ExtInfo_rr<ZdinxExt, FPR64INX, FPR32INX>;
def DF_IN32X : ExtInfo_rr<Zdinx32Ext, FPR64IN32X, FPR32INX>;
def DX : ExtInfo_rr<DExt, FPR64, GPR>;
def DX_INX : ExtInfo_rr<ZdinxExt, FPR64INX, GPR>;
def DX_IN32X : ExtInfo_rr<Zdinx32Ext, FPR64IN32X, GPR>;
def DX_64 : ExtInfo_rr<D64Ext, FPR64, GPR>;
def FD : ExtInfo_rr<DExt, FPR32, FPR64>;
def FD_INX : ExtInfo_rr<ZdinxExt, FPR32INX, FPR64INX>;
def FD_IN32X : ExtInfo_rr<Zdinx32Ext, FPR32INX, FPR64IN32X>;
def XD : ExtInfo_rr<DExt, GPR, FPR64>;
def XD_INX : ExtInfo_rr<ZdinxExt, GPR, FPR64INX>;
def XD_IN32X : ExtInfo_rr<Zdinx32Ext, GPR, FPR64IN32X>;
def XD_64 : ExtInfo_rr<D64Ext, GPR, FPR64>;
defvar DINX = [D, D_INX, D_IN32X];
defvar DDINX = [DD, DD_INX, DD_IN32X];
defvar DXINX = [DX, DX_INX, DX_IN32X];
defvar DFINX = [DF, DF_INX, DF_IN32X];
defvar FDINX = [FD, FD_INX, FD_IN32X];
defvar XDINX = [XD, XD_INX, XD_IN32X];
defvar DXIN64X = [DX_64, DX_INX];
defvar XDIN64X = [XD_64, XD_INX];
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtD] in {
def FLD : FPLoad_r<0b011, "fld", FPR64, WriteFLD64>;
// Operands for stores are in the order srcreg, base, offset rather than
// reflecting the order these fields are specified in the instruction
// encoding.
def FSD : FPStore_r<0b011, "fsd", FPR64, WriteFST64>;
} // Predicates = [HasStdExtD]
let SchedRW = [WriteFMA64, ReadFMA64, ReadFMA64, ReadFMA64] in {
defm FMADD_D : FPFMA_rrr_frm_m<OPC_MADD, 0b01, "fmadd.d", DINX>;
defm FMSUB_D : FPFMA_rrr_frm_m<OPC_MSUB, 0b01, "fmsub.d", DINX>;
defm FNMSUB_D : FPFMA_rrr_frm_m<OPC_NMSUB, 0b01, "fnmsub.d", DINX>;
defm FNMADD_D : FPFMA_rrr_frm_m<OPC_NMADD, 0b01, "fnmadd.d", DINX>;
}
defm : FPFMADynFrmAlias_m<FMADD_D, "fmadd.d", DINX>;
defm : FPFMADynFrmAlias_m<FMSUB_D, "fmsub.d", DINX>;
defm : FPFMADynFrmAlias_m<FNMSUB_D, "fnmsub.d", DINX>;
defm : FPFMADynFrmAlias_m<FNMADD_D, "fnmadd.d", DINX>;
let SchedRW = [WriteFALU64, ReadFALU64, ReadFALU64] in {
defm FADD_D : FPALU_rr_frm_m<0b0000001, "fadd.d", DINX>;
defm FSUB_D : FPALU_rr_frm_m<0b0000101, "fsub.d", DINX>;
}
let SchedRW = [WriteFMul64, ReadFMul64, ReadFMul64] in
defm FMUL_D : FPALU_rr_frm_m<0b0001001, "fmul.d", DINX>;
let SchedRW = [WriteFDiv64, ReadFDiv64, ReadFDiv64] in
defm FDIV_D : FPALU_rr_frm_m<0b0001101, "fdiv.d", DINX>;
defm : FPALUDynFrmAlias_m<FADD_D, "fadd.d", DINX>;
defm : FPALUDynFrmAlias_m<FSUB_D, "fsub.d", DINX>;
defm : FPALUDynFrmAlias_m<FMUL_D, "fmul.d", DINX>;
