1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
//===-- RISCVTargetTransformInfo.cpp - RISC-V specific TTI ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "RISCVTargetTransformInfo.h"
#include "MCTargetDesc/RISCVMatInt.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/CodeGen/TargetLowering.h"
using namespace llvm;
#define DEBUG_TYPE "riscvtti"
static cl::opt<unsigned> RVVRegisterWidthLMUL(
"riscv-v-register-bit-width-lmul",
cl::desc(
"The LMUL to use for getRegisterBitWidth queries. Affects LMUL used "
"by autovectorized code. Fractional LMULs are not supported."),
cl::init(1), cl::Hidden);
InstructionCost RISCVTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind) {
assert(Ty->isIntegerTy() &&
"getIntImmCost can only estimate cost of materialising integers");
// We have a Zero register, so 0 is always free.
if (Imm == 0)
return TTI::TCC_Free;
// Otherwise, we check how many instructions it will take to materialise.
const DataLayout &DL = getDataLayout();
return RISCVMatInt::getIntMatCost(Imm, DL.getTypeSizeInBits(Ty),
getST()->getFeatureBits());
}
InstructionCost RISCVTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind,
Instruction *Inst) {
assert(Ty->isIntegerTy() &&
"getIntImmCost can only estimate cost of materialising integers");
// We have a Zero register, so 0 is always free.
if (Imm == 0)
return TTI::TCC_Free;
// Some instructions in RISC-V can take a 12-bit immediate. Some of these are
// commutative, in others the immediate comes from a specific argument index.
bool Takes12BitImm = false;
unsigned ImmArgIdx = ~0U;
switch (Opcode) {
case Instruction::GetElementPtr:
// Never hoist any arguments to a GetElementPtr. CodeGenPrepare will
// split up large offsets in GEP into better parts than ConstantHoisting
// can.
return TTI::TCC_Free;
case Instruction::And:
// zext.h
if (Imm == UINT64_C(0xffff) && ST->hasStdExtZbb())
return TTI::TCC_Free;
// zext.w
if (Imm == UINT64_C(0xffffffff) && ST->hasStdExtZbb())
return TTI::TCC_Free;
LLVM_FALLTHROUGH;
case Instruction::Add:
case Instruction::Or:
case Instruction::Xor:
case Instruction::Mul:
Takes12BitImm = true;
break;
case Instruction::Sub:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
Takes12BitImm = true;
ImmArgIdx = 1;
break;
default:
break;
}
if (Takes12BitImm) {
// Check immediate is the correct argument...
if (Instruction::isCommutative(Opcode) || Idx == ImmArgIdx) {
// ... and fits into the 12-bit immediate.
if (Imm.getMinSignedBits() <= 64 &&
getTLI()->isLegalAddImmediate(Imm.getSExtValue())) {
return TTI::TCC_Free;
}
}
// Otherwise, use the full materialisation cost.
return getIntImmCost(Imm, Ty, CostKind);
}
// By default, prevent hoisting.
return TTI::TCC_Free;
}
InstructionCost
RISCVTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind) {
// Prevent hoisting in unknown cases.
return TTI::TCC_Free;
}
TargetTransformInfo::PopcntSupportKind
RISCVTTIImpl::getPopcntSupport(unsigned TyWidth) {
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
return ST->hasStdExtZbb() ? TTI::PSK_FastHardware : TTI::PSK_Software;
}
bool RISCVTTIImpl::shouldExpandReduction(const IntrinsicInst *II) const {
// Currently, the ExpandReductions pass can't expand scalable-vector
// reductions, but we still request expansion as RVV doesn't support certain
// reductions and the SelectionDAG can't legalize them either.
switch (II->getIntrinsicID()) {
default:
return false;
// These reductions have no equivalent in RVV
case Intrinsic::vector_reduce_mul:
case Intrinsic::vector_reduce_fmul:
return true;
}
}
Optional<unsigned> RISCVTTIImpl::getMaxVScale() const {
// There is no assumption of the maximum vector length in V specification.
// We use the value specified by users as the maximum vector length.
// This function will use the assumed maximum vector length to get the
// maximum vscale for LoopVectorizer.
// If users do not specify the maximum vector length, we have no way to
// know whether the LoopVectorizer is safe to do or not.
