1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
|
//=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the WebAssemblyTargetLowering class.
///
//===----------------------------------------------------------------------===//
#include "WebAssemblyISelLowering.h"
#include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
#include "Utils/WebAssemblyTypeUtilities.h"
#include "Utils/WebAssemblyUtilities.h"
#include "WebAssemblyMachineFunctionInfo.h"
#include "WebAssemblySubtarget.h"
#include "WebAssemblyTargetMachine.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsWebAssembly.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
#define DEBUG_TYPE "wasm-lower"
WebAssemblyTargetLowering::WebAssemblyTargetLowering(
const TargetMachine &TM, const WebAssemblySubtarget &STI)
: TargetLowering(TM), Subtarget(&STI) {
auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
// Booleans always contain 0 or 1.
setBooleanContents(ZeroOrOneBooleanContent);
// Except in SIMD vectors
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
// We don't know the microarchitecture here, so just reduce register pressure.
setSchedulingPreference(Sched::RegPressure);
// Tell ISel that we have a stack pointer.
setStackPointerRegisterToSaveRestore(
Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
// Set up the register classes.
addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
if (Subtarget->hasSIMD128()) {
addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
}
if (Subtarget->hasReferenceTypes()) {
addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass);
addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass);
}
// Compute derived properties from the register classes.
computeRegisterProperties(Subtarget->getRegisterInfo());
// Transform loads and stores to pointers in address space 1 to loads and
// stores to WebAssembly global variables, outside linear memory.
for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) {
setOperationAction(ISD::LOAD, T, Custom);
setOperationAction(ISD::STORE, T, Custom);
}
if (Subtarget->hasSIMD128()) {
for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
MVT::v2f64}) {
setOperationAction(ISD::LOAD, T, Custom);
setOperationAction(ISD::STORE, T, Custom);
}
}
if (Subtarget->hasReferenceTypes()) {
// We need custom load and store lowering for both externref, funcref and
// Other. The MVT::Other here represents tables of reference types.
for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) {
setOperationAction(ISD::LOAD, T, Custom);
setOperationAction(ISD::STORE, T, Custom);
}
}
setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom);
setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
setOperationAction(ISD::JumpTable, MVTPtr, Custom);
setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
setOperationAction(ISD::BRIND, MVT::Other, Custom);
// Take the default expansion for va_arg, va_copy, and va_end. There is no
// default action for va_start, so we do that custom.
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VAARG, MVT::Other, Expand);
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
// Don't expand the floating-point types to constant pools.
setOperationAction(ISD::ConstantFP, T, Legal);
// Expand floating-point comparisons.
for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
setCondCodeAction(CC, T, Expand);
// Expand floating-point library function operators.
for (auto Op :
{ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
setOperationAction(Op, T, Expand);
// Note supported floating-point library function operators that otherwise
// default to expand.
for (auto Op :
{ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
setOperationAction(Op, T, Legal);
// Support minimum and maximum, which otherwise default to expand.
setOperationAction(ISD::FMINIMUM, T, Legal);
setOperationAction(ISD::FMAXIMUM, T, Legal);
// WebAssembly currently has no builtin f16 support.
setOperationAction(ISD::FP16_TO_FP, T, Expand);
setOperationAction(ISD::FP_TO_FP16, T, Expand);
setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
setTruncStoreAction(T, MVT::f16, Expand);
}
// Expand unavailable integer operations.
for (auto Op :
{ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
for (auto T : {MVT::i32, MVT::i64})
setOperationAction(Op, T, Expand);
if (Subtarget->hasSIMD128())
for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
setOperationAction(Op, T, Expand);
}
if (Subtarget->hasNontrappingFPToInt())
for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
for (auto T : {MVT::i32, MVT::i64})
setOperationAction(Op, T, Custom);
// SIMD-specific configuration
if (Subtarget->hasSIMD128()) {
// Hoist bitcasts out of shuffles
setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
// Combine extends of extract_subvectors into widening ops
setTargetDAGCombine(ISD::SIGN_EXTEND);
setTargetDAGCombine(ISD::ZERO_EXTEND);
// Combine int_to_fp or fp_extend of extract_vectors and vice versa into
// conversions ops
setTargetDAGCombine(ISD::SINT_TO_FP);
setTargetDAGCombine(ISD::UINT_TO_FP);
setTargetDAGCombine(ISD::FP_EXTEND);
setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR);
// Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa
// into conversion ops
setTargetDAGCombine(ISD::FP_TO_SINT_SAT);
setTargetDAGCombine(ISD::FP_TO_UINT_SAT);
setTargetDAGCombine(ISD::FP_ROUND);
setTargetDAGCombine(ISD::CONCAT_VECTORS);
setTargetDAGCombine(ISD::TRUNCATE);
// Support saturating add for i8x16 and i16x8
for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
for (auto T : {MVT::v16i8, MVT::v8i16})
setOperationAction(Op, T, Legal);
// Support integer abs
for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
setOperationAction(ISD::ABS, T, Legal);
// Custom lower BUILD_VECTORs to minimize number of replace_lanes
for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
MVT::v2f64})
setOperationAction(ISD::BUILD_VECTOR, T, Custom);
// We have custom shuffle lowering to expose the shuffle mask
for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
MVT::v2f64})
setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
// Custom lowering since wasm shifts must have a scalar shift amount
for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
setOperationAction(Op, T, Custom);
// Custom lower lane accesses to expand out variable indices
for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
MVT::v2f64})
setOperationAction(Op, T, Custom);
// There is no i8x16.mul instruction
setOperationAction(ISD::MUL, MVT::v16i8, Expand);
// There is no vector conditional select instruction
for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
MVT::v2f64})
setOperationAction(ISD::SELECT_CC, T, Expand);
// Expand integer operations supported for scalars but not SIMD
for (auto Op :
{ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
setOperationAction(Op, T, Expand);
// But we do have integer min and max operations
for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
setOperationAction(Op, T, Legal);
// And we have popcnt for i8x16. It can be used to expand ctlz/cttz.
setOperationAction(ISD::CTPOP, MVT::v16i8, Legal);
setOperationAction(ISD::CTLZ, MVT::v16i8, Expand);
setOperationAction(ISD::CTTZ, MVT::v16i8, Expand);
// Custom lower bit counting operations for other types to scalarize them.
for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP})
for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64})
setOperationAction(Op, T, Custom);
// Expand float operations supported for scalars but not SIMD
for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
ISD::FEXP, ISD::FEXP2, ISD::FRINT})
for (auto T : {MVT::v4f32, MVT::v2f64})
setOperationAction(Op, T, Expand);
// Unsigned comparison operations are unavailable for i64x2 vectors.
for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE})
setCondCodeAction(CC, MVT::v2i64, Custom);
// 64x2 conversions are not in the spec
for (auto Op :
{ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
for (auto T : {MVT::v2i64, MVT::v2f64})
setOperationAction(Op, T, Expand);
// But saturating fp_to_int converstions are
for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
setOperationAction(Op, MVT::v4i32, Custom);
}
// As a special case, these operators use the type to mean the type to
// sign-extend from.
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
if (!Subtarget->hasSignExt()) {
// Sign extends are legal only when extending a vector extract
auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
for (auto T : {MVT::i8, MVT::i16, MVT::i32})
setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
}
for (auto T : MVT::integer_fixedlen_vector_valuetypes())
setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
// Dynamic stack allocation: use the default expansion.
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
// Expand these forms; we pattern-match the forms that we can handle in isel.
for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
setOperationAction(Op, T, Expand);
// We have custom switch handling.
setOperationAction(ISD::BR_JT, MVT::Other, Custom);
// WebAssembly doesn't have:
// - Floating-point extending loads.
// - Floating-point truncating stores.
// - i1 extending loads.
// - truncating SIMD stores and most extending loads
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
for (auto T : MVT::integer_valuetypes())
for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
setLoadExtAction(Ext, T, MVT::i1, Promote);
if (Subtarget->hasSIMD128()) {
for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
MVT::v2f64}) {
for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
if (MVT(T) != MemT) {
setTruncStoreAction(T, MemT, Expand);
for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
setLoadExtAction(Ext, T, MemT, Expand);
}
}
}
// But some vector extending loads are legal
for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
}
setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal);
}
// Don't do anything clever with build_pairs
setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
// Trap lowers to wasm unreachable
setOperationAction(ISD::TRAP, MVT::Other, Legal);
setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
// Exception handling intrinsics
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
setMaxAtomicSizeInBitsSupported(64);
// Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
// consistent with the f64 and f128 names.
setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
// Define the emscripten name for return address helper.
// TODO: when implementing other Wasm backends, make this generic or only do
// this on emscripten depending on what they end up doing.
setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
// Always convert switches to br_tables unless there is only one case, which
// is equivalent to a simple branch. This reduces code size for wasm, and we
// defer possible jump table optimizations to the VM.
setMinimumJumpTableEntries(2);
}
MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL,
uint32_t AS) const {
if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
return MVT::externref;
if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
return MVT::funcref;
return TargetLowering::getPointerTy(DL, AS);
}
MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL,
uint32_t AS) const {
if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
return MVT::externref;
if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
return MVT::funcref;
return TargetLowering::getPointerMemTy(DL, AS);
}
TargetLowering::AtomicExpansionKind
WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
// We have wasm instructions for these
switch (AI->getOperation()) {
case AtomicRMWInst::Add:
case AtomicRMWInst::Sub:
case AtomicRMWInst::And:
case AtomicRMWInst::Or:
case AtomicRMWInst::Xor:
case AtomicRMWInst::Xchg:
return AtomicExpansionKind::None;
default:
break;
}
return AtomicExpansionKind::CmpXChg;
}
bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
// Implementation copied from X86TargetLowering.
unsigned Opc = VecOp.getOpcode();
// Assume target opcodes can't be scalarized.