defm : FPALUDynFrmAlias_m<FDIV_D, "fdiv.d", DINX>;
defm FSQRT_D : FPUnaryOp_r_frm_m<0b0101101, 0b00000, DDINX, "fsqrt.d">,
Sched<[WriteFSqrt64, ReadFSqrt64]>;
defm : FPUnaryOpDynFrmAlias_m<FSQRT_D, "fsqrt.d", DDINX>;
let SchedRW = [WriteFSGNJ64, ReadFSGNJ64, ReadFSGNJ64],
mayRaiseFPException = 0 in {
defm FSGNJ_D : FPALU_rr_m<0b0010001, 0b000, "fsgnj.d", DINX>;
defm FSGNJN_D : FPALU_rr_m<0b0010001, 0b001, "fsgnjn.d", DINX>;
defm FSGNJX_D : FPALU_rr_m<0b0010001, 0b010, "fsgnjx.d", DINX>;
}
let SchedRW = [WriteFMinMax64, ReadFMinMax64, ReadFMinMax64] in {
defm FMIN_D : FPALU_rr_m<0b0010101, 0b000, "fmin.d", DINX>;
defm FMAX_D : FPALU_rr_m<0b0010101, 0b001, "fmax.d", DINX>;
}
defm FCVT_S_D : FPUnaryOp_r_frm_m<0b0100000, 0b00001, FDINX, "fcvt.s.d">,
Sched<[WriteFCvtF64ToF32, ReadFCvtF64ToF32]>;
defm : FPUnaryOpDynFrmAlias_m<FCVT_S_D, "fcvt.s.d", FDINX>;
defm FCVT_D_S : FPUnaryOp_r_m<0b0100001, 0b00000, 0b000, DFINX, "fcvt.d.s">,
Sched<[WriteFCvtF32ToF64, ReadFCvtF32ToF64]>;
let SchedRW = [WriteFCmp64, ReadFCmp64, ReadFCmp64] in {
defm FEQ_D : FPCmp_rr_m<0b1010001, 0b010, "feq.d", DINX>;
defm FLT_D : FPCmp_rr_m<0b1010001, 0b001, "flt.d", DINX>;
defm FLE_D : FPCmp_rr_m<0b1010001, 0b000, "fle.d", DINX>;
}
defm FCLASS_D : FPUnaryOp_r_m<0b1110001, 0b00000, 0b001, XDINX, "fclass.d">,
Sched<[WriteFClass64, ReadFClass64]>;
defm FCVT_W_D : FPUnaryOp_r_frm_m<0b1100001, 0b00000, XDINX, "fcvt.w.d">,
Sched<[WriteFCvtF64ToI32, ReadFCvtF64ToI32]>;
defm : FPUnaryOpDynFrmAlias_m<FCVT_W_D, "fcvt.w.d", XDINX>;
defm FCVT_WU_D : FPUnaryOp_r_frm_m<0b1100001, 0b00001, XDINX, "fcvt.wu.d">,
Sched<[WriteFCvtF64ToI32, ReadFCvtF64ToI32]>;
defm : FPUnaryOpDynFrmAlias_m<FCVT_WU_D, "fcvt.wu.d", XDINX>;
defm FCVT_D_W : FPUnaryOp_r_m<0b1101001, 0b00000, 0b000, DXINX, "fcvt.d.w">,
Sched<[WriteFCvtI32ToF64, ReadFCvtI32ToF64]>;
defm FCVT_D_WU : FPUnaryOp_r_m<0b1101001, 0b00001, 0b000, DXINX, "fcvt.d.wu">,
Sched<[WriteFCvtI32ToF64, ReadFCvtI32ToF64]>;
defm FCVT_L_D : FPUnaryOp_r_frm_m<0b1100001, 0b00010, XDIN64X, "fcvt.l.d">,
Sched<[WriteFCvtF64ToI64, ReadFCvtF64ToI64]>;
defm : FPUnaryOpDynFrmAlias_m<FCVT_L_D, "fcvt.l.d", XDIN64X>;
defm FCVT_LU_D : FPUnaryOp_r_frm_m<0b1100001, 0b00011, XDIN64X, "fcvt.lu.d">,
Sched<[WriteFCvtF64ToI64, ReadFCvtF64ToI64]>;
defm : FPUnaryOpDynFrmAlias_m<FCVT_LU_D, "fcvt.lu.d", XDIN64X>;
let Predicates = [HasStdExtD, IsRV64], mayRaiseFPException = 0 in
