1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
//===- RISCVTargetTransformInfo.h - RISC-V specific TTI ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file defines a TargetTransformInfo::Concept conforming object specific
/// to the RISC-V target machine. It uses the target's detailed information to
/// provide more precise answers to certain TTI queries, while letting the
/// target independent and default TTI implementations handle the rest.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_RISCV_RISCVTARGETTRANSFORMINFO_H
#define LLVM_LIB_TARGET_RISCV_RISCVTARGETTRANSFORMINFO_H
#include "RISCVSubtarget.h"
#include "RISCVTargetMachine.h"
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/IR/Function.h"
namespace llvm {
class RISCVTTIImpl : public BasicTTIImplBase<RISCVTTIImpl> {
using BaseT = BasicTTIImplBase<RISCVTTIImpl>;
using TTI = TargetTransformInfo;
friend BaseT;
const RISCVSubtarget *ST;
const RISCVTargetLowering *TLI;
const RISCVSubtarget *getST() const { return ST; }
const RISCVTargetLowering *getTLI() const { return TLI; }
public:
explicit RISCVTTIImpl(const RISCVTargetMachine *TM, const Function &F)
: BaseT(TM, F.getParent()->getDataLayout()), ST(TM->getSubtargetImpl(F)),
TLI(ST->getTargetLowering()) {}
InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind);
InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind,
Instruction *Inst = nullptr);
InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind);
TargetTransformInfo::PopcntSupportKind getPopcntSupport(unsigned TyWidth);
bool shouldExpandReduction(const IntrinsicInst *II) const;
bool supportsScalableVectors() const { return ST->hasVInstructions(); }
Optional<unsigned> getMaxVScale() const;
TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const;
InstructionCost getRegUsageForType(Type *Ty);
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE);
void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP);
unsigned getMinVectorRegisterBitWidth() const {
return ST->useRVVForFixedLengthVectors() ? 16 : 0;
}
InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
const Value *Ptr, bool VariableMask,
Align Alignment,
TTI::TargetCostKind CostKind,
const Instruction *I);
bool isLegalMaskedLoadStore(Type *DataType, Align Alignment) {
if (!ST->hasVInstructions())
return false;
// Only support fixed vectors if we know the minimum vector size.
if (isa<FixedVectorType>(DataType) && ST->getMinRVVVectorSizeInBits() == 0)
return false;
// Don't allow elements larger than the ELEN.
// FIXME: How to limit for scalable vectors?
if (isa<FixedVectorType>(DataType) &&
DataType->getScalarSizeInBits() > ST->getMaxELENForFixedLengthVectors())
return false;
if (Alignment <
DL.getTypeStoreSize(DataType->getScalarType()).getFixedSize())
return false;
return TLI->isLegalElementTypeForRVV(DataType->getScalarType());
}
bool isLegalMaskedLoad(Type *DataType, Align Alignment) {
return isLegalMaskedLoadStore(DataType, Alignment);
}
bool isLegalMaskedStore(Type *DataType, Align Alignment) {
return isLegalMaskedLoadStore(DataType, Alignment);
}
bool isLegalMaskedGatherScatter(Type *DataType, Align Alignment) {
if (!ST->hasVInstructions())
return false;
// Only support fixed vectors if we know the minimum vector size.
if (isa<FixedVectorType>(DataType) && ST->getMinRVVVectorSizeInBits() == 0)
return false;
// Don't allow elements larger than the ELEN.
// FIXME: How to limit for scalable vectors?
if (isa<FixedVectorType>(DataType) &&
DataType->getScalarSizeInBits() > ST->getMaxELENForFixedLengthVectors())
return false;
if (Alignment <
DL.getTypeStoreSize(DataType->getScalarType()).getFixedSize())
return false;
return TLI->isLegalElementTypeForRVV(DataType->getScalarType());
}
bool isLegalMaskedGather(Type *DataType, Align Alignment) {
return isLegalMaskedGatherScatter(DataType, Alignment);
}
bool isLegalMaskedScatter(Type *DataType, Align Alignment) {
return isLegalMaskedGatherScatter(DataType, Alignment);
}
/// \returns How the target needs this vector-predicated operation to be
/// transformed.
TargetTransformInfo::VPLegalization
getVPLegalizationStrategy(const VPIntrinsic &PI) const {
using VPLegalization = TargetTransformInfo::VPLegalization;
return VPLegalization(VPLegalization::Legal, VPLegalization::Legal);
}
bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
ElementCount VF) const {
if (!ST->hasVInstructions())
return false;
if (!VF.isScalable())
return true;
Type *Ty = RdxDesc.getRecurrenceType();
if (!TLI->isLegalElementTypeForRVV(Ty))
return false;
switch (RdxDesc.getRecurrenceKind()) {
case RecurKind::Add:
case RecurKind::FAdd:
case RecurKind::And:
case RecurKind::Or:
case RecurKind::Xor:
case RecurKind::SMin:
case RecurKind::SMax:
case RecurKind::UMin:
case RecurKind::UMax:
case RecurKind::FMin:
case RecurKind::FMax:
return true;
default:
return false;
}
}
unsigned getMaxInterleaveFactor(unsigned VF) {
// If the loop will not be vectorized, don't interleave the loop.
// Let regular unroll to unroll the loop.
return VF == 1 ? 1 : ST->getMaxInterleaveFactor();
}
// TODO: We should define RISC-V's own register classes.
// e.g. register class for FPR.
unsigned getNumberOfRegisters(unsigned ClassID) const {
bool Vector = (ClassID == 1);
if (Vector) {
if (ST->hasVInstructions())
return 32;
return 0;
}
// 31 = 32 GPR - x0 (zero register)
// FIXME: Should we exclude fixed registers like SP, TP or GP?
return 31;
}
};
} // end namespace llvm
#endif // LLVM_LIB_TARGET_RISCV_RISCVTARGETTRANSFORMINFO_H
|