1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
|
//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass performs various transformations related to eliminating memcpy
// calls, or transforming sets of stores into memset's.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "memcpyopt"
static cl::opt<bool> EnableMemCpyOptWithoutLibcalls(
"enable-memcpyopt-without-libcalls", cl::init(false), cl::Hidden,
cl::ZeroOrMore,
cl::desc("Enable memcpyopt even when libcalls are disabled"));
STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
STATISTIC(NumMemSetInfer, "Number of memsets inferred");
STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
STATISTIC(NumCpyToSet, "Number of memcpys converted to memset");
STATISTIC(NumCallSlot, "Number of call slot optimizations performed");
namespace {
/// Represents a range of memset'd bytes with the ByteVal value.
/// This allows us to analyze stores like:
/// store 0 -> P+1
/// store 0 -> P+0
/// store 0 -> P+3
/// store 0 -> P+2
/// which sometimes happens with stores to arrays of structs etc. When we see
/// the first store, we make a range [1, 2). The second store extends the range
/// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
/// two ranges into [0, 3) which is memset'able.
struct MemsetRange {
// Start/End - A semi range that describes the span that this range covers.
// The range is closed at the start and open at the end: [Start, End).
int64_t Start, End;
/// StartPtr - The getelementptr instruction that points to the start of the
/// range.
Value *StartPtr;
/// Alignment - The known alignment of the first store.
unsigned Alignment;
/// TheStores - The actual stores that make up this range.
SmallVector<Instruction*, 16> TheStores;
bool isProfitableToUseMemset(const DataLayout &DL) const;
};
} // end anonymous namespace
bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
// If we found more than 4 stores to merge or 16 bytes, use memset.
if (TheStores.size() >= 4 || End-Start >= 16) return true;
// If there is nothing to merge, don't do anything.
if (TheStores.size() < 2) return false;
// If any of the stores are a memset, then it is always good to extend the
// memset.
for (Instruction *SI : TheStores)
if (!isa<StoreInst>(SI))
return true;
// Assume that the code generator is capable of merging pairs of stores
// together if it wants to.
if (TheStores.size() == 2) return false;
// If we have fewer than 8 stores, it can still be worthwhile to do this.
// For example, merging 4 i8 stores into an i32 store is useful almost always.
// However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
// memset will be split into 2 32-bit stores anyway) and doing so can
// pessimize the llvm optimizer.
//
// Since we don't have perfect knowledge here, make some assumptions: assume
// the maximum GPR width is the same size as the largest legal integer
// size. If so, check to see whether we will end up actually reducing the
// number of stores used.
unsigned Bytes = unsigned(End-Start);
unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
if (MaxIntSize == 0)
MaxIntSize = 1;
unsigned NumPointerStores = Bytes / MaxIntSize;
// Assume the remaining bytes if any are done a byte at a time.
unsigned NumByteStores = Bytes % MaxIntSize;
// If we will reduce the # stores (according to this heuristic), do the
// transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
// etc.
return TheStores.size() > NumPointerStores+NumByteStores;
}
namespace {
class MemsetRanges {
using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
/// A sorted list of the memset ranges.
SmallVector<MemsetRange, 8> Ranges;
const DataLayout &DL;
public:
MemsetRanges(const DataLayout &DL) : DL(DL) {}
using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
const_iterator begin() const { return Ranges.begin(); }
const_iterator end() const { return Ranges.end(); }
bool empty() const { return Ranges.empty(); }
void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
if (auto *SI = dyn_cast<StoreInst>(Inst))
addStore(OffsetFromFirst, SI);
else
addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
}
void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
assert(!StoreSize.isScalable() && "Can't track scalable-typed stores");
addRange(OffsetFromFirst, StoreSize.getFixedSize(), SI->getPointerOperand(),
SI->getAlign().value(), SI);
}
void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI);
}
void addRange(int64_t Start, int64_t Size, Value *Ptr,
unsigned Alignment, Instruction *Inst);
};
} // end anonymous namespace
/// Add a new store to the MemsetRanges data structure. This adds a
/// new range for the specified store at the specified offset, merging into
/// existing ranges as appropriate.
void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
unsigned Alignment, Instruction *Inst) {
int64_t End = Start+Size;
range_iterator I = partition_point(
Ranges, [=](const MemsetRange &O) { return O.End < Start; });
// We now know that I == E, in which case we didn't find anything to merge
// with, or that Start <= I->End. If End < I->Start or I == E, then we need
// to insert a new range. Handle this now.
if (I == Ranges.end() || End < I->Start) {
MemsetRange &R = *Ranges.insert(I, MemsetRange());
R.Start = Start;
R.End = End;
R.StartPtr = Ptr;
R.Alignment = Alignment;
R.TheStores.push_back(Inst);
return;
}
// This store overlaps with I, add it.