def FMV_X_D : FPUnaryOp_r<0b1110001, 0b00000, 0b000, GPR, FPR64, "fmv.x.d">,
Sched<[WriteFMovF64ToI64, ReadFMovF64ToI64]>;
defm FCVT_D_L : FPUnaryOp_r_frm_m<0b1101001, 0b00010, DXIN64X, "fcvt.d.l">,
Sched<[WriteFCvtI64ToF64, ReadFCvtI64ToF64]>;
defm : FPUnaryOpDynFrmAlias_m<FCVT_D_L, "fcvt.d.l", DXIN64X>;
defm FCVT_D_LU : FPUnaryOp_r_frm_m<0b1101001, 0b00011, DXIN64X, "fcvt.d.lu">,
Sched<[WriteFCvtI64ToF64, ReadFCvtI64ToF64]>;
defm : FPUnaryOpDynFrmAlias_m<FCVT_D_LU, "fcvt.d.lu", DXIN64X>;
let Predicates = [HasStdExtD, IsRV64], mayRaiseFPException = 0 in
def FMV_D_X : FPUnaryOp_r<0b1111001, 0b00000, 0b000, FPR64, GPR, "fmv.d.x">,
Sched<[WriteFMovI64ToF64, ReadFMovI64ToF64]>;
//===----------------------------------------------------------------------===//
// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtD] in {
def : InstAlias<"fld $rd, (${rs1})", (FLD FPR64:$rd, GPR:$rs1, 0), 0>;
def : InstAlias<"fsd $rs2, (${rs1})", (FSD FPR64:$rs2, GPR:$rs1, 0), 0>;
def : InstAlias<"fmv.d $rd, $rs", (FSGNJ_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
// fgt.d/fge.d are recognised by the GNU assembler but the canonical
// flt.d/fle.d forms will always be printed. Therefore, set a zero weight.
def : InstAlias<"fgt.d $rd, $rs, $rt",
(FLT_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>;
def : InstAlias<"fge.d $rd, $rs, $rt",
(FLE_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>;
def PseudoFLD : PseudoFloatLoad<"fld", FPR64>;
def PseudoFSD : PseudoStore<"fsd", FPR64>;
let usesCustomInserter = 1 in {
def PseudoQuietFLE_D : PseudoQuietFCMP<FPR64>;
def PseudoQuietFLT_D : PseudoQuietFCMP<FPR64>;
}
} // Predicates = [HasStdExtD]
let Predicates = [HasStdExtZdinx, IsRV64] in {
def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D_INX FPR64INX:$rd, FPR64INX:$rs, FPR64INX:$rs)>;
def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D_INX FPR64INX:$rd, FPR64INX:$rs, FPR64INX:$rs)>;
def : InstAlias<"fgt.d $rd, $rs, $rt",
(FLT_D_INX GPR:$rd, FPR64INX:$rt, FPR64INX:$rs), 0>;
def : InstAlias<"fge.d $rd, $rs, $rt",
(FLE_D_INX GPR:$rd, FPR64INX:$rt, FPR64INX:$rs), 0>;
} // Predicates = [HasStdExtZdinx, IsRV64]
let Predicates = [HasStdExtZdinx, IsRV32] in {
def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D_IN32X FPR64IN32X:$rd, FPR64IN32X:$rs, FPR64IN32X:$rs)>;
def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D_IN32X FPR64IN32X:$rd, FPR64IN32X:$rs, FPR64IN32X:$rs)>;