// TODO - do we have any exceptions?
if (Opc >= ISD::BUILTIN_OP_END)
return false;
// If the vector op is not supported, try to convert to scalar.
EVT VecVT = VecOp.getValueType();
if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
return true;
// If the vector op is supported, but the scalar op is not, the transform may
// not be worthwhile.
EVT ScalarVT = VecVT.getScalarType();
return isOperationLegalOrCustomOrPromote(Opc, ScalarVT);
}
FastISel *WebAssemblyTargetLowering::createFastISel(
FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
return WebAssembly::createFastISel(FuncInfo, LibInfo);
}
MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
EVT VT) const {
unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
if (BitWidth > 1 && BitWidth < 8)
BitWidth = 8;
if (BitWidth > 64) {
// The shift will be lowered to a libcall, and compiler-rt libcalls expect
// the count to be an i32.
BitWidth = 32;
assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
"32-bit shift counts ought to be enough for anyone");
}
MVT Result = MVT::getIntegerVT(BitWidth);
assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
"Unable to represent scalar shift amount type");
return Result;
}
// Lower an fp-to-int conversion operator from the LLVM opcode, which has an
// undefined result on invalid/overflow, to the WebAssembly opcode, which
// traps on invalid/overflow.
static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
MachineBasicBlock *BB,
const TargetInstrInfo &TII,
bool IsUnsigned, bool Int64,
bool Float64, unsigned LoweredOpcode) {
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
Register OutReg = MI.getOperand(0).getReg();
Register InReg = MI.getOperand(1).getReg();
unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
unsigned Eqz = WebAssembly::EQZ_I32;
unsigned And = WebAssembly::AND_I32;
int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
int64_t Substitute = IsUnsigned ? 0 : Limit;
double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
auto &Context = BB->getParent()->getFunction().getContext();
Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
const BasicBlock *LLVMBB = BB->getBasicBlock();
MachineFunction *F = BB->getParent();
MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
MachineFunction::iterator It = ++BB->getIterator();
F->insert(It, FalseMBB);
F->insert(It, TrueMBB);
F->insert(It, DoneMBB);
// Transfer the remainder of BB and its successor edges to DoneMBB.
DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
BB->addSuccessor(TrueMBB);
BB->addSuccessor(FalseMBB);
TrueMBB->addSuccessor(DoneMBB);
FalseMBB->addSuccessor(DoneMBB);
unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
MI.eraseFromParent();
// For signed numbers, we can do a single comparison to determine whether
// fabs(x) is within range.
if (IsUnsigned) {
Tmp0 = InReg;
} else {
BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
}
BuildMI(BB, DL, TII.get(FConst), Tmp1)
.addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
// For unsigned numbers, we have to do a separate comparison with zero.
if (IsUnsigned) {
Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
Register SecondCmpReg =
MRI.createVirtualRegister(&WebAssembly::I32RegClass);
Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
BuildMI(BB, DL, TII.get(FConst), Tmp1)
.addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
CmpReg = AndReg;
}
BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
// Create the CFG diamond to select between doing the conversion or using
// the substitute value.
BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
.addReg(FalseReg)
.addMBB(FalseMBB)
.addReg(TrueReg)
.addMBB(TrueMBB);
return DoneMBB;
}
static MachineBasicBlock *
LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB,
const WebAssemblySubtarget *Subtarget,
const TargetInstrInfo &TII) {
MachineInstr &CallParams = *CallResults.getPrevNode();
assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);
bool IsIndirect = CallParams.getOperand(0).isReg();
bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;
bool IsFuncrefCall = false;
if (IsIndirect) {
Register Reg = CallParams.getOperand(0).getReg();
const MachineFunction *MF = BB->getParent();
const MachineRegisterInfo &MRI = MF->getRegInfo();
const TargetRegisterClass *TRC = MRI.getRegClass(Reg);
IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass);
assert(!IsFuncrefCall || Subtarget->hasReferenceTypes());
}
unsigned CallOp;
if (IsIndirect && IsRetCall) {
CallOp = WebAssembly::RET_CALL_INDIRECT;
} else if (IsIndirect) {
CallOp = WebAssembly::CALL_INDIRECT;
} else if (IsRetCall) {
CallOp = WebAssembly::RET_CALL;
} else {
CallOp = WebAssembly::CALL;
}
MachineFunction &MF = *BB->getParent();
const MCInstrDesc &MCID = TII.get(CallOp);
MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));
// See if we must truncate the function pointer.
// CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers
// as 64-bit for uniformity with other pointer types.
// See also: WebAssemblyFastISel::selectCall
if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) {
Register Reg32 =
MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
auto &FnPtr = CallParams.getOperand(0);
BuildMI(*BB, CallResults.getIterator(), DL,
TII.get(WebAssembly::I32_WRAP_I64), Reg32)
.addReg(FnPtr.getReg());
FnPtr.setReg(Reg32);
}
// Move the function pointer to the end of the arguments for indirect calls
if (IsIndirect) {
auto FnPtr = CallParams.getOperand(0);
CallParams.RemoveOperand(0);
// For funcrefs, call_indirect is done through __funcref_call_table and the
// funcref is always installed in slot 0 of the table, therefore instead of having
// the function pointer added at the end of the params list, a zero (the index in
// __funcref_call_table is added).
if (IsFuncrefCall) {
Register RegZero =
MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
MachineInstrBuilder MIBC0 =
BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
BB->insert(CallResults.getIterator(), MIBC0);
MachineInstrBuilder(MF, CallParams).addReg(RegZero);
} else
CallParams.addOperand(FnPtr);
}
for (auto Def : CallResults.defs())
MIB.add(Def);
if (IsIndirect) {
// Placeholder for the type index.
MIB.addImm(0);
// The table into which this call_indirect indexes.
MCSymbolWasm *Table = IsFuncrefCall
? WebAssembly::getOrCreateFuncrefCallTableSymbol(
MF.getContext(), Subtarget)
: WebAssembly::getOrCreateFunctionTableSymbol(
MF.getContext(), Subtarget);
if (Subtarget->hasReferenceTypes()) {
MIB.addSym(Table);
} else {
// For the MVP there is at most one table whose number is 0, but we can't
// write a table symbol or issue relocations. Instead we just ensure the
// table is live and write a zero.
Table->setNoStrip();
MIB.addImm(0);
}
}
for (auto Use : CallParams.uses())
MIB.add(Use);
BB->insert(CallResults.getIterator(), MIB);
CallParams.eraseFromParent();
CallResults.eraseFromParent();
// If this is a funcref call, to avoid hidden GC roots, we need to clear the
// table slot with ref.null upon call_indirect return.
//
// This generates the following code, which comes right after a call_indirect
// of a funcref:
//
// i32.const 0
// ref.null func
// table.set __funcref_call_table
if (IsIndirect && IsFuncrefCall) {
MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
MF.getContext(), Subtarget);
Register RegZero =
MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
MachineInstr *Const0 =
BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
BB->insertAfter(MIB.getInstr()->getIterator(), Const0);
Register RegFuncref =
MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass);
MachineInstr *RefNull =
BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref);
BB->insertAfter(Const0->getIterator(), RefNull);
MachineInstr *TableSet =
BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF))
.addSym(Table)
.addReg(RegZero)
.addReg(RegFuncref);
BB->insertAfter(RefNull->getIterator(), TableSet);
}
return BB;
}
MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
MachineInstr &MI, MachineBasicBlock *BB) const {
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
switch (MI.getOpcode()) {
default:
llvm_unreachable("Unexpected instr type to insert");
case WebAssembly::FP_TO_SINT_I32_F32:
return LowerFPToInt(MI, DL, BB, TII, false, false, false,
WebAssembly::I32_TRUNC_S_F32);
case WebAssembly::FP_TO_UINT_I32_F32:
return LowerFPToInt(MI, DL, BB, TII, true, false, false,
WebAssembly::I32_TRUNC_U_F32);
case WebAssembly::FP_TO_SINT_I64_F32:
return LowerFPToInt(MI, DL, BB, TII, false, true, false,
WebAssembly::I64_TRUNC_S_F32);
case WebAssembly::FP_TO_UINT_I64_F32:
return LowerFPToInt(MI, DL, BB, TII, true, true, false,
WebAssembly::I64_TRUNC_U_F32);
case WebAssembly::FP_TO_SINT_I32_F64:
return LowerFPToInt(MI, DL, BB, TII, false, false, true,
WebAssembly::I32_TRUNC_S_F64);
case WebAssembly::FP_TO_UINT_I32_F64:
return LowerFPToInt(MI, DL, BB, TII, true, false, true,
WebAssembly::I32_TRUNC_U_F64);
case WebAssembly::FP_TO_SINT_I64_F64:
return LowerFPToInt(MI, DL, BB, TII, false, true, true,
WebAssembly::I64_TRUNC_S_F64);
case WebAssembly::FP_TO_UINT_I64_F64:
return LowerFPToInt(MI, DL, BB, TII, true, true, true,
WebAssembly::I64_TRUNC_U_F64);
case WebAssembly::CALL_RESULTS:
case WebAssembly::RET_CALL_RESULTS:
return LowerCallResults(MI, DL, BB, Subtarget, TII);
}
}
const char *
WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
case WebAssemblyISD::FIRST_NUMBER:
case WebAssemblyISD::FIRST_MEM_OPCODE:
break;
#define HANDLE_NODETYPE(NODE) \
case WebAssemblyISD::NODE: \
return "WebAssemblyISD::" #NODE;
#define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
#include "WebAssemblyISD.def"
#undef HANDLE_MEM_NODETYPE
#undef HANDLE_NODETYPE
}
return nullptr;
}
std::pair<unsigned, const TargetRegisterClass *>
WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
// First, see if this is a constraint that directly corresponds to a
// WebAssembly register class.