I->TheStores.push_back(Inst);
// At this point, we may have an interval that completely contains our store.
// If so, just add it to the interval and return.
if (I->Start <= Start && I->End >= End)
return;
// Now we know that Start <= I->End and End >= I->Start so the range overlaps
// but is not entirely contained within the range.
// See if the range extends the start of the range. In this case, it couldn't
// possibly cause it to join the prior range, because otherwise we would have
// stopped on *it*.
if (Start < I->Start) {
I->Start = Start;
I->StartPtr = Ptr;
I->Alignment = Alignment;
}
// Now we know that Start <= I->End and Start >= I->Start (so the startpoint
// is in or right at the end of I), and that End >= I->Start. Extend I out to
// End.
if (End > I->End) {
I->End = End;
range_iterator NextI = I;
while (++NextI != Ranges.end() && End >= NextI->Start) {
// Merge the range in.
I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
if (NextI->End > I->End)
I->End = NextI->End;
Ranges.erase(NextI);
NextI = I;
}
}
}
//===----------------------------------------------------------------------===//
// MemCpyOptLegacyPass Pass
//===----------------------------------------------------------------------===//
namespace {
class MemCpyOptLegacyPass : public FunctionPass {
MemCpyOptPass Impl;
public:
static char ID; // Pass identification, replacement for typeid
MemCpyOptLegacyPass() : FunctionPass(ID) {
initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
private:
// This transformation requires dominator postdominator info
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<AAResultsWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
AU.addRequired<MemorySSAWrapperPass>();
AU.addPreserved<MemorySSAWrapperPass>();
}
};
} // end anonymous namespace
char MemCpyOptLegacyPass::ID = 0;
/// The public interface to this file...
FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
false, false)
// Check that V is either not accessible by the caller, or unwinding cannot
// occur between Start and End.
static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start,
Instruction *End) {
assert(Start->getParent() == End->getParent() && "Must be in same block");
// Function can't unwind, so it also can't be visible through unwinding.
if (Start->getFunction()->doesNotThrow())
return false;
// Object is not visible on unwind.
// TODO: Support RequiresNoCaptureBeforeUnwind case.
bool RequiresNoCaptureBeforeUnwind;
if (isNotVisibleOnUnwind(getUnderlyingObject(V),
RequiresNoCaptureBeforeUnwind) &&
!RequiresNoCaptureBeforeUnwind)
return false;
// Check whether there are any unwinding instructions in the range.
return any_of(make_range(Start->getIterator(), End->getIterator()),
[](const Instruction &I) { return I.mayThrow(); });
}
void MemCpyOptPass::eraseInstruction(Instruction *I) {
MSSAU->removeMemoryAccess(I);
I->eraseFromParent();
}
// Check for mod or ref of Loc between Start and End, excluding both boundaries.
// Start and End must be in the same block
static bool accessedBetween(AliasAnalysis &AA, MemoryLocation Loc,
const MemoryUseOrDef *Start,
const MemoryUseOrDef *End) {
assert(Start->getBlock() == End->getBlock() && "Only local supported");
for (const MemoryAccess &MA :
make_range(++Start->getIterator(), End->getIterator())) {
if (isModOrRefSet(AA.getModRefInfo(cast<MemoryUseOrDef>(MA).getMemoryInst(),
Loc)))
return true;
}
return false;
}
// Check for mod of Loc between Start and End, excluding both boundaries.
// Start and End can be in different blocks.
static bool writtenBetween(MemorySSA *MSSA, MemoryLocation Loc,
const MemoryUseOrDef *Start,
const MemoryUseOrDef *End) {
// TODO: Only walk until we hit Start.
MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
End->getDefiningAccess(), Loc);
return !MSSA->dominates(Clobber, Start);
}
/// When scanning forward over instructions, we look for some other patterns to
/// fold away. In particular, this looks for stores to neighboring locations of
/// memory. If it sees enough consecutive ones, it attempts to merge them
/// together into a memcpy/memset.
Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
Value *StartPtr,
Value *ByteVal) {
const DataLayout &DL = StartInst->getModule()->getDataLayout();
// We can't track scalable types
if (auto *SI = dyn_cast<StoreInst>(StartInst))
if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable())
return nullptr;
// Okay, so we now have a single store that can be splatable. Scan to find
// all subsequent stores of the same value to offset from the same pointer.