def : InstAlias<"fgt.d $rd, $rs, $rt",
(FLT_D_IN32X GPR:$rd, FPR64IN32X:$rt, FPR64IN32X:$rs), 0>;
def : InstAlias<"fge.d $rd, $rs, $rt",
(FLE_D_IN32X GPR:$rd, FPR64IN32X:$rt, FPR64IN32X:$rs), 0>;
} // Predicates = [HasStdExtZdinx, IsRV32]
//===----------------------------------------------------------------------===//
// Pseudo-instructions and codegen patterns
//===----------------------------------------------------------------------===//
class PatFpr64Fpr64<SDPatternOperator OpNode, RVInstR Inst>
: Pat<(OpNode FPR64:$rs1, FPR64:$rs2), (Inst $rs1, $rs2)>;
class PatFpr64Fpr64DynFrm<SDPatternOperator OpNode, RVInstRFrm Inst>
: Pat<(OpNode FPR64:$rs1, FPR64:$rs2), (Inst $rs1, $rs2, 0b111)>;
let Predicates = [HasStdExtD] in {
/// Float conversion operations
// f64 -> f32, f32 -> f64
def : Pat<(any_fpround FPR64:$rs1), (FCVT_S_D FPR64:$rs1, 0b111)>;
def : Pat<(any_fpextend FPR32:$rs1), (FCVT_D_S FPR32:$rs1)>;
// [u]int<->double conversion patterns must be gated on IsRV32 or IsRV64, so
// are defined later.
/// Float arithmetic operations
def : PatFpr64Fpr64DynFrm<any_fadd, FADD_D>;
def : PatFpr64Fpr64DynFrm<any_fsub, FSUB_D>;
def : PatFpr64Fpr64DynFrm<any_fmul, FMUL_D>;
def : PatFpr64Fpr64DynFrm<any_fdiv, FDIV_D>;
def : Pat<(any_fsqrt FPR64:$rs1), (FSQRT_D FPR64:$rs1, 0b111)>;
def : Pat<(fneg FPR64:$rs1), (FSGNJN_D $rs1, $rs1)>;
def : Pat<(fabs FPR64:$rs1), (FSGNJX_D $rs1, $rs1)>;
def : PatFpr64Fpr64<fcopysign, FSGNJ_D>;
def : Pat<(fcopysign FPR64:$rs1, (fneg FPR64:$rs2)), (FSGNJN_D $rs1, $rs2)>;
def : Pat<(fcopysign FPR64:$rs1, FPR32:$rs2), (FSGNJ_D $rs1, (FCVT_D_S $rs2))>;
def : Pat<(fcopysign FPR32:$rs1, FPR64:$rs2), (FSGNJ_S $rs1, (FCVT_S_D $rs2,
0b111))>;
// fmadd: rs1 * rs2 + rs3
def : Pat<(any_fma FPR64:$rs1, FPR64:$rs2, FPR64:$rs3),
(FMADD_D $rs1, $rs2, $rs3, 0b111)>;
// fmsub: rs1 * rs2 - rs3
def : Pat<(any_fma FPR64:$rs1, FPR64:$rs2, (fneg FPR64:$rs3)),
(FMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
// fnmsub: -rs1 * rs2 + rs3
def : Pat<(any_fma (fneg FPR64:$rs1), FPR64:$rs2, FPR64:$rs3),
(FNMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
// fnmadd: -rs1 * rs2 - rs3
def : Pat<(any_fma (fneg FPR64:$rs1), FPR64:$rs2, (fneg FPR64:$rs3)),
(FNMADD_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
// The ratified 20191213 ISA spec defines fmin and fmax in a way that matches
// LLVM's fminnum and fmaxnum.