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'r':
assert(VT != MVT::iPTR && "Pointer MVT not expected here");
if (Subtarget->hasSIMD128() && VT.isVector()) {
if (VT.getSizeInBits() == 128)
return std::make_pair(0U, &WebAssembly::V128RegClass);
}
if (VT.isInteger() && !VT.isVector()) {
if (VT.getSizeInBits() <= 32)
return std::make_pair(0U, &WebAssembly::I32RegClass);
if (VT.getSizeInBits() <= 64)
return std::make_pair(0U, &WebAssembly::I64RegClass);
}
if (VT.isFloatingPoint() && !VT.isVector()) {
switch (VT.getSizeInBits()) {
case 32:
return std::make_pair(0U, &WebAssembly::F32RegClass);
case 64:
return std::make_pair(0U, &WebAssembly::F64RegClass);
default:
break;
}
}
break;
default:
break;
}
}
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}
bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
// Assume ctz is a relatively cheap operation.
return true;
}
bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
// Assume clz is a relatively cheap operation.
return true;
}
bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM,
Type *Ty, unsigned AS,
Instruction *I) const {
// WebAssembly offsets are added as unsigned without wrapping. The
// isLegalAddressingMode gives us no way to determine if wrapping could be
// happening, so we approximate this by accepting only non-negative offsets.
if (AM.BaseOffs < 0)
return false;
// WebAssembly has no scale register operands.
if (AM.Scale != 0)
return false;
// Everything else is legal.
return true;
}
bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/,
MachineMemOperand::Flags /*Flags*/, bool *Fast) const {
// WebAssembly supports unaligned accesses, though it should be declared
// with the p2align attribute on loads and stores which do so, and there
// may be a performance impact. We tell LLVM they're "fast" because
// for the kinds of things that LLVM uses this for (merging adjacent stores
// of constants, etc.), WebAssembly implementations will either want the
// unaligned access or they'll split anyway.
if (Fast)
*Fast = true;
return true;
}
bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
AttributeList Attr) const {
// The current thinking is that wasm engines will perform this optimization,
// so we can save on code size.
return true;
}
bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
EVT ExtT = ExtVal.getValueType();
EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
(ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
(ExtT == MVT::v2i64 && MemT == MVT::v2i32);
}
bool WebAssemblyTargetLowering::isOffsetFoldingLegal(
const GlobalAddressSDNode *GA) const {
// Wasm doesn't support function addresses with offsets
const GlobalValue *GV = GA->getGlobal();
return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA);
}
EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
LLVMContext &C,
EVT VT) const {
if (VT.isVector())
return VT.changeVectorElementTypeToInteger();
// So far, all branch instructions in Wasm take an I32 condition.
// The default TargetLowering::getSetCCResultType returns the pointer size,
// which would be useful to reduce instruction counts when testing
// against 64-bit pointers/values if at some point Wasm supports that.
return EVT::getIntegerVT(C, 32);
}
bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
const CallInst &I,
MachineFunction &MF,
unsigned Intrinsic) const {
switch (Intrinsic) {
case Intrinsic::wasm_memory_atomic_notify:
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.align = Align(4);
// atomic.notify instruction does not really load the memory specified with
// this argument, but MachineMemOperand should either be load or store, so
// we set this to a load.
// FIXME Volatile isn't really correct, but currently all LLVM atomic
// instructions are treated as volatiles in the backend, so we should be
// consistent. The same applies for wasm_atomic_wait intrinsics too.
Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
return true;
case Intrinsic::wasm_memory_atomic_wait32:
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.align = Align(4);
Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
return true;
case Intrinsic::wasm_memory_atomic_wait64:
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::i64;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.align = Align(8);
Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
return true;
default:
return false;
}
}
void WebAssemblyTargetLowering::computeKnownBitsForTargetNode(
const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
const SelectionDAG &DAG, unsigned Depth) const {
switch (Op.getOpcode()) {
default:
break;
case ISD::INTRINSIC_WO_CHAIN: {
unsigned IntNo = Op.getConstantOperandVal(0);
switch (IntNo) {
default:
break;
case Intrinsic::wasm_bitmask: {
unsigned BitWidth = Known.getBitWidth();
EVT VT = Op.getOperand(1).getSimpleValueType();
unsigned PossibleBits = VT.getVectorNumElements();
APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits);
Known.Zero |= ZeroMask;
break;
}
}
}
}
}
TargetLoweringBase::LegalizeTypeAction
WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const {
if (VT.isFixedLengthVector()) {
MVT EltVT = VT.getVectorElementType();
// We have legal vector types with these lane types, so widening the
// vector would let us use some of the lanes directly without having to
// extend or truncate values.
if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64)
return TypeWidenVector;
}
return TargetLoweringBase::getPreferredVectorAction(VT);
}
//===----------------------------------------------------------------------===//
// WebAssembly Lowering private implementation.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Lowering Code
//===----------------------------------------------------------------------===//
static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
MachineFunction &MF = DAG.getMachineFunction();
DAG.getContext()->diagnose(
DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
}
// Test whether the given calling convention is supported.
static bool callingConvSupported(CallingConv::ID CallConv) {
// We currently support the language-independent target-independent
// conventions. We don't yet have a way to annotate calls with properties like
// "cold", and we don't have any call-clobbered registers, so these are mostly
// all handled the same.
return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
CallConv == CallingConv::Cold ||
CallConv == CallingConv::PreserveMost ||
CallConv == CallingConv::PreserveAll ||
CallConv == CallingConv::CXX_FAST_TLS ||
CallConv == CallingConv::WASM_EmscriptenInvoke ||
CallConv == CallingConv::Swift;
}
SDValue
WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc DL = CLI.DL;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
MachineFunction &MF = DAG.getMachineFunction();
auto Layout = MF.getDataLayout();
CallingConv::ID CallConv = CLI.CallConv;
if (!callingConvSupported(CallConv))
fail(DL, DAG,
"WebAssembly doesn't support language-specific or target-specific "
"calling conventions yet");
if (CLI.IsPatchPoint)
fail(DL, DAG, "WebAssembly doesn't support patch point yet");
if (CLI.IsTailCall) {
auto NoTail = [&](const char *Msg) {
if (CLI.CB && CLI.CB->isMustTailCall())
fail(DL, DAG, Msg);
CLI.IsTailCall = false;
};
if (!Subtarget->hasTailCall())
NoTail("WebAssembly 'tail-call' feature not enabled");
// Varargs calls cannot be tail calls because the buffer is on the stack
if (CLI.IsVarArg)
NoTail("WebAssembly does not support varargs tail calls");
// Do not tail call unless caller and callee return types match
const Function &F = MF.getFunction();
const TargetMachine &TM = getTargetMachine();
Type *RetTy = F.getReturnType();
SmallVector<MVT, 4> CallerRetTys;
SmallVector<MVT, 4> CalleeRetTys;
computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
std::equal(CallerRetTys.begin(), CallerRetTys.end(),
CalleeRetTys.begin());
if (!TypesMatch)
NoTail("WebAssembly tail call requires caller and callee return types to "
"match");
// If pointers to local stack values are passed, we cannot tail call
if (CLI.CB) {
for (auto &Arg : CLI.CB->args()) {
Value *Val = Arg.get();
// Trace the value back through pointer operations
while (true) {
Value *Src = Val->stripPointerCastsAndAliases();
if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
Src = GEP->getPointerOperand();
if (Val == Src)
break;
Val = Src;
}
if (isa<AllocaInst>(Val)) {
NoTail(
"WebAssembly does not support tail calling with stack arguments");
break;
}
}
}
}
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
// The generic code may have added an sret argument. If we're lowering an
// invoke function, the ABI requires that the function pointer be the first
// argument, so we may have to swap the arguments.
if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
Outs[0].Flags.isSRet()) {
std::swap(Outs[0], Outs[1]);
std::swap(OutVals[0], OutVals[1]);
}
bool HasSwiftSelfArg = false;
bool HasSwiftErrorArg = false;
unsigned NumFixedArgs = 0;
for (unsigned I = 0; I < Outs.size(); ++I) {
const ISD::OutputArg &Out = Outs[I];
SDValue &OutVal = OutVals[I];
HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
HasSwiftErrorArg |= Out.Flags.isSwiftError();
if (Out.Flags.isNest())
fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
if (Out.Flags.isInAlloca())
fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
if (Out.Flags.isInConsecutiveRegs())
fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
if (Out.Flags.isInConsecutiveRegsLast())
fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
auto &MFI = MF.getFrameInfo();
int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
Out.Flags.getNonZeroByValAlign(),
/*isSS=*/false);
SDValue SizeNode =
DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
Chain = DAG.getMemcpy(
Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(),
/*isVolatile*/ false, /*AlwaysInline=*/false,
/*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
OutVal = FINode;
}
// Count the number of fixed args *after* legalization.
