1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
//===- PoisonChecking.cpp - -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implements a transform pass which instruments IR such that poison semantics
// are made explicit. That is, it provides a (possibly partial) executable
// semantics for every instruction w.r.t. poison as specified in the LLVM
// LangRef. There are obvious parallels to the sanitizer tools, but this pass
// is focused purely on the semantics of LLVM IR, not any particular source
// language. If you're looking for something to see if your C/C++ contains
// UB, this is not it.
//
// The rewritten semantics of each instruction will include the following
// components:
//
// 1) The original instruction, unmodified.
// 2) A propagation rule which translates dynamic information about the poison
// state of each input to whether the dynamic output of the instruction
// produces poison.
// 3) A creation rule which validates any poison producing flags on the
// instruction itself (e.g. checks for overflow on nsw).
// 4) A check rule which traps (to a handler function) if this instruction must
// execute undefined behavior given the poison state of it's inputs.
//
// This is a must analysis based transform; that is, the resulting code may
// produce a false negative result (not report UB when actually exists
// according to the LangRef spec), but should never produce a false positive
// (report UB where it doesn't exist).
//
// Use cases for this pass include:
// - Understanding (and testing!) the implications of the definition of poison
// from the LangRef.
// - Validating the output of a IR fuzzer to ensure that all programs produced
// are well defined on the specific input used.
// - Finding/confirming poison specific miscompiles by checking the poison
// status of an input/IR pair is the same before and after an optimization
// transform.
// - Checking that a bugpoint reduction does not introduce UB which didn't
// exist in the original program being reduced.
//
// The major sources of inaccuracy are currently:
// - Most validation rules not yet implemented for instructions with poison
// relavant flags. At the moment, only nsw/nuw on add/sub are supported.
// - UB which is control dependent on a branch on poison is not yet
// reported. Currently, only data flow dependence is modeled.
// - Poison which is propagated through memory is not modeled. As such,
// storing poison to memory and then reloading it will cause a false negative
// as we consider the reloaded value to not be poisoned.
// - Poison propagation across function boundaries is not modeled. At the
// moment, all arguments and return values are assumed not to be poison.
// - Undef is not modeled. In particular, the optimizer's freedom to pick
// concrete values for undef bits so as to maximize potential for producing
// poison is not modeled.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Instrumentation/PoisonChecking.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "poison-checking"
static cl::opt<bool>
LocalCheck("poison-checking-function-local",
cl::init(false),
cl::desc("Check that returns are non-poison (for testing)"));
static bool isConstantFalse(Value* V) {
assert(V->getType()->isIntegerTy(1));
if (auto *CI = dyn_cast<ConstantInt>(V))
return CI->isZero();
return false;
}
static Value *buildOrChain(IRBuilder<> &B, ArrayRef<Value*> Ops) {
if (Ops.size() == 0)
return B.getFalse();
unsigned i = 0;
for (; i < Ops.size() && isConstantFalse(Ops[i]); i++) {}
if (i == Ops.size())
return B.getFalse();
Value *Accum = Ops[i++];
for (; i < Ops.size(); i++)
if (!isConstantFalse(Ops[i]))
Accum = B.CreateOr(Accum, Ops[i]);
return Accum;
}
static void generateCreationChecksForBinOp(Instruction &I,