// <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
def : PatFpr64Fpr64<fminnum, FMIN_D>;
def : PatFpr64Fpr64<fmaxnum, FMAX_D>;
/// Setcc
// FIXME: SETEQ/SETLT/SETLE imply nonans, can we pick better instructions for
// strict versions of those.
// Match non-signaling FEQ_D
def : PatSetCC<FPR64, any_fsetcc, SETEQ, FEQ_D>;
def : PatSetCC<FPR64, any_fsetcc, SETOEQ, FEQ_D>;
def : PatSetCC<FPR64, strict_fsetcc, SETLT, PseudoQuietFLT_D>;
def : PatSetCC<FPR64, strict_fsetcc, SETOLT, PseudoQuietFLT_D>;
def : PatSetCC<FPR64, strict_fsetcc, SETLE, PseudoQuietFLE_D>;
def : PatSetCC<FPR64, strict_fsetcc, SETOLE, PseudoQuietFLE_D>;
// Match signaling FEQ_D
def : Pat<(strict_fsetccs FPR64:$rs1, FPR64:$rs2, SETEQ),
(AND (FLE_D $rs1, $rs2),
(FLE_D $rs2, $rs1))>;
def : Pat<(strict_fsetccs FPR64:$rs1, FPR64:$rs2, SETOEQ),
(AND (FLE_D $rs1, $rs2),
(FLE_D $rs2, $rs1))>;
// If both operands are the same, use a single FLE.
def : Pat<(strict_fsetccs FPR64:$rs1, FPR64:$rs1, SETEQ),
(FLE_D $rs1, $rs1)>;
def : Pat<(strict_fsetccs FPR64:$rs1, FPR64:$rs1, SETOEQ),
(FLE_D $rs1, $rs1)>;
def : PatSetCC<FPR64, any_fsetccs, SETLT, FLT_D>;
def : PatSetCC<FPR64, any_fsetccs, SETOLT, FLT_D>;
def : PatSetCC<FPR64, any_fsetccs, SETLE, FLE_D>;
def : PatSetCC<FPR64, any_fsetccs, SETOLE, FLE_D>;
def Select_FPR64_Using_CC_GPR : SelectCC_rrirr<FPR64, GPR>;
/// Loads
defm : LdPat<load, FLD, f64>;
/// Stores
defm : StPat<store, FSD, FPR64, f64>;
/// Pseudo-instructions needed for the soft-float ABI with RV32D
// Moves two GPRs to an FPR.
let usesCustomInserter = 1 in
def BuildPairF64Pseudo
: Pseudo<(outs FPR64:$dst), (ins GPR:$src1, GPR:$src2),
[(set FPR64:$dst, (RISCVBuildPairF64 GPR:$src1, GPR:$src2))]>;
// Moves an FPR to two GPRs.
let usesCustomInserter = 1 in
def SplitF64Pseudo
: Pseudo<(outs GPR:$dst1, GPR:$dst2), (ins FPR64:$src),
[(set GPR:$dst1, GPR:$dst2, (RISCVSplitF64 FPR64:$src))]>;
} // Predicates = [HasStdExtD]
let Predicates = [HasStdExtD, IsRV32] in {
/// Float constants
def : Pat<(f64 (fpimm0)), (FCVT_D_W (i32 X0))>;
def : Pat<(f64 (fpimmneg0)), (FSGNJN_D (FCVT_D_W (i32 X0)),
(FCVT_D_W (i32 X0)))>;
// double->[u]int. Round-to-zero must be used.
def : Pat<(i32 (any_fp_to_sint FPR64:$rs1)), (FCVT_W_D FPR64:$rs1, 0b001)>;
def : Pat<(i32 (any_fp_to_uint FPR64:$rs1)), (FCVT_WU_D FPR64:$rs1, 0b001)>;
// Saturating double->[u]int32.