NumFixedArgs += Out.IsFixed;
}
bool IsVarArg = CLI.IsVarArg;
auto PtrVT = getPointerTy(Layout);
// For swiftcc, emit additional swiftself and swifterror arguments
// if there aren't. These additional arguments are also added for callee
// signature They are necessary to match callee and caller signature for
// indirect call.
if (CallConv == CallingConv::Swift) {
if (!HasSwiftSelfArg) {
NumFixedArgs++;
ISD::OutputArg Arg;
Arg.Flags.setSwiftSelf();
CLI.Outs.push_back(Arg);
SDValue ArgVal = DAG.getUNDEF(PtrVT);
CLI.OutVals.push_back(ArgVal);
}
if (!HasSwiftErrorArg) {
NumFixedArgs++;
ISD::OutputArg Arg;
Arg.Flags.setSwiftError();
CLI.Outs.push_back(Arg);
SDValue ArgVal = DAG.getUNDEF(PtrVT);
CLI.OutVals.push_back(ArgVal);
}
}
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
if (IsVarArg) {
// Outgoing non-fixed arguments are placed in a buffer. First
// compute their offsets and the total amount of buffer space needed.
for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
const ISD::OutputArg &Out = Outs[I];
SDValue &Arg = OutVals[I];
EVT VT = Arg.getValueType();
assert(VT != MVT::iPTR && "Legalized args should be concrete");
Type *Ty = VT.getTypeForEVT(*DAG.getContext());
Align Alignment =
std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
unsigned Offset =
CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
Offset, VT.getSimpleVT(),
CCValAssign::Full));
}
}
unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
SDValue FINode;
if (IsVarArg && NumBytes) {
// For non-fixed arguments, next emit stores to store the argument values
// to the stack buffer at the offsets computed above.
int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
Layout.getStackAlignment(),
/*isSS=*/false);
unsigned ValNo = 0;
SmallVector<SDValue, 8> Chains;
for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) {
assert(ArgLocs[ValNo].getValNo() == ValNo &&
"ArgLocs should remain in order and only hold varargs args");
unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
DAG.getConstant(Offset, DL, PtrVT));
Chains.push_back(
DAG.getStore(Chain, DL, Arg, Add,
MachinePointerInfo::getFixedStack(MF, FI, Offset)));
}
if (!Chains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
} else if (IsVarArg) {
FINode = DAG.getIntPtrConstant(0, DL);
}
if (Callee->getOpcode() == ISD::GlobalAddress) {
// If the callee is a GlobalAddress node (quite common, every direct call
// is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
// doesn't at MO_GOT which is not needed for direct calls.
GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
getPointerTy(DAG.getDataLayout()),
GA->getOffset());
Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
getPointerTy(DAG.getDataLayout()), Callee);
}
// Compute the operands for the CALLn node.
SmallVector<SDValue, 16> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
// isn't reliable.
Ops.append(OutVals.begin(),
IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
// Add a pointer to the vararg buffer.
if (IsVarArg)
Ops.push_back(FINode);
SmallVector<EVT, 8> InTys;
for (const auto &In : Ins) {
assert(!In.Flags.isByVal() && "byval is not valid for return values");
assert(!In.Flags.isNest() && "nest is not valid for return values");
if (In.Flags.isInAlloca())
fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
if (In.Flags.isInConsecutiveRegs())
fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
if (In.Flags.isInConsecutiveRegsLast())
fail(DL, DAG,
"WebAssembly hasn't implemented cons regs last return values");
// Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
// registers.
InTys.push_back(In.VT);
}
// Lastly, if this is a call to a funcref we need to add an instruction
// table.set to the chain and transform the call.
if (CLI.CB &&
WebAssembly::isFuncrefType(CLI.CB->getCalledOperand()->getType())) {
// In the absence of function references proposal where a funcref call is
// lowered to call_ref, using reference types we generate a table.set to set
// the funcref to a special table used solely for this purpose, followed by
// a call_indirect. Here we just generate the table set, and return the
// SDValue of the table.set so that LowerCall can finalize the lowering by
// generating the call_indirect.
SDValue Chain = Ops[0];
MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
MF.getContext(), Subtarget);
SDValue Sym = DAG.getMCSymbol(Table, PtrVT);
SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32);
SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee};
SDValue TableSet = DAG.getMemIntrinsicNode(
WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps,
MVT::funcref,
// Machine Mem Operand args
MachinePointerInfo(
WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF),
CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()),
MachineMemOperand::MOStore);
Ops[0] = TableSet; // The new chain is the TableSet itself
}
if (CLI.IsTailCall) {
// ret_calls do not return values to the current frame
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
}
InTys.push_back(MVT::Other);
SDVTList InTyList = DAG.getVTList(InTys);
SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);
for (size_t I = 0; I < Ins.size(); ++I)
InVals.push_back(Res.getValue(I));
// Return the chain
return Res.getValue(Ins.size());
}
bool WebAssemblyTargetLowering::CanLowerReturn(
CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext & /*Context*/) const {
// WebAssembly can only handle returning tuples with multivalue enabled
return Subtarget->hasMultivalue() || Outs.size() <= 1;
}
SDValue WebAssemblyTargetLowering::LowerReturn(
SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
SelectionDAG &DAG) const {
assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
"MVP WebAssembly can only return up to one value");
if (!callingConvSupported(CallConv))
fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
SmallVector<SDValue, 4> RetOps(1, Chain);
RetOps.append(OutVals.begin(), OutVals.end());
Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
// Record the number and types of the return values.
for (const ISD::OutputArg &Out : Outs) {
assert(!Out.Flags.isByVal() && "byval is not valid for return values");
assert(!Out.Flags.isNest() && "nest is not valid for return values");
assert(Out.IsFixed && "non-fixed return value is not valid");
if (Out.Flags.isInAlloca())
fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
if (Out.Flags.isInConsecutiveRegs())
fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
if (Out.Flags.isInConsecutiveRegsLast())
fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
}
return Chain;
}
SDValue WebAssemblyTargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
if (!callingConvSupported(CallConv))
fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
MachineFunction &MF = DAG.getMachineFunction();
auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
// Set up the incoming ARGUMENTS value, which serves to represent the liveness
// of the incoming values before they're represented by virtual registers.
MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
bool HasSwiftErrorArg = false;
bool HasSwiftSelfArg = false;
for (const ISD::InputArg &In : Ins) {
HasSwiftSelfArg |= In.Flags.isSwiftSelf();
HasSwiftErrorArg |= In.Flags.isSwiftError();
if (In.Flags.isInAlloca())
fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
if (In.Flags.isNest())
fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
if (In.Flags.isInConsecutiveRegs())
fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
if (In.Flags.isInConsecutiveRegsLast())
fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
// Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
// registers.
InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
DAG.getTargetConstant(InVals.size(),
DL, MVT::i32))
: DAG.getUNDEF(In.VT));
// Record the number and types of arguments.
MFI->addParam(In.VT);
}
// For swiftcc, emit additional swiftself and swifterror arguments
// if there aren't. These additional arguments are also added for callee
// signature They are necessary to match callee and caller signature for
// indirect call.
auto PtrVT = getPointerTy(MF.getDataLayout());
if (CallConv == CallingConv::Swift) {
if (!HasSwiftSelfArg) {
MFI->addParam(PtrVT);
}
if (!HasSwiftErrorArg) {
MFI->addParam(PtrVT);
}
}
// Varargs are copied into a buffer allocated by the caller, and a pointer to
// the buffer is passed as an argument.
if (IsVarArg) {
MVT PtrVT = getPointerTy(MF.getDataLayout());
Register VarargVreg =
MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
MFI->setVarargBufferVreg(VarargVreg);
Chain = DAG.getCopyToReg(
Chain, DL, VarargVreg,
DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
MFI->addParam(PtrVT);
}
// Record the number and types of arguments and results.
SmallVector<MVT, 4> Params;
SmallVector<MVT, 4> Results;
computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
MF.getFunction(), DAG.getTarget(), Params, Results);
for (MVT VT : Results)
MFI->addResult(VT);
// TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
// the param logic here with ComputeSignatureVTs
assert(MFI->getParams().size() == Params.size() &&
std::equal(MFI->getParams().begin(), MFI->getParams().end(),
Params.begin()));
return Chain;
}
void WebAssemblyTargetLowering::ReplaceNodeResults(
SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
switch (N->getOpcode()) {
case ISD::SIGN_EXTEND_INREG:
// Do not add any results, signifying that N should not be custom lowered
// after all. This happens because simd128 turns on custom lowering for
// SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
// illegal type.
break;
default:
llvm_unreachable(
"ReplaceNodeResults not implemented for this op for WebAssembly!");
}
}
//===----------------------------------------------------------------------===//
// Custom lowering hooks.