// Join these together into ranges, so we can decide whether contiguous blocks
// are stored.
MemsetRanges Ranges(DL);
BasicBlock::iterator BI(StartInst);
// Keeps track of the last memory use or def before the insertion point for
// the new memset. The new MemoryDef for the inserted memsets will be inserted
// after MemInsertPoint. It points to either LastMemDef or to the last user
// before the insertion point of the memset, if there are any such users.
MemoryUseOrDef *MemInsertPoint = nullptr;
// Keeps track of the last MemoryDef between StartInst and the insertion point
// for the new memset. This will become the defining access of the inserted
// memsets.
MemoryDef *LastMemDef = nullptr;
for (++BI; !BI->isTerminator(); ++BI) {
auto *CurrentAcc = cast_or_null<MemoryUseOrDef>(
MSSAU->getMemorySSA()->getMemoryAccess(&*BI));
if (CurrentAcc) {
MemInsertPoint = CurrentAcc;
if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc))
LastMemDef = CurrentDef;
}
// Calls that only access inaccessible memory do not block merging
// accessible stores.
if (auto *CB = dyn_cast<CallBase>(BI)) {
if (CB->onlyAccessesInaccessibleMemory())
continue;
}
if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
// If the instruction is readnone, ignore it, otherwise bail out. We
// don't even allow readonly here because we don't want something like:
// A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
break;
continue;
}
if (auto *NextStore = dyn_cast<StoreInst>(BI)) {
// If this is a store, see if we can merge it in.
if (!NextStore->isSimple()) break;
Value *StoredVal = NextStore->getValueOperand();
// Don't convert stores of non-integral pointer types to memsets (which
// stores integers).
if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
break;
// We can't track ranges involving scalable types.
if (DL.getTypeStoreSize(StoredVal->getType()).isScalable())
break;
// Check to see if this stored value is of the same byte-splattable value.
Value *StoredByte = isBytewiseValue(StoredVal, DL);
if (isa<UndefValue>(ByteVal) && StoredByte)
ByteVal = StoredByte;
if (ByteVal != StoredByte)
break;
// Check to see if this store is to a constant offset from the start ptr.
Optional<int64_t> Offset =
isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL);
if (!Offset)
break;
Ranges.addStore(*Offset, NextStore);
} else {
auto *MSI = cast<MemSetInst>(BI);
if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
!isa<ConstantInt>(MSI->getLength()))
break;
// Check to see if this store is to a constant offset from the start ptr.
Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL);
if (!Offset)
break;
Ranges.addMemSet(*Offset, MSI);
}
}
// If we have no ranges, then we just had a single store with nothing that
// could be merged in. This is a very common case of course.
if (Ranges.empty())
return nullptr;
// If we had at least one store that could be merged in, add the starting
// store as well. We try to avoid this unless there is at least something
// interesting as a small compile-time optimization.
Ranges.addInst(0, StartInst);
// If we create any memsets, we put it right before the first instruction that
// isn't part of the memset block. This ensure that the memset is dominated
// by any addressing instruction needed by the start of the block.
IRBuilder<> Builder(&*BI);
// Now that we have full information about ranges, loop over the ranges and
// emit memset's for anything big enough to be worthwhile.
Instruction *AMemSet = nullptr;
for (const MemsetRange &Range : Ranges) {
if (Range.TheStores.size() == 1) continue;
// If it is profitable to lower this range to memset, do so now.
if (!Range.isProfitableToUseMemset(DL))
continue;
// Otherwise, we do want to transform this! Create a new memset.
// Get the starting pointer of the block.
StartPtr = Range.StartPtr;
AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start,
MaybeAlign(Range.Alignment));
LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
: Range.TheStores) dbgs()
<< *SI << '\n';
dbgs() << "With: " << *AMemSet << '\n');
if (!Range.TheStores.empty())
AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
assert(LastMemDef && MemInsertPoint &&
"Both LastMemDef and MemInsertPoint need to be set");
auto *NewDef =
cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI
? MSSAU->createMemoryAccessBefore(
AMemSet, LastMemDef, MemInsertPoint)
: MSSAU->createMemoryAccessAfter(
AMemSet, LastMemDef, MemInsertPoint));
MSSAU->insertDef(NewDef, /*RenameUses=*/true);
LastMemDef = NewDef;
MemInsertPoint = NewDef;
// Zap all the stores.
for (Instruction *SI : Range.TheStores)
eraseInstruction(SI);
++NumMemSetInfer;
}
return AMemSet;
}
// This method try to lift a store instruction before position P.