def : Pat<(i32 (riscv_fcvt_x FPR64:$rs1, timm:$frm)), (FCVT_W_D $rs1, timm:$frm)>;
def : Pat<(i32 (riscv_fcvt_xu FPR64:$rs1, timm:$frm)), (FCVT_WU_D $rs1, timm:$frm)>;
// float->int32 with current rounding mode.
def : Pat<(i32 (any_lrint FPR64:$rs1)), (FCVT_W_D $rs1, 0b111)>;
// float->int32 rounded to nearest with ties rounded away from zero.
def : Pat<(i32 (any_lround FPR64:$rs1)), (FCVT_W_D $rs1, 0b100)>;
// [u]int->double.
def : Pat<(any_sint_to_fp (i32 GPR:$rs1)), (FCVT_D_W GPR:$rs1)>;
def : Pat<(any_uint_to_fp (i32 GPR:$rs1)), (FCVT_D_WU GPR:$rs1)>;
} // Predicates = [HasStdExtD, IsRV32]
let Predicates = [HasStdExtD, IsRV64] in {
/// Float constants
def : Pat<(f64 (fpimm0)), (FMV_D_X (i64 X0))>;
def : Pat<(f64 (fpimmneg0)), (FSGNJN_D (FMV_D_X (i64 X0)),
(FMV_D_X (i64 X0)))>;
// Moves (no conversion)
def : Pat<(bitconvert (i64 GPR:$rs1)), (FMV_D_X GPR:$rs1)>;
def : Pat<(i64 (bitconvert FPR64:$rs1)), (FMV_X_D FPR64:$rs1)>;
// Use target specific isd nodes to help us remember the result is sign
// extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be
// duplicated if it has another user that didn't need the sign_extend.
def : Pat<(riscv_any_fcvt_w_rv64 FPR64:$rs1, timm:$frm), (FCVT_W_D $rs1, timm:$frm)>;
def : Pat<(riscv_any_fcvt_wu_rv64 FPR64:$rs1, timm:$frm), (FCVT_WU_D $rs1, timm:$frm)>;
// [u]int32->fp
def : Pat<(any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_D_W $rs1)>;
def : Pat<(any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_D_WU $rs1)>;
// Saturating double->[u]int64.
def : Pat<(i64 (riscv_fcvt_x FPR64:$rs1, timm:$frm)), (FCVT_L_D $rs1, timm:$frm)>;
def : Pat<(i64 (riscv_fcvt_xu FPR64:$rs1, timm:$frm)), (FCVT_LU_D $rs1, timm:$frm)>;
// double->[u]int64. Round-to-zero must be used.
def : Pat<(i64 (any_fp_to_sint FPR64:$rs1)), (FCVT_L_D FPR64:$rs1, 0b001)>;
def : Pat<(i64 (any_fp_to_uint FPR64:$rs1)), (FCVT_LU_D FPR64:$rs1, 0b001)>;
// double->int64 with current rounding mode.
def : Pat<(i64 (any_lrint FPR64:$rs1)), (FCVT_L_D $rs1, 0b111)>;
def : Pat<(i64 (any_llrint FPR64:$rs1)), (FCVT_L_D $rs1, 0b111)>;
// double->int64 rounded to nearest with ties rounded away from zero.
def : Pat<(i64 (any_lround FPR64:$rs1)), (FCVT_L_D $rs1, 0b100)>;
def : Pat<(i64 (any_llround FPR64:$rs1)), (FCVT_L_D $rs1, 0b100)>;
// [u]int64->fp. Match GCC and default to using dynamic rounding mode.
def : Pat<(any_sint_to_fp (i64 GPR:$rs1)), (FCVT_D_L GPR:$rs1, 0b111)>;
def : Pat<(any_uint_to_fp (i64 GPR:$rs1)), (FCVT_D_LU GPR:$rs1, 0b111)>;
} // Predicates = [HasStdExtD, IsRV64]
|