//===----------------------------------------------------------------------===//
SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
switch (Op.getOpcode()) {
default:
llvm_unreachable("unimplemented operation lowering");
return SDValue();
case ISD::FrameIndex:
return LowerFrameIndex(Op, DAG);
case ISD::GlobalAddress:
return LowerGlobalAddress(Op, DAG);
case ISD::GlobalTLSAddress:
return LowerGlobalTLSAddress(Op, DAG);
case ISD::ExternalSymbol:
return LowerExternalSymbol(Op, DAG);
case ISD::JumpTable:
return LowerJumpTable(Op, DAG);
case ISD::BR_JT:
return LowerBR_JT(Op, DAG);
case ISD::VASTART:
return LowerVASTART(Op, DAG);
case ISD::BlockAddress:
case ISD::BRIND:
fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
return SDValue();
case ISD::RETURNADDR:
return LowerRETURNADDR(Op, DAG);
case ISD::FRAMEADDR:
return LowerFRAMEADDR(Op, DAG);
case ISD::CopyToReg:
return LowerCopyToReg(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT:
case ISD::INSERT_VECTOR_ELT:
return LowerAccessVectorElement(Op, DAG);
case ISD::INTRINSIC_VOID:
case ISD::INTRINSIC_WO_CHAIN:
case ISD::INTRINSIC_W_CHAIN:
return LowerIntrinsic(Op, DAG);
case ISD::SIGN_EXTEND_INREG:
return LowerSIGN_EXTEND_INREG(Op, DAG);
case ISD::BUILD_VECTOR:
return LowerBUILD_VECTOR(Op, DAG);
case ISD::VECTOR_SHUFFLE:
return LowerVECTOR_SHUFFLE(Op, DAG);
case ISD::SETCC:
return LowerSETCC(Op, DAG);
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
return LowerShift(Op, DAG);
case ISD::FP_TO_SINT_SAT:
case ISD::FP_TO_UINT_SAT:
return LowerFP_TO_INT_SAT(Op, DAG);
case ISD::LOAD:
return LowerLoad(Op, DAG);
case ISD::STORE:
return LowerStore(Op, DAG);
case ISD::CTPOP:
case ISD::CTLZ:
case ISD::CTTZ:
return DAG.UnrollVectorOp(Op.getNode());
}
}
static bool IsWebAssemblyGlobal(SDValue Op) {
if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace());
return false;
}
static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) {
const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op);
if (!FI)
return None;
auto &MF = DAG.getMachineFunction();
return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex());
}
static bool IsWebAssemblyTable(SDValue Op) {
const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
if (GA && WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace())) {
const GlobalValue *Value = GA->getGlobal();
const Type *Ty = Value->getValueType();
if (Ty->isArrayTy() && WebAssembly::isRefType(Ty->getArrayElementType()))
return true;
}
return false;
}
// This function will accept as Op any access to a table, so Op can
// be the actual table or an offset into the table.
static bool IsWebAssemblyTableWithOffset(SDValue Op) {
if (Op->getOpcode() == ISD::ADD && Op->getNumOperands() == 2)
return (Op->getOperand(1).getSimpleValueType() == MVT::i32 &&
IsWebAssemblyTableWithOffset(Op->getOperand(0))) ||
(Op->getOperand(0).getSimpleValueType() == MVT::i32 &&
IsWebAssemblyTableWithOffset(Op->getOperand(1)));
return IsWebAssemblyTable(Op);
}
// Helper for table pattern matching used in LowerStore and LowerLoad
bool WebAssemblyTargetLowering::MatchTableForLowering(SelectionDAG &DAG,
const SDLoc &DL,
const SDValue &Base,
GlobalAddressSDNode *&GA,
SDValue &Idx) const {
// We expect the following graph for a load of the form:
// table[<var> + <constant offset>]
//
// Case 1:
// externref = load t1
// t1: i32 = add t2, i32:<constant offset>
// t2: i32 = add tX, table
//
// This is in some cases simplified to just:
// Case 2:
// externref = load t1
// t1: i32 = add t2, i32:tX
//
// So, unfortunately we need to check for both cases and if we are in the
// first case extract the table GlobalAddressNode and build a new node tY
// that's tY: i32 = add i32:<constant offset>, i32:tX
//
if (IsWebAssemblyTable(Base)) {
GA = cast<GlobalAddressSDNode>(Base);
Idx = DAG.getConstant(0, DL, MVT::i32);
} else {
GA = dyn_cast<GlobalAddressSDNode>(Base->getOperand(0));
if (GA) {
// We are in Case 2 above.
Idx = Base->getOperand(1);
assert(GA->getNumValues() == 1);
} else {
// This might be Case 1 above (or an error)
SDValue V = Base->getOperand(0);
GA = dyn_cast<GlobalAddressSDNode>(V->getOperand(1));
if (V->getOpcode() != ISD::ADD || V->getNumOperands() != 2 || !GA)
return false;
SDValue IdxV = DAG.getNode(ISD::ADD, DL, MVT::i32, Base->getOperand(1),
V->getOperand(0));
Idx = IdxV;
}
}
return true;
}
SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
const SDValue &Value = SN->getValue();
const SDValue &Base = SN->getBasePtr();
const SDValue &Offset = SN->getOffset();
if (IsWebAssemblyTableWithOffset(Base)) {
if (!Offset->isUndef())
report_fatal_error(
"unexpected offset when loading from webassembly table", false);
SDValue Idx;
GlobalAddressSDNode *GA;
if (!MatchTableForLowering(DAG, DL, Base, GA, Idx))
report_fatal_error("failed pattern matching for lowering table store",
false);
SDVTList Tys = DAG.getVTList(MVT::Other);
SDValue TableSetOps[] = {SN->getChain(), SDValue(GA, 0), Idx, Value};
SDValue TableSet =
DAG.getMemIntrinsicNode(WebAssemblyISD::TABLE_SET, DL, Tys, TableSetOps,
SN->getMemoryVT(), SN->getMemOperand());
return TableSet;
}
if (IsWebAssemblyGlobal(Base)) {
if (!Offset->isUndef())
report_fatal_error("unexpected offset when storing to webassembly global",
false);
SDVTList Tys = DAG.getVTList(MVT::Other);
SDValue Ops[] = {SN->getChain(), Value, Base};
return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops,
SN->getMemoryVT(), SN->getMemOperand());
}
if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
if (!Offset->isUndef())
report_fatal_error("unexpected offset when storing to webassembly local",
false);
SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
SDVTList Tys = DAG.getVTList(MVT::Other); // The chain.
SDValue Ops[] = {SN->getChain(), Idx, Value};
return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops);
}
return Op;
}
SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
const SDValue &Base = LN->getBasePtr();
const SDValue &Offset = LN->getOffset();
if (IsWebAssemblyTableWithOffset(Base)) {
if (!Offset->isUndef())
report_fatal_error(
"unexpected offset when loading from webassembly table", false);
GlobalAddressSDNode *GA;
SDValue Idx;
if (!MatchTableForLowering(DAG, DL, Base, GA, Idx))
report_fatal_error("failed pattern matching for lowering table load",
false);
SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other);
SDValue TableGetOps[] = {LN->getChain(), SDValue(GA, 0), Idx};
SDValue TableGet =
DAG.getMemIntrinsicNode(WebAssemblyISD::TABLE_GET, DL, Tys, TableGetOps,
LN->getMemoryVT(), LN->getMemOperand());
return TableGet;
}
if (IsWebAssemblyGlobal(Base)) {
if (!Offset->isUndef())
report_fatal_error(
"unexpected offset when loading from webassembly global", false);
SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other);
SDValue Ops[] = {LN->getChain(), Base};
return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops,
LN->getMemoryVT(), LN->getMemOperand());
}
if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
if (!Offset->isUndef())
report_fatal_error(
"unexpected offset when loading from webassembly local", false);
SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
EVT LocalVT = LN->getValueType(0);
SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT,
{LN->getChain(), Idx});
SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL);
assert(Result->getNumValues() == 2 && "Loads must carry a chain!");
return Result;
}
return Op;
}
SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
SelectionDAG &DAG) const {
SDValue Src = Op.getOperand(2);
if (isa<FrameIndexSDNode>(Src.getNode())) {
// CopyToReg nodes don't support FrameIndex operands. Other targets select
// the FI to some LEA-like instruction, but since we don't have that, we
// need to insert some kind of instruction that can take an FI operand and
// produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
// local.copy between Op and its FI operand.
SDValue Chain = Op.getOperand(0);
SDLoc DL(Op);
Register Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
EVT VT = Src.getValueType();
SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
: WebAssembly::COPY_I64,
DL, VT, Src),
0);
return Op.getNode()->getNumValues() == 1
? DAG.getCopyToReg(Chain, DL, Reg, Copy)
: DAG.getCopyToReg(Chain, DL, Reg, Copy,
Op.getNumOperands() == 4 ? Op.getOperand(3)
: SDValue());
}
return SDValue();
}
SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
SelectionDAG &DAG) const {
int FI = cast<FrameIndexSDNode>(Op)->getIndex();
return DAG.getTargetFrameIndex(FI, Op.getValueType());
}
SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
if (!Subtarget->getTargetTriple().isOSEmscripten()) {
fail(DL, DAG,
"Non-Emscripten WebAssembly hasn't implemented "
"__builtin_return_address");
return SDValue();
}
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
return SDValue();
unsigned Depth = Op.getConstantOperandVal(0);
MakeLibCallOptions CallOptions;
return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
{DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
.first;
}
SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
SelectionDAG &DAG) const {
// Non-zero depths are not supported by WebAssembly currently. Use the
// legalizer's default expansion, which is to return 0 (what this function is
// documented to do).
if (Op.getConstantOperandVal(0) > 0)
return SDValue();
DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
Register FP =
Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
}
SDValue
WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
const auto *GA = cast<GlobalAddressSDNode>(Op);
MachineFunction &MF = DAG.getMachineFunction();
if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
report_fatal_error("cannot use thread-local storage without bulk memory",
false);
const GlobalValue *GV = GA->getGlobal();
// Currently Emscripten does not support dynamic linking with threads.
// Therefore, if we have thread-local storage, only the local-exec model
// is possible.