// It will lift the store and its argument + that anything that
// may alias with these.
// The method returns true if it was successful.
bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) {
// If the store alias this position, early bail out.
MemoryLocation StoreLoc = MemoryLocation::get(SI);
if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc)))
return false;
// Keep track of the arguments of all instruction we plan to lift
// so we can make sure to lift them as well if appropriate.
DenseSet<Instruction*> Args;
if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
if (Ptr->getParent() == SI->getParent())
Args.insert(Ptr);
// Instruction to lift before P.
SmallVector<Instruction *, 8> ToLift{SI};
// Memory locations of lifted instructions.
SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
// Lifted calls.
SmallVector<const CallBase *, 8> Calls;
const MemoryLocation LoadLoc = MemoryLocation::get(LI);
for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
auto *C = &*I;
// Make sure hoisting does not perform a store that was not guaranteed to
// happen.
if (!isGuaranteedToTransferExecutionToSuccessor(C))
return false;
bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, None));
bool NeedLift = false;
if (Args.erase(C))
NeedLift = true;
else if (MayAlias) {
NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) {
return isModOrRefSet(AA->getModRefInfo(C, ML));
});
if (!NeedLift)
NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) {
return isModOrRefSet(AA->getModRefInfo(C, Call));
});
}
if (!NeedLift)
continue;
if (MayAlias) {
// Since LI is implicitly moved downwards past the lifted instructions,
// none of them may modify its source.
if (isModSet(AA->getModRefInfo(C, LoadLoc)))
return false;
else if (const auto *Call = dyn_cast<CallBase>(C)) {
// If we can't lift this before P, it's game over.
if (isModOrRefSet(AA->getModRefInfo(P, Call)))
return false;
Calls.push_back(Call);
} else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
// If we can't lift this before P, it's game over.
auto ML = MemoryLocation::get(C);
if (isModOrRefSet(AA->getModRefInfo(P, ML)))
return false;
MemLocs.push_back(ML);
} else
// We don't know how to lift this instruction.
return false;
}
ToLift.push_back(C);
for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) {
if (A->getParent() == SI->getParent()) {
// Cannot hoist user of P above P
if(A == P) return false;
Args.insert(A);
}
}
}
// Find MSSA insertion point. Normally P will always have a corresponding
// memory access before which we can insert. However, with non-standard AA
// pipelines, there may be a mismatch between AA and MSSA, in which case we
// will scan for a memory access before P. In either case, we know for sure
// that at least the load will have a memory access.
// TODO: Simplify this once P will be determined by MSSA, in which case the
// discrepancy can no longer occur.
MemoryUseOrDef *MemInsertPoint = nullptr;
if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) {
MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator());
} else {
const Instruction *ConstP = P;
for (const Instruction &I : make_range(++ConstP->getReverseIterator(),
++LI->getReverseIterator())) {
if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
MemInsertPoint = MA;
break;
}
}
}
// We made it, we need to lift.
for (auto *I : llvm::reverse(ToLift)) {
LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
I->moveBefore(P);
assert(MemInsertPoint && "Must have found insert point");
if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) {
MSSAU->moveAfter(MA, MemInsertPoint);
MemInsertPoint = MA;
}
}
return true;
}
bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
if (!SI->isSimple()) return false;
// Avoid merging nontemporal stores since the resulting
// memcpy/memset would not be able to preserve the nontemporal hint.
// In theory we could teach how to propagate the !nontemporal metadata to
// memset calls. However, that change would force the backend to
// conservatively expand !nontemporal memset calls back to sequences of
// store instructions (effectively undoing the merging).
if (SI->getMetadata(LLVMContext::MD_nontemporal))
return false;
const DataLayout &DL = SI->getModule()->getDataLayout();
Value *StoredVal = SI->getValueOperand();
// Not all the transforms below are correct for non-integral pointers, bail
// until we've audited the individual pieces.
if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
return false;
// Load to store forwarding can be interpreted as memcpy.
if (auto *LI = dyn_cast<LoadInst>(StoredVal)) {
if (LI->isSimple() && LI->hasOneUse() &&
LI->getParent() == SI->getParent()) {
auto *T = LI->getType();
// Don't introduce calls to memcpy/memmove intrinsics out of thin air if
// the corresponding libcalls are not available.