SmallVectorImpl<Value*> &Checks) {
assert(isa<BinaryOperator>(I));
IRBuilder<> B(&I);
Value *LHS = I.getOperand(0);
Value *RHS = I.getOperand(1);
switch (I.getOpcode()) {
default:
return;
case Instruction::Add: {
if (I.hasNoSignedWrap()) {
auto *OverflowOp =
B.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, LHS, RHS);
Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
}
if (I.hasNoUnsignedWrap()) {
auto *OverflowOp =
B.CreateBinaryIntrinsic(Intrinsic::uadd_with_overflow, LHS, RHS);
Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
}
break;
}
case Instruction::Sub: {
if (I.hasNoSignedWrap()) {
auto *OverflowOp =
B.CreateBinaryIntrinsic(Intrinsic::ssub_with_overflow, LHS, RHS);
Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
}
if (I.hasNoUnsignedWrap()) {
auto *OverflowOp =
B.CreateBinaryIntrinsic(Intrinsic::usub_with_overflow, LHS, RHS);
Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
}
break;
}
case Instruction::Mul: {
if (I.hasNoSignedWrap()) {
auto *OverflowOp =
B.CreateBinaryIntrinsic(Intrinsic::smul_with_overflow, LHS, RHS);
Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
}
if (I.hasNoUnsignedWrap()) {
auto *OverflowOp =
B.CreateBinaryIntrinsic(Intrinsic::umul_with_overflow, LHS, RHS);
Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
}
break;
}
case Instruction::UDiv: {
if (I.isExact()) {
auto *Check =
B.CreateICmp(ICmpInst::ICMP_NE, B.CreateURem(LHS, RHS),
ConstantInt::get(LHS->getType(), 0));
Checks.push_back(Check);
}
break;
}
case Instruction::SDiv: {
if (I.isExact()) {
auto *Check =
B.CreateICmp(ICmpInst::ICMP_NE, B.CreateSRem(LHS, RHS),
ConstantInt::get(LHS->getType(), 0));
Checks.push_back(Check);
}
break;
}
case Instruction::AShr:
case Instruction::LShr:
case Instruction::Shl: {
Value *ShiftCheck =
B.CreateICmp(ICmpInst::ICMP_UGE, RHS,
ConstantInt::get(RHS->getType(),
LHS->getType()->getScalarSizeInBits()));
Checks.push_back(ShiftCheck);
break;
}
};
}
/// Given an instruction which can produce poison on non-poison inputs
/// (i.e. canCreatePoison returns true), generate runtime checks to produce
/// boolean indicators of when poison would result.
static void generateCreationChecks(Instruction &I,
SmallVectorImpl<Value*> &Checks) {
IRBuilder<> B(&I);
if (isa<BinaryOperator>(I) && !I.getType()->isVectorTy())
generateCreationChecksForBinOp(I, Checks);
// Handle non-binops separately
switch (I.getOpcode()) {
default:
// Note there are a couple of missing cases here, once implemented, this
// should become an llvm_unreachable.
break;
case Instruction::ExtractElement: {
Value *Vec = I.getOperand(0);
auto *VecVTy = dyn_cast<FixedVectorType>(Vec->getType());
if (!VecVTy)
break;
Value *Idx = I.getOperand(1);
unsigned NumElts = VecVTy->getNumElements();
Value *Check =
B.CreateICmp(ICmpInst::ICMP_UGE, Idx,
ConstantInt::get(Idx->getType(), NumElts));
Checks.push_back(Check);
break;
}
case Instruction::InsertElement: {
Value *Vec = I.getOperand(0);
auto *VecVTy = dyn_cast<FixedVectorType>(Vec->getType());
if (!VecVTy)
break;
Value *Idx = I.getOperand(2);
unsigned NumElts = VecVTy->getNumElements();
Value *Check =
B.CreateICmp(ICmpInst::ICMP_UGE, Idx,
ConstantInt::get(Idx->getType(), NumElts));
Checks.push_back(Check);
break;
}
};
}
static Value *getPoisonFor(DenseMap<Value *, Value *> &ValToPoison, Value *V) {
auto Itr = ValToPoison.find(V);
if (Itr != ValToPoison.end())
return Itr->second;
if (isa<Constant>(V)) {
return ConstantInt::getFalse(V->getContext());
}
// Return false for unknwon values - this implements a non-strict mode where
// unhandled IR constructs are simply considered to never produce poison. At
// some point in the future, we probably want a "strict mode" for testing if
// nothing else.