// TODO: remove this and implement proper TLS models once Emscripten
// supports dynamic linking with threads.
if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel &&
!Subtarget->getTargetTriple().isOSEmscripten()) {
report_fatal_error("only -ftls-model=local-exec is supported for now on "
"non-Emscripten OSes: variable " +
GV->getName(),
false);
}
auto model = GV->getThreadLocalMode();
// Unsupported TLS modes
assert(model != GlobalValue::NotThreadLocal);
assert(model != GlobalValue::InitialExecTLSModel);
if (model == GlobalValue::LocalExecTLSModel ||
model == GlobalValue::LocalDynamicTLSModel ||
(model == GlobalValue::GeneralDynamicTLSModel &&
getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))) {
// For DSO-local TLS variables we use offset from __tls_base
MVT PtrVT = getPointerTy(DAG.getDataLayout());
auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
: WebAssembly::GLOBAL_GET_I32;
const char *BaseName = MF.createExternalSymbolName("__tls_base");
SDValue BaseAddr(
DAG.getMachineNode(GlobalGet, DL, PtrVT,
DAG.getTargetExternalSymbol(BaseName, PtrVT)),
0);
SDValue TLSOffset = DAG.getTargetGlobalAddress(
GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL);
SDValue SymOffset =
DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset);
return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset);
}
assert(model == GlobalValue::GeneralDynamicTLSModel);
EVT VT = Op.getValueType();
return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
GA->getOffset(),
WebAssemblyII::MO_GOT_TLS));
}
SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
const auto *GA = cast<GlobalAddressSDNode>(Op);
EVT VT = Op.getValueType();
assert(GA->getTargetFlags() == 0 &&
"Unexpected target flags on generic GlobalAddressSDNode");
if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace()))
fail(DL, DAG, "Invalid address space for WebAssembly target");
unsigned OperandFlags = 0;
if (isPositionIndependent()) {
const GlobalValue *GV = GA->getGlobal();
if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
MachineFunction &MF = DAG.getMachineFunction();
MVT PtrVT = getPointerTy(MF.getDataLayout());
const char *BaseName;
if (GV->getValueType()->isFunctionTy()) {
BaseName = MF.createExternalSymbolName("__table_base");
OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
}
else {
BaseName = MF.createExternalSymbolName("__memory_base");
OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
}
SDValue BaseAddr =
DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
DAG.getTargetExternalSymbol(BaseName, PtrVT));
SDValue SymAddr = DAG.getNode(
WebAssemblyISD::WrapperREL, DL, VT,
DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
OperandFlags));
return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
}
OperandFlags = WebAssemblyII::MO_GOT;
}
return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
GA->getOffset(), OperandFlags));
}
SDValue
WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
const auto *ES = cast<ExternalSymbolSDNode>(Op);
EVT VT = Op.getValueType();
assert(ES->getTargetFlags() == 0 &&
"Unexpected target flags on generic ExternalSymbolSDNode");
return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
}
SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
SelectionDAG &DAG) const {
// There's no need for a Wrapper node because we always incorporate a jump
// table operand into a BR_TABLE instruction, rather than ever
// materializing it in a register.
const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
JT->getTargetFlags());
}
SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue Chain = Op.getOperand(0);
const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
SDValue Index = Op.getOperand(2);
assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Index);
MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
// Add an operand for each case.
for (auto MBB : MBBs)
Ops.push_back(DAG.getBasicBlock(MBB));
// Add the first MBB as a dummy default target for now. This will be replaced
// with the proper default target (and the preceding range check eliminated)
// if possible by WebAssemblyFixBrTableDefaults.
Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
}
SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
MFI->getVarargBufferVreg(), PtrVT);
return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
MachinePointerInfo(SV));
}
SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
unsigned IntNo;
switch (Op.getOpcode()) {
case ISD::INTRINSIC_VOID:
case ISD::INTRINSIC_W_CHAIN:
IntNo = Op.getConstantOperandVal(1);
break;
case ISD::INTRINSIC_WO_CHAIN:
IntNo = Op.getConstantOperandVal(0);
break;
default:
llvm_unreachable("Invalid intrinsic");
}
SDLoc DL(Op);
switch (IntNo) {
default:
return SDValue(); // Don't custom lower most intrinsics.
case Intrinsic::wasm_lsda: {
auto PtrVT = getPointerTy(MF.getDataLayout());
const char *SymName = MF.createExternalSymbolName(
"GCC_except_table" + std::to_string(MF.getFunctionNumber()));
if (isPositionIndependent()) {
SDValue Node = DAG.getTargetExternalSymbol(
SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL);
const char *BaseName = MF.createExternalSymbolName("__memory_base");
SDValue BaseAddr =
DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
DAG.getTargetExternalSymbol(BaseName, PtrVT));
SDValue SymAddr =
DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node);
return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr);
}
SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT);
return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node);
}
case Intrinsic::wasm_shuffle: {
// Drop in-chain and replace undefs, but otherwise pass through unchanged
SDValue Ops[18];
size_t OpIdx = 0;
Ops[OpIdx++] = Op.getOperand(1);
Ops[OpIdx++] = Op.getOperand(2);
while (OpIdx < 18) {
const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
if (MaskIdx.isUndef() ||
cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) {
Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32);
} else {
Ops[OpIdx++] = MaskIdx;
}
}
return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
}
}
}
SDValue
WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
// If sign extension operations are disabled, allow sext_inreg only if operand
// is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
// extension operations, but allowing sext_inreg in this context lets us have
// simple patterns to select extract_lane_s instructions. Expanding sext_inreg
// everywhere would be simpler in this file, but would necessitate large and
// brittle patterns to undo the expansion and select extract_lane_s
// instructions.
assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
const SDValue &Extract = Op.getOperand(0);
MVT VecT = Extract.getOperand(0).getSimpleValueType();
if (VecT.getVectorElementType().getSizeInBits() > 32)
return SDValue();
MVT ExtractedLaneT =
cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
MVT ExtractedVecT =
MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
if (ExtractedVecT == VecT)
return Op;
// Bitcast vector to appropriate type to ensure ISel pattern coverage
const SDNode *Index = Extract.getOperand(1).getNode();
if (!isa<ConstantSDNode>(Index))
return SDValue();
unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue();
unsigned Scale =
ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
assert(Scale > 1);
SDValue NewIndex =
DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
SDValue NewExtract = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
Op.getOperand(1));
}
static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) {
SDLoc DL(Op);
if (Op.getValueType() != MVT::v2f64)
return SDValue();
auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec,
unsigned &Index) -> bool {
switch (Op.getOpcode()) {
case ISD::SINT_TO_FP:
Opcode = WebAssemblyISD::CONVERT_LOW_S;
break;
case ISD::UINT_TO_FP:
Opcode = WebAssemblyISD::CONVERT_LOW_U;
break;
case ISD::FP_EXTEND:
Opcode = WebAssemblyISD::PROMOTE_LOW;
break;
default:
return false;
}
auto ExtractVector = Op.getOperand(0);
if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return false;
if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode()))
return false;
SrcVec = ExtractVector.getOperand(0);
Index = ExtractVector.getConstantOperandVal(1);
return true;
};
unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex;
SDValue LHSSrcVec, RHSSrcVec;
if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) ||
!GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex))
return SDValue();
if (LHSOpcode != RHSOpcode)
return SDValue();
MVT ExpectedSrcVT;
switch (LHSOpcode) {
case WebAssemblyISD::CONVERT_LOW_S:
case WebAssemblyISD::CONVERT_LOW_U:
ExpectedSrcVT = MVT::v4i32;
break;
case WebAssemblyISD::PROMOTE_LOW:
ExpectedSrcVT = MVT::v4f32;
break;
}
if (LHSSrcVec.getValueType() != ExpectedSrcVT)
return SDValue();
auto Src = LHSSrcVec;
if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) {
// Shuffle the source vector so that the converted lanes are the low lanes.
Src = DAG.getVectorShuffle(
ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec,
{static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1});
}
return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src);
}
SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
if (auto ConvertLow = LowerConvertLow(Op, DAG))
return ConvertLow;
SDLoc DL(Op);
const EVT VecT = Op.getValueType();
const EVT LaneT = Op.getOperand(0).getValueType();
const size_t Lanes = Op.getNumOperands();
bool CanSwizzle = VecT == MVT::v16i8;
// BUILD_VECTORs are lowered to the instruction that initializes the highest
// possible number of lanes at once followed by a sequence of replace_lane
// instructions to individually initialize any remaining lanes.
// TODO: Tune this. For example, lanewise swizzling is very expensive, so
// swizzled lanes should be given greater weight.