// TODO: We should really distinguish between libcall availability and
// our ability to introduce intrinsics.
if (T->isAggregateType() &&
(EnableMemCpyOptWithoutLibcalls ||
(TLI->has(LibFunc_memcpy) && TLI->has(LibFunc_memmove)))) {
MemoryLocation LoadLoc = MemoryLocation::get(LI);
// We use alias analysis to check if an instruction may store to
// the memory we load from in between the load and the store. If
// such an instruction is found, we try to promote there instead
// of at the store position.
// TODO: Can use MSSA for this.
Instruction *P = SI;
for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
if (isModSet(AA->getModRefInfo(&I, LoadLoc))) {
P = &I;
break;
}
}
// We found an instruction that may write to the loaded memory.
// We can try to promote at this position instead of the store
// position if nothing aliases the store memory after this and the store
// destination is not in the range.
if (P && P != SI) {
if (!moveUp(SI, P, LI))
P = nullptr;
}
// If a valid insertion position is found, then we can promote
// the load/store pair to a memcpy.
if (P) {
// If we load from memory that may alias the memory we store to,
// memmove must be used to preserve semantic. If not, memcpy can
// be used. Also, if we load from constant memory, memcpy can be used
// as the constant memory won't be modified.
bool UseMemMove = false;
if (isModSet(AA->getModRefInfo(SI, LoadLoc)))
UseMemMove = true;
uint64_t Size = DL.getTypeStoreSize(T);
IRBuilder<> Builder(P);
Instruction *M;
if (UseMemMove)
M = Builder.CreateMemMove(
SI->getPointerOperand(), SI->getAlign(),
LI->getPointerOperand(), LI->getAlign(), Size);
else
M = Builder.CreateMemCpy(
SI->getPointerOperand(), SI->getAlign(),
LI->getPointerOperand(), LI->getAlign(), Size);
LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
<< *M << "\n");
auto *LastDef =
cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
eraseInstruction(SI);
eraseInstruction(LI);
++NumMemCpyInstr;
// Make sure we do not invalidate the iterator.
BBI = M->getIterator();
return true;
}
}
// Detect cases where we're performing call slot forwarding, but
// happen to be using a load-store pair to implement it, rather than
// a memcpy.
CallInst *C = nullptr;
if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>(
MSSA->getWalker()->getClobberingMemoryAccess(LI))) {
// The load most post-dom the call. Limit to the same block for now.
// TODO: Support non-local call-slot optimization?
if (LoadClobber->getBlock() == SI->getParent())
C = dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst());
}
if (C) {
// Check that nothing touches the dest of the "copy" between
// the call and the store.
MemoryLocation StoreLoc = MemoryLocation::get(SI);
if (accessedBetween(*AA, StoreLoc, MSSA->getMemoryAccess(C),
MSSA->getMemoryAccess(SI)))
C = nullptr;
}
if (C) {
bool changed = performCallSlotOptzn(
LI, SI, SI->getPointerOperand()->stripPointerCasts(),
LI->getPointerOperand()->stripPointerCasts(),
DL.getTypeStoreSize(SI->getOperand(0)->getType()),
commonAlignment(SI->getAlign(), LI->getAlign()), C);
if (changed) {
eraseInstruction(SI);
eraseInstruction(LI);
++NumMemCpyInstr;
return true;
}
}
}
}
// The following code creates memset intrinsics out of thin air. Don't do
// this if the corresponding libfunc is not available.
// TODO: We should really distinguish between libcall availability and
// our ability to introduce intrinsics.
if (!(TLI->has(LibFunc_memset) || EnableMemCpyOptWithoutLibcalls))
return false;
// There are two cases that are interesting for this code to handle: memcpy
// and memset. Right now we only handle memset.
// Ensure that the value being stored is something that can be memset'able a
// byte at a time like "0" or "-1" or any width, as well as things like
// 0xA0A0A0A0 and 0.0.
auto *V = SI->getOperand(0);
if (Value *ByteVal = isBytewiseValue(V, DL)) {
if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
ByteVal)) {
BBI = I->getIterator(); // Don't invalidate iterator.
return true;
}
// If we have an aggregate, we try to promote it to memset regardless
// of opportunity for merging as it can expose optimization opportunities
// in subsequent passes.
auto *T = V->getType();
if (T->isAggregateType()) {
uint64_t Size = DL.getTypeStoreSize(T);
IRBuilder<> Builder(SI);
auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size,
SI->getAlign());
LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
// The newly inserted memset is immediately overwritten by the original
// store, so we do not need to rename uses.
auto *StoreDef = cast<MemoryDef>(MSSA->getMemoryAccess(SI));
auto *NewAccess = MSSAU->createMemoryAccessBefore(
M, StoreDef->getDefiningAccess(), StoreDef);
MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/false);
eraseInstruction(SI);
NumMemSetInfer++;
// Make sure we do not invalidate the iterator.