return ConstantInt::getFalse(V->getContext());
}
static void CreateAssert(IRBuilder<> &B, Value *Cond) {
assert(Cond->getType()->isIntegerTy(1));
if (auto *CI = dyn_cast<ConstantInt>(Cond))
if (CI->isAllOnesValue())
return;
Module *M = B.GetInsertBlock()->getModule();
M->getOrInsertFunction("__poison_checker_assert",
Type::getVoidTy(M->getContext()),
Type::getInt1Ty(M->getContext()));
Function *TrapFunc = M->getFunction("__poison_checker_assert");
B.CreateCall(TrapFunc, Cond);
}
static void CreateAssertNot(IRBuilder<> &B, Value *Cond) {
assert(Cond->getType()->isIntegerTy(1));
CreateAssert(B, B.CreateNot(Cond));
}
static bool rewrite(Function &F) {
auto * const Int1Ty = Type::getInt1Ty(F.getContext());
DenseMap<Value *, Value *> ValToPoison;
for (BasicBlock &BB : F)
for (auto I = BB.begin(); isa<PHINode>(&*I); I++) {
auto *OldPHI = cast<PHINode>(&*I);
auto *NewPHI = PHINode::Create(Int1Ty, OldPHI->getNumIncomingValues());
for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++)
NewPHI->addIncoming(UndefValue::get(Int1Ty),
OldPHI->getIncomingBlock(i));
NewPHI->insertBefore(OldPHI);
ValToPoison[OldPHI] = NewPHI;
}
for (BasicBlock &BB : F)
for (Instruction &I : BB) {
if (isa<PHINode>(I)) continue;
IRBuilder<> B(cast<Instruction>(&I));
// Note: There are many more sources of documented UB, but this pass only
// attempts to find UB triggered by propagation of poison.
SmallPtrSet<const Value *, 4> NonPoisonOps;
getGuaranteedNonPoisonOps(&I, NonPoisonOps);
for (const Value *Op : NonPoisonOps)
CreateAssertNot(B, getPoisonFor(ValToPoison, const_cast<Value *>(Op)));
if (LocalCheck)
if (auto *RI = dyn_cast<ReturnInst>(&I))
if (RI->getNumOperands() != 0) {
Value *Op = RI->getOperand(0);
CreateAssertNot(B, getPoisonFor(ValToPoison, Op));
}
SmallVector<Value*, 4> Checks;
if (propagatesPoison(cast<Operator>(&I)))
for (Value *V : I.operands())
Checks.push_back(getPoisonFor(ValToPoison, V));
if (canCreatePoison(cast<Operator>(&I)))
generateCreationChecks(I, Checks);
ValToPoison[&I] = buildOrChain(B, Checks);
}
for (BasicBlock &BB : F)
for (auto I = BB.begin(); isa<PHINode>(&*I); I++) {
auto *OldPHI = cast<PHINode>(&*I);
if (!ValToPoison.count(OldPHI))
continue; // skip the newly inserted phis
auto *NewPHI = cast<PHINode>(ValToPoison[OldPHI]);
for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++) {
auto *OldVal = OldPHI->getIncomingValue(i);
NewPHI->setIncomingValue(i, getPoisonFor(ValToPoison, OldVal));
}
}
return true;
}
PreservedAnalyses PoisonCheckingPass::run(Module &M,
ModuleAnalysisManager &AM) {
bool Changed = false;
for (auto &F : M)
Changed |= rewrite(F);
return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
}
PreservedAnalyses PoisonCheckingPass::run(Function &F,
FunctionAnalysisManager &AM) {
return rewrite(F) ? PreservedAnalyses::none() : PreservedAnalyses::all();
}
/* Major TODO Items:
- Control dependent poison UB
- Strict mode - (i.e. must analyze every operand)
- Poison through memory
- Function ABIs
- Full coverage of intrinsics, etc.. (ouch)
Instructions w/Unclear Semantics:
- shufflevector - It would seem reasonable for an out of bounds mask element
to produce poison, but the LangRef does not state.
- all binary ops w/vector operands - The likely interpretation would be that
any element overflowing should produce poison for the entire result, but
the LangRef does not state.
- Floating point binary ops w/fmf flags other than (nnan, noinfs). It seems
strange that only certian flags should be documented as producing poison.
Cases of clear poison semantics not yet implemented:
- Exact flags on ashr/lshr produce poison
- NSW/NUW flags on shl produce poison
- Inbounds flag on getelementptr produce poison
- fptosi/fptoui (out of bounds input) produce poison
- Scalable vector types for insertelement/extractelement
- Floating point binary ops w/fmf nnan/noinfs flags produce poison
*/
|