// TODO: Investigate looping rather than always extracting/replacing specific
// lanes to fill gaps.
auto IsConstant = [](const SDValue &V) {
return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
};
// Returns the source vector and index vector pair if they exist. Checks for:
// (extract_vector_elt
// $src,
// (sign_extend_inreg (extract_vector_elt $indices, $i))
// )
auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
auto Bail = std::make_pair(SDValue(), SDValue());
if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return Bail;
const SDValue &SwizzleSrc = Lane->getOperand(0);
const SDValue &IndexExt = Lane->getOperand(1);
if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
return Bail;
const SDValue &Index = IndexExt->getOperand(0);
if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return Bail;
const SDValue &SwizzleIndices = Index->getOperand(0);
if (SwizzleSrc.getValueType() != MVT::v16i8 ||
SwizzleIndices.getValueType() != MVT::v16i8 ||
Index->getOperand(1)->getOpcode() != ISD::Constant ||
Index->getConstantOperandVal(1) != I)
return Bail;
return std::make_pair(SwizzleSrc, SwizzleIndices);
};
// If the lane is extracted from another vector at a constant index, return
// that vector. The source vector must not have more lanes than the dest
// because the shufflevector indices are in terms of the destination lanes and
// would not be able to address the smaller individual source lanes.
auto GetShuffleSrc = [&](const SDValue &Lane) {
if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode()))
return SDValue();
if (Lane->getOperand(0).getValueType().getVectorNumElements() >
VecT.getVectorNumElements())
return SDValue();
return Lane->getOperand(0);
};
using ValueEntry = std::pair<SDValue, size_t>;
SmallVector<ValueEntry, 16> SplatValueCounts;
using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
SmallVector<SwizzleEntry, 16> SwizzleCounts;
using ShuffleEntry = std::pair<SDValue, size_t>;
SmallVector<ShuffleEntry, 16> ShuffleCounts;
auto AddCount = [](auto &Counts, const auto &Val) {
auto CountIt =
llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; });
if (CountIt == Counts.end()) {
Counts.emplace_back(Val, 1);
} else {
CountIt->second++;
}
};
auto GetMostCommon = [](auto &Counts) {
auto CommonIt =
std::max_element(Counts.begin(), Counts.end(),
[](auto A, auto B) { return A.second < B.second; });
assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
return *CommonIt;
};
size_t NumConstantLanes = 0;
// Count eligible lanes for each type of vector creation op
for (size_t I = 0; I < Lanes; ++I) {
const SDValue &Lane = Op->getOperand(I);
if (Lane.isUndef())
continue;
AddCount(SplatValueCounts, Lane);
if (IsConstant(Lane))
NumConstantLanes++;
if (auto ShuffleSrc = GetShuffleSrc(Lane))
AddCount(ShuffleCounts, ShuffleSrc);
if (CanSwizzle) {
auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
if (SwizzleSrcs.first)
AddCount(SwizzleCounts, SwizzleSrcs);
}
}
SDValue SplatValue;
size_t NumSplatLanes;
std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
SDValue SwizzleSrc;
SDValue SwizzleIndices;
size_t NumSwizzleLanes = 0;
if (SwizzleCounts.size())
std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
// Shuffles can draw from up to two vectors, so find the two most common
// sources.
SDValue ShuffleSrc1, ShuffleSrc2;
size_t NumShuffleLanes = 0;
if (ShuffleCounts.size()) {
std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts);
llvm::erase_if(ShuffleCounts,
[&](const auto &Pair) { return Pair.first == ShuffleSrc1; });
}
if (ShuffleCounts.size()) {
size_t AdditionalShuffleLanes;
std::tie(ShuffleSrc2, AdditionalShuffleLanes) =
GetMostCommon(ShuffleCounts);
NumShuffleLanes += AdditionalShuffleLanes;
}
// Predicate returning true if the lane is properly initialized by the
// original instruction
std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
SDValue Result;
// Prefer swizzles over shuffles over vector consts over splats
if (NumSwizzleLanes >= NumShuffleLanes &&
NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) {
Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
SwizzleIndices);
auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
return Swizzled == GetSwizzleSrcs(I, Lane);
};
} else if (NumShuffleLanes >= NumConstantLanes &&
NumShuffleLanes >= NumSplatLanes) {
size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8;
size_t DestLaneCount = VecT.getVectorNumElements();
size_t Scale1 = 1;
size_t Scale2 = 1;
SDValue Src1 = ShuffleSrc1;
SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT);
if (Src1.getValueType() != VecT) {
size_t LaneSize =
Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
assert(LaneSize > DestLaneSize);
Scale1 = LaneSize / DestLaneSize;
Src1 = DAG.getBitcast(VecT, Src1);
}
if (Src2.getValueType() != VecT) {
size_t LaneSize =
Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
assert(LaneSize > DestLaneSize);
Scale2 = LaneSize / DestLaneSize;
Src2 = DAG.getBitcast(VecT, Src2);
}
int Mask[16];
assert(DestLaneCount <= 16);
for (size_t I = 0; I < DestLaneCount; ++I) {
const SDValue &Lane = Op->getOperand(I);
SDValue Src = GetShuffleSrc(Lane);
if (Src == ShuffleSrc1) {
Mask[I] = Lane->getConstantOperandVal(1) * Scale1;
} else if (Src && Src == ShuffleSrc2) {
Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2;
} else {
Mask[I] = -1;
}
}
ArrayRef<int> MaskRef(Mask, DestLaneCount);
Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef);
IsLaneConstructed = [&](size_t, const SDValue &Lane) {
auto Src = GetShuffleSrc(Lane);
return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2);
};
} else if (NumConstantLanes >= NumSplatLanes) {
SmallVector<SDValue, 16> ConstLanes;
for (const SDValue &Lane : Op->op_values()) {
if (IsConstant(Lane)) {
// Values may need to be fixed so that they will sign extend to be
// within the expected range during ISel. Check whether the value is in
// bounds based on the lane bit width and if it is out of bounds, lop
// off the extra bits and subtract 2^n to reflect giving the high bit
// value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it
// cannot possibly be out of range.
auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode());
int64_t Val = Const ? Const->getSExtValue() : 0;
uint64_t LaneBits = 128 / Lanes;
assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) &&
"Unexpected out of bounds negative value");
if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) {
auto NewVal = ((uint64_t)Val % (1ll << LaneBits)) - (1ll << LaneBits);
ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT));
} else {
ConstLanes.push_back(Lane);
}
} else if (LaneT.isFloatingPoint()) {
ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
} else {
ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
}
}
Result = DAG.getBuildVector(VecT, DL, ConstLanes);
IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
return IsConstant(Lane);
};
} else {
// Use a splat, but possibly a load_splat
LoadSDNode *SplattedLoad;
if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) &&
SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) {
Result = DAG.getMemIntrinsicNode(
WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT),
{SplattedLoad->getChain(), SplattedLoad->getBasePtr(),
SplattedLoad->getOffset()},
SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand());
} else {
Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
}
IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) {
return Lane == SplatValue;
};
}
assert(Result);
assert(IsLaneConstructed);
// Add replace_lane instructions for any unhandled values
for (size_t I = 0; I < Lanes; ++I) {
const SDValue &Lane = Op->getOperand(I);
if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
DAG.getConstant(I, DL, MVT::i32));
}
return Result;
}
SDValue
WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
MVT VecType = Op.getOperand(0).getSimpleValueType();
assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
// Space for two vector args and sixteen mask indices
SDValue Ops[18];
size_t OpIdx = 0;
Ops[OpIdx++] = Op.getOperand(0);
Ops[OpIdx++] = Op.getOperand(1);
// Expand mask indices to byte indices and materialize them as operands
for (int M : Mask) {
for (size_t J = 0; J < LaneBytes; ++J) {
// Lower undefs (represented by -1 in mask) to zero
uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
}
}
return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
}
SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
// The legalizer does not know how to expand the unsupported comparison modes
// of i64x2 vectors, so we manually unroll them here.
assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
SmallVector<SDValue, 2> LHS, RHS;
DAG.ExtractVectorElements(Op->getOperand(0), LHS);
DAG.ExtractVectorElements(Op->getOperand(1), RHS);
const SDValue &CC = Op->getOperand(2);
auto MakeLane = [&](unsigned I) {
return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
DAG.getConstant(uint64_t(-1), DL, MVT::i64),
DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
};
return DAG.getBuildVector(Op->getValueType(0), DL,
{MakeLane(0), MakeLane(1)});
}
SDValue
WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
SelectionDAG &DAG) const {
// Allow constant lane indices, expand variable lane indices
SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
return Op;
else
// Perform default expansion
return SDValue();
}
static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
EVT LaneT = Op.getSimpleValueType().getVectorElementType();
// 32-bit and 64-bit unrolled shifts will have proper semantics
if (LaneT.bitsGE(MVT::i32))
return DAG.UnrollVectorOp(Op.getNode());
// Otherwise mask the shift value to get proper semantics from 32-bit shift
SDLoc DL(Op);
size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
unsigned ShiftOpcode = Op.getOpcode();
SmallVector<SDValue, 16> ShiftedElements;
DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
SmallVector<SDValue, 16> ShiftElements;
DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
SmallVector<SDValue, 16> UnrolledOps;
for (size_t i = 0; i < NumLanes; ++i) {
SDValue MaskedShiftValue =
DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
SDValue ShiftedValue = ShiftedElements[i];
if (ShiftOpcode == ISD::SRA)
ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
ShiftedValue, DAG.getValueType(LaneT));
UnrolledOps.push_back(
DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
}
return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
}
SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
// Only manually lower vector shifts
assert(Op.getSimpleValueType().isVector());
auto ShiftVal = DAG.getSplatValue(Op.getOperand(1));
if (!ShiftVal)
return unrollVectorShift(Op, DAG);
// Use anyext because none of the high bits can affect the shift
ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);
unsigned Opcode;
switch (Op.getOpcode()) {
case ISD::SHL:
Opcode = WebAssemblyISD::VEC_SHL;
break;
case ISD::SRA:
Opcode = WebAssemblyISD::VEC_SHR_S;
break;
case ISD::SRL:
Opcode = WebAssemblyISD::VEC_SHR_U;
break;
default:
llvm_unreachable("unexpected opcode");
}
return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
}
SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT ResT = Op.getValueType();
EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
if ((ResT == MVT::i32 || ResT == MVT::i64) &&
(SatVT == MVT::i32 || SatVT == MVT::i64))
return Op;
if (ResT == MVT::v4i32 && SatVT == MVT::i32)
return Op;
return SDValue();
}
//===----------------------------------------------------------------------===//
// Custom DAG combine hooks
//===----------------------------------------------------------------------===//
static SDValue
performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
auto &DAG = DCI.DAG;
auto Shuffle = cast<ShuffleVectorSDNode>(N);
// Hoist vector bitcasts that don't change the number of lanes out of unary
// shuffles, where they are less likely to get in the way of other combines.