// We only consider to use single vector register (LMUL = 1) to vectorize.
unsigned MaxVectorSizeInBits = ST->getMaxRVVVectorSizeInBits();
if (ST->hasVInstructions() && MaxVectorSizeInBits != 0)
return MaxVectorSizeInBits / RISCV::RVVBitsPerBlock;
return BaseT::getMaxVScale();
}
TypeSize
RISCVTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
unsigned LMUL = PowerOf2Floor(
std::max<unsigned>(std::min<unsigned>(RVVRegisterWidthLMUL, 8), 1));
switch (K) {
case TargetTransformInfo::RGK_Scalar:
return TypeSize::getFixed(ST->getXLen());
case TargetTransformInfo::RGK_FixedWidthVector:
return TypeSize::getFixed(
ST->hasVInstructions() ? LMUL * ST->getMinRVVVectorSizeInBits() : 0);
case TargetTransformInfo::RGK_ScalableVector:
return TypeSize::getScalable(
ST->hasVInstructions() ? LMUL * RISCV::RVVBitsPerBlock : 0);
}
llvm_unreachable("Unsupported register kind");
}
InstructionCost RISCVTTIImpl::getGatherScatterOpCost(
unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
if (CostKind != TTI::TCK_RecipThroughput)
return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
Alignment, CostKind, I);
if ((Opcode == Instruction::Load &&
!isLegalMaskedGather(DataTy, Align(Alignment))) ||
(Opcode == Instruction::Store &&
!isLegalMaskedScatter(DataTy, Align(Alignment))))
return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
Alignment, CostKind, I);
// FIXME: Only supporting fixed vectors for now.
if (!isa<FixedVectorType>(DataTy))
return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
Alignment, CostKind, I);
auto *VTy = cast<FixedVectorType>(DataTy);
unsigned NumLoads = VTy->getNumElements();
InstructionCost MemOpCost =
getMemoryOpCost(Opcode, VTy->getElementType(), Alignment, 0, CostKind, I);
return NumLoads * MemOpCost;
}
void RISCVTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) {
// TODO: More tuning on benchmarks and metrics with changes as needed
// would apply to all settings below to enable performance.
// Support explicit targets enabled for SiFive with the unrolling preferences
// below
bool UseDefaultPreferences = true;
if (ST->getProcFamily() == RISCVSubtarget::SiFive7)
UseDefaultPreferences = false;
if (UseDefaultPreferences)
return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE);
// Enable Upper bound unrolling universally, not dependant upon the conditions
// below.
UP.UpperBound = true;
// Disable loop unrolling for Oz and Os.
UP.OptSizeThreshold = 0;
UP.PartialOptSizeThreshold = 0;
if (L->getHeader()->getParent()->hasOptSize())
return;
SmallVector<BasicBlock *, 4> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
LLVM_DEBUG(dbgs() << "Loop has:\n"
<< "Blocks: " << L->getNumBlocks() << "\n"
<< "Exit blocks: " << ExitingBlocks.size() << "\n");
// Only allow another exit other than the latch. This acts as an early exit
// as it mirrors the profitability calculation of the runtime unroller.
if (ExitingBlocks.size() > 2)
return;
// Limit the CFG of the loop body for targets with a branch predictor.
// Allowing 4 blocks permits if-then-else diamonds in the body.
if (L->getNumBlocks() > 4)
return;
// Don't unroll vectorized loops, including the remainder loop
if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
return;
// Scan the loop: don't unroll loops with calls as this could prevent
// inlining.
InstructionCost Cost = 0;
for (auto *BB : L->getBlocks()) {
for (auto &I : *BB) {
// Initial setting - Don't unroll loops containing vectorized
// instructions.
if (I.getType()->isVectorTy())
return;
if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
if (!isLoweredToCall(F))
continue;
}
return;
}
SmallVector<const Value *> Operands(I.operand_values());
Cost +=
getUserCost(&I, Operands, TargetTransformInfo::TCK_SizeAndLatency);
}
}
LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
UP.Partial = true;
UP.Runtime = true;
UP.UnrollRemainder = true;
UP.UnrollAndJam = true;
UP.UnrollAndJamInnerLoopThreshold = 60;
// Force unrolling small loops can be very useful because of the branch
// taken cost of the backedge.
if (Cost < 12)
UP.Force = true;
}
void RISCVTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP) {
BaseT::getPeelingPreferences(L, SE, PP);
}
InstructionCost RISCVTTIImpl::getRegUsageForType(Type *Ty) {
TypeSize Size = Ty->getPrimitiveSizeInBits();
if (Ty->isVectorTy()) {
if (Size.isScalable() && ST->hasVInstructions())
return divideCeil(Size.getKnownMinValue(), RISCV::RVVBitsPerBlock);
if (ST->useRVVForFixedLengthVectors())
return divideCeil(Size, ST->getMinRVVVectorSizeInBits());
}
return BaseT::getRegUsageForType(Ty);
}
|