BBI = M->getIterator();
return true;
}
}
return false;
}
bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
// See if there is another memset or store neighboring this memset which
// allows us to widen out the memset to do a single larger store.
if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
MSI->getValue())) {
BBI = I->getIterator(); // Don't invalidate iterator.
return true;
}
return false;
}
/// Takes a memcpy and a call that it depends on,
/// and checks for the possibility of a call slot optimization by having
/// the call write its result directly into the destination of the memcpy.
bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad,
Instruction *cpyStore, Value *cpyDest,
Value *cpySrc, TypeSize cpySize,
Align cpyAlign, CallInst *C) {
// The general transformation to keep in mind is
//
// call @func(..., src, ...)
// memcpy(dest, src, ...)
//
// ->
//
// memcpy(dest, src, ...)
// call @func(..., dest, ...)
//
// Since moving the memcpy is technically awkward, we additionally check that
// src only holds uninitialized values at the moment of the call, meaning that
// the memcpy can be discarded rather than moved.
// We can't optimize scalable types.
if (cpySize.isScalable())
return false;
// Lifetime marks shouldn't be operated on.
if (Function *F = C->getCalledFunction())
if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
return false;
// Require that src be an alloca. This simplifies the reasoning considerably.
auto *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
if (!srcAlloca)
return false;
ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
if (!srcArraySize)
return false;
const DataLayout &DL = cpyLoad->getModule()->getDataLayout();
uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
srcArraySize->getZExtValue();
if (cpySize < srcSize)
return false;
// Check that accessing the first srcSize bytes of dest will not cause a
// trap. Otherwise the transform is invalid since it might cause a trap
// to occur earlier than it otherwise would.
if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize),
DL, C, DT)) {
LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer not dereferenceable\n");
return false;
}
// Make sure that nothing can observe cpyDest being written early. There are
// a number of cases to consider:
// 1. cpyDest cannot be accessed between C and cpyStore as a precondition of
// the transform.
// 2. C itself may not access cpyDest (prior to the transform). This is
// checked further below.
// 3. If cpyDest is accessible to the caller of this function (potentially
// captured and not based on an alloca), we need to ensure that we cannot
// unwind between C and cpyStore. This is checked here.
// 4. If cpyDest is potentially captured, there may be accesses to it from
// another thread. In this case, we need to check that cpyStore is
// guaranteed to be executed if C is. As it is a non-atomic access, it
// renders accesses from other threads undefined.
// TODO: This is currently not checked.
if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore)) {
LLVM_DEBUG(dbgs() << "Call Slot: Dest may be visible through unwinding");
return false;
}
// Check that dest points to memory that is at least as aligned as src.
Align srcAlign = srcAlloca->getAlign();
bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
// If dest is not aligned enough and we can't increase its alignment then
// bail out.
if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
return false;
// Check that src is not accessed except via the call and the memcpy. This
// guarantees that it holds only undefined values when passed in (so the final
// memcpy can be dropped), that it is not read or written between the call and
// the memcpy, and that writing beyond the end of it is undefined.
SmallVector<User *, 8> srcUseList(srcAlloca->users());
while (!srcUseList.empty()) {
User *U = srcUseList.pop_back_val();
if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
append_range(srcUseList, U->users());
continue;
}
if (const auto *G = dyn_cast<GetElementPtrInst>(U)) {
if (!G->hasAllZeroIndices())
return false;
append_range(srcUseList, U->users());
continue;
}
if (const auto *IT = dyn_cast<IntrinsicInst>(U))
if (IT->isLifetimeStartOrEnd())
continue;
if (U != C && U != cpyLoad)
return false;
}
// Check whether src is captured by the called function, in which case there
// may be further indirect uses of src.
bool SrcIsCaptured = any_of(C->args(), [&](Use &U) {
return U->stripPointerCasts() == cpySrc &&
!C->doesNotCapture(C->getArgOperandNo(&U));
});
// If src is captured, then check whether there are any potential uses of
// src through the captured pointer before the lifetime of src ends, either
// due to a lifetime.end or a return from the function.
if (SrcIsCaptured) {
// Check that dest is not captured before/at the call. We have already
// checked that src is not captured before it. If either had been captured,
// then the call might be comparing the argument against the captured dest
// or src pointer.
Value *DestObj = getUnderlyingObject(cpyDest);
if (!isIdentifiedFunctionLocal(DestObj) ||
PointerMayBeCapturedBefore(DestObj, /* ReturnCaptures */ true,
/* StoreCaptures */ true, C, DT,
/* IncludeI */ true))
return false;
MemoryLocation SrcLoc =
MemoryLocation(srcAlloca, LocationSize::precise(srcSize));
for (Instruction &I :
make_range(++C->getIterator(), C->getParent()->end())) {
// Lifetime of srcAlloca ends at lifetime.end.
if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
if (II->getIntrinsicID() == Intrinsic::lifetime_end &&
II->getArgOperand(1)->stripPointerCasts() == srcAlloca &&
cast<ConstantInt>(II->getArgOperand(0))->uge(srcSize))
break;
}
// Lifetime of srcAlloca ends at return.
if (isa<ReturnInst>(&I))
break;
// Ignore the direct read of src in the load.
if (&I == cpyLoad)
continue;
// Check whether this instruction may mod/ref src through the captured
// pointer (we have already any direct mod/refs in the loop above).
// Also bail if we hit a terminator, as we don't want to scan into other
// blocks.
if (isModOrRefSet(AA->getModRefInfo(&I, SrcLoc)) || I.isTerminator())
return false;
}
}
// Since we're changing the parameter to the callsite, we need to make sure
// that what would be the new parameter dominates the callsite.
if (!DT->dominates(cpyDest, C)) {
// Support moving a constant index GEP before the call.
auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest);
if (GEP && GEP->hasAllConstantIndices() &&
DT->dominates(GEP->getPointerOperand(), C))
GEP->moveBefore(C);
else
return false;
}
// In addition to knowing that the call does not access src in some
// unexpected manner, for example via a global, which we deduce from
// the use analysis, we also need to know that it does not sneakily
// access dest. We rely on AA to figure this out for us.
ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize));
// If necessary, perform additional analysis.
if (isModOrRefSet(MR))
MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT);
if (isModOrRefSet(MR))
return false;
// We can't create address space casts here because we don't know if they're
// safe for the target.
if (cpySrc->getType()->getPointerAddressSpace() !=
cpyDest->getType()->getPointerAddressSpace())
return false;
for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc &&
cpySrc->getType()->getPointerAddressSpace() !=
C->getArgOperand(ArgI)->getType()->getPointerAddressSpace())
return false;
// All the checks have passed, so do the transformation.
bool changedArgument = false;
for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) {
Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest
: CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
cpyDest->getName(), C);
changedArgument = true;
if (C->getArgOperand(ArgI)->getType() == Dest->getType())
C->setArgOperand(ArgI, Dest);
else
C->setArgOperand(ArgI, CastInst::CreatePointerCast(
Dest, C->getArgOperand(ArgI)->getType(),
Dest->getName(), C));
}
if (!changedArgument)
return false;
// If the destination wasn't sufficiently aligned then increase its alignment.
if (!isDestSufficientlyAligned) {
assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
}
// Update AA metadata
// FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
// handled here, but combineMetadata doesn't support them yet
unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
LLVMContext::MD_noalias,
LLVMContext::MD_invariant_group,
LLVMContext::MD_access_group};
combineMetadata(C, cpyLoad, KnownIDs, true);
if (cpyLoad != cpyStore)
combineMetadata(C, cpyStore, KnownIDs, true);
++NumCallSlot;
return true;
}
/// We've found that the (upward scanning) memory dependence of memcpy 'M' is
/// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
MemCpyInst *MDep) {
// We can only transforms memcpy's where the dest of one is the source of the
// other.
if (M->getSource() != MDep->getDest() || MDep->isVolatile())
return false;
// If dep instruction is reading from our current input, then it is a noop
// transfer and substituting the input won't change this instruction. Just
// ignore the input and let someone else zap MDep. This handles cases like:
// memcpy(a <- a)
// memcpy(b <- a)
if (M->getSource() == MDep->getSource())
return false;
// Second, the length of the memcpy's must be the same, or the preceding one
// must be larger than the following one.
if (MDep->getLength() != M->getLength()) {
auto *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
auto *MLen = dyn_cast<ConstantInt>(M->getLength());
if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
return false;
}
// Verify that the copied-from memory doesn't change in between the two
// transfers. For example, in:
// memcpy(a <- b)
// *b = 42;
// memcpy(c <- a)
// It would be invalid to transform the second memcpy into memcpy(c <- b).