// (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
// (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
SDValue Bitcast = N->getOperand(0);
if (Bitcast.getOpcode() != ISD::BITCAST)
return SDValue();
if (!N->getOperand(1).isUndef())
return SDValue();
SDValue CastOp = Bitcast.getOperand(0);
MVT SrcType = CastOp.getSimpleValueType();
MVT DstType = Bitcast.getSimpleValueType();
if (!SrcType.is128BitVector() ||
SrcType.getVectorNumElements() != DstType.getVectorNumElements())
return SDValue();
SDValue NewShuffle = DAG.getVectorShuffle(
SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
return DAG.getBitcast(DstType, NewShuffle);
}
static SDValue
performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
auto &DAG = DCI.DAG;
assert(N->getOpcode() == ISD::SIGN_EXTEND ||
N->getOpcode() == ISD::ZERO_EXTEND);
// Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if
// possible before the extract_subvector can be expanded.
auto Extract = N->getOperand(0);
if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
return SDValue();
auto Source = Extract.getOperand(0);
auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
if (IndexNode == nullptr)
return SDValue();
auto Index = IndexNode->getZExtValue();
// Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the
// extracted subvector is the low or high half of its source.
EVT ResVT = N->getValueType(0);
if (ResVT == MVT::v8i16) {
if (Extract.getValueType() != MVT::v8i8 ||
Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
return SDValue();
} else if (ResVT == MVT::v4i32) {
if (Extract.getValueType() != MVT::v4i16 ||
Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
return SDValue();
} else if (ResVT == MVT::v2i64) {
if (Extract.getValueType() != MVT::v2i32 ||
Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2))
return SDValue();
} else {
return SDValue();
}
bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND;
bool IsLow = Index == 0;
unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S
: WebAssemblyISD::EXTEND_HIGH_S)
: (IsLow ? WebAssemblyISD::EXTEND_LOW_U
: WebAssemblyISD::EXTEND_HIGH_U);
return DAG.getNode(Op, SDLoc(N), ResVT, Source);
}
static SDValue
performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
auto &DAG = DCI.DAG;
auto GetWasmConversionOp = [](unsigned Op) {
switch (Op) {
case ISD::FP_TO_SINT_SAT:
return WebAssemblyISD::TRUNC_SAT_ZERO_S;
case ISD::FP_TO_UINT_SAT:
return WebAssemblyISD::TRUNC_SAT_ZERO_U;
case ISD::FP_ROUND:
return WebAssemblyISD::DEMOTE_ZERO;
}
llvm_unreachable("unexpected op");
};
auto IsZeroSplat = [](SDValue SplatVal) {
auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode());
APInt SplatValue, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
return Splat &&
Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
HasAnyUndefs) &&
SplatValue == 0;
};
if (N->getOpcode() == ISD::CONCAT_VECTORS) {
// Combine this:
//
// (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0)))
//
// into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
//
// Or this:
//
// (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0)))
//
// into (f32x4.demote_zero_f64x2 $x).
EVT ResVT;
EVT ExpectedConversionType;
auto Conversion = N->getOperand(0);
auto ConversionOp = Conversion.getOpcode();
switch (ConversionOp) {
case ISD::FP_TO_SINT_SAT:
case ISD::FP_TO_UINT_SAT:
ResVT = MVT::v4i32;
ExpectedConversionType = MVT::v2i32;
break;
case ISD::FP_ROUND:
ResVT = MVT::v4f32;
ExpectedConversionType = MVT::v2f32;
break;
default:
return SDValue();
}
if (N->getValueType(0) != ResVT)
return SDValue();
if (Conversion.getValueType() != ExpectedConversionType)
return SDValue();
auto Source = Conversion.getOperand(0);
if (Source.getValueType() != MVT::v2f64)
return SDValue();
if (!IsZeroSplat(N->getOperand(1)) ||
N->getOperand(1).getValueType() != ExpectedConversionType)
return SDValue();
unsigned Op = GetWasmConversionOp(ConversionOp);
return DAG.getNode(Op, SDLoc(N), ResVT, Source);
}
// Combine this:
//
// (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32)
//
// into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
//
// Or this:
//
// (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0)))))
//
// into (f32x4.demote_zero_f64x2 $x).
EVT ResVT;
auto ConversionOp = N->getOpcode();
switch (ConversionOp) {
case ISD::FP_TO_SINT_SAT:
case ISD::FP_TO_UINT_SAT:
ResVT = MVT::v4i32;
break;
case ISD::FP_ROUND:
ResVT = MVT::v4f32;
break;
default:
llvm_unreachable("unexpected op");
}
if (N->getValueType(0) != ResVT)
return SDValue();
auto Concat = N->getOperand(0);
if (Concat.getValueType() != MVT::v4f64)
return SDValue();
auto Source = Concat.getOperand(0);
if (Source.getValueType() != MVT::v2f64)
return SDValue();
if (!IsZeroSplat(Concat.getOperand(1)) ||
Concat.getOperand(1).getValueType() != MVT::v2f64)
return SDValue();
unsigned Op = GetWasmConversionOp(ConversionOp);
return DAG.getNode(Op, SDLoc(N), ResVT, Source);
}
// Helper to extract VectorWidth bits from Vec, starting from IdxVal.
static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG,
const SDLoc &DL, unsigned VectorWidth) {
EVT VT = Vec.getValueType();
EVT ElVT = VT.getVectorElementType();
unsigned Factor = VT.getSizeInBits() / VectorWidth;
EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
VT.getVectorNumElements() / Factor);
// Extract the relevant VectorWidth bits. Generate an EXTRACT_SUBVECTOR
unsigned ElemsPerChunk = VectorWidth / ElVT.getSizeInBits();
assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
// This is the index of the first element of the VectorWidth-bit chunk
// we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
IdxVal &= ~(ElemsPerChunk - 1);
// If the input is a buildvector just emit a smaller one.
if (Vec.getOpcode() == ISD::BUILD_VECTOR)
return DAG.getBuildVector(ResultVT, DL,
Vec->ops().slice(IdxVal, ElemsPerChunk));
SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, DL);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, VecIdx);
}
// Helper to recursively truncate vector elements in half with NARROW_U. DstVT
// is the expected destination value type after recursion. In is the initial
// input. Note that the input should have enough leading zero bits to prevent
// NARROW_U from saturating results.
static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL,
SelectionDAG &DAG) {
EVT SrcVT = In.getValueType();
// No truncation required, we might get here due to recursive calls.
if (SrcVT == DstVT)
return In;
unsigned SrcSizeInBits = SrcVT.getSizeInBits();
unsigned NumElems = SrcVT.getVectorNumElements();
if (!isPowerOf2_32(NumElems))
return SDValue();
assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation");
assert(SrcSizeInBits > DstVT.getSizeInBits() && "Illegal truncation");
LLVMContext &Ctx = *DAG.getContext();
EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2);
// Narrow to the largest type possible:
// vXi64/vXi32 -> i16x8.narrow_i32x4_u and vXi16 -> i8x16.narrow_i16x8_u.
EVT InVT = MVT::i16, OutVT = MVT::i8;
if (SrcVT.getScalarSizeInBits() > 16) {
InVT = MVT::i32;
OutVT = MVT::i16;
}
unsigned SubSizeInBits = SrcSizeInBits / 2;
InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits());
OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits());
// Split lower/upper subvectors.
SDValue Lo = extractSubVector(In, 0, DAG, DL, SubSizeInBits);
SDValue Hi = extractSubVector(In, NumElems / 2, DAG, DL, SubSizeInBits);
// 256bit -> 128bit truncate - Narrow lower/upper 128-bit subvectors.
if (SrcVT.is256BitVector() && DstVT.is128BitVector()) {
Lo = DAG.getBitcast(InVT, Lo);
Hi = DAG.getBitcast(InVT, Hi);
SDValue Res = DAG.getNode(WebAssemblyISD::NARROW_U, DL, OutVT, Lo, Hi);
return DAG.getBitcast(DstVT, Res);
}
// Recursively narrow lower/upper subvectors, concat result and narrow again.
EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems / 2);
Lo = truncateVectorWithNARROW(PackedVT, Lo, DL, DAG);
Hi = truncateVectorWithNARROW(PackedVT, Hi, DL, DAG);
PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems);
SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi);
return truncateVectorWithNARROW(DstVT, Res, DL, DAG);
}
static SDValue performTruncateCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
auto &DAG = DCI.DAG;
SDValue In = N->getOperand(0);
EVT InVT = In.getValueType();
if (!InVT.isSimple())
return SDValue();
EVT OutVT = N->getValueType(0);
if (!OutVT.isVector())
return SDValue();
EVT OutSVT = OutVT.getVectorElementType();
EVT InSVT = InVT.getVectorElementType();
// Currently only cover truncate to v16i8 or v8i16.
if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) &&
(OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.is128BitVector()))
return SDValue();
SDLoc DL(N);
APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(),
OutVT.getScalarSizeInBits());
In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT));
return truncateVectorWithNARROW(OutVT, In, DL, DAG);
}
SDValue
WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
switch (N->getOpcode()) {
default:
return SDValue();
case ISD::VECTOR_SHUFFLE:
return performVECTOR_SHUFFLECombine(N, DCI);
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
return performVectorExtendCombine(N, DCI);
case ISD::FP_TO_SINT_SAT:
case ISD::FP_TO_UINT_SAT:
case ISD::FP_ROUND:
case ISD::CONCAT_VECTORS:
return performVectorTruncZeroCombine(N, DCI);
case ISD::TRUNCATE:
return performTruncateCombine(N, DCI);
}
}
|