//
// TODO: If the code between M and MDep is transparent to the destination "c",
// then we could still perform the xform by moving M up to the first memcpy.
// TODO: It would be sufficient to check the MDep source up to the memcpy
// size of M, rather than MDep.
if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep),
MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M)))
return false;
// If the dest of the second might alias the source of the first, then the
// source and dest might overlap. In addition, if the source of the first
// points to constant memory, they won't overlap by definition. Otherwise, we
// still want to eliminate the intermediate value, but we have to generate a
// memmove instead of memcpy.
bool UseMemMove = false;
if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(MDep))))
UseMemMove = true;
// If all checks passed, then we can transform M.
LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
<< *MDep << '\n' << *M << '\n');
// TODO: Is this worth it if we're creating a less aligned memcpy? For
// example we could be moving from movaps -> movq on x86.
IRBuilder<> Builder(M);
Instruction *NewM;
if (UseMemMove)
NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(),
MDep->getRawSource(), MDep->getSourceAlign(),
M->getLength(), M->isVolatile());
else if (isa<MemCpyInlineInst>(M)) {
// llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is
// never allowed since that would allow the latter to be lowered as a call
// to an external function.
NewM = Builder.CreateMemCpyInline(
M->getRawDest(), M->getDestAlign(), MDep->getRawSource(),
MDep->getSourceAlign(), M->getLength(), M->isVolatile());
} else
NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(),
MDep->getRawSource(), MDep->getSourceAlign(),
M->getLength(), M->isVolatile());
assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)));
auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
// Remove the instruction we're replacing.
eraseInstruction(M);
++NumMemCpyInstr;
return true;
}
/// We've found that the (upward scanning) memory dependence of \p MemCpy is
/// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that
/// weren't copied over by \p MemCpy.
///
/// In other words, transform:
/// \code
/// memset(dst, c, dst_size);
/// memcpy(dst, src, src_size);
/// \endcode
/// into:
/// \code
/// memcpy(dst, src, src_size);
/// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
/// \endcode
bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
MemSetInst *MemSet) {
// We can only transform memset/memcpy with the same destination.
if (!AA->isMustAlias(MemSet->getDest(), MemCpy->getDest()))
return false;
// Check that src and dst of the memcpy aren't the same. While memcpy
// operands cannot partially overlap, exact equality is allowed.
if (isModSet(AA->getModRefInfo(MemCpy, MemoryLocation::getForSource(MemCpy))))
return false;
// We know that dst up to src_size is not written. We now need to make sure
// that dst up to dst_size is not accessed. (If we did not move the memset,
// checking for reads would be sufficient.)
if (accessedBetween(*AA, MemoryLocation::getForDest(MemSet),
MSSA->getMemoryAccess(MemSet),
MSSA->getMemoryAccess(MemCpy)))
return false;
// Use the same i8* dest as the memcpy, killing the memset dest if different.
Value *Dest = MemCpy->getRawDest();
Value *DestSize = MemSet->getLength();
Value *SrcSize = MemCpy->getLength();
if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy))
return false;
// If the sizes are the same, simply drop the memset instead of generating
// a replacement with zero size.
if (DestSize == SrcSize) {
eraseInstruction(MemSet);
return true;
}
// By default, create an unaligned memset.
unsigned Align = 1;
// If Dest is aligned, and SrcSize is constant, use the minimum alignment
// of the sum.
const unsigned DestAlign =
std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment());
if (DestAlign > 1)
if (auto *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
IRBuilder<> Builder(MemCpy);
// If the sizes have different types, zext the smaller one.
if (DestSize->getType() != SrcSize->getType()) {
if (DestSize->getType()->getIntegerBitWidth() >
SrcSize->getType()->getIntegerBitWidth())
SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
else
DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
}
Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
Value *MemsetLen = Builder.CreateSelect(
Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
unsigned DestAS = Dest->getType()->getPointerAddressSpace();
Instruction *NewMemSet = Builder.CreateMemSet(
Builder.CreateGEP(Builder.getInt8Ty(),
Builder.CreatePointerCast(Dest,
Builder.getInt8PtrTy(DestAS)),
SrcSize),
MemSet->getOperand(1), MemsetLen, MaybeAlign(Align));
assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) &&
"MemCpy must be a MemoryDef");
// The new memset is inserted after the memcpy, but it is known that its
// defining access is the memset about to be removed which immediately
// precedes the memcpy.
auto *LastDef =
cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
auto *NewAccess = MSSAU->createMemoryAccessBefore(
NewMemSet, LastDef->getDefiningAccess(), LastDef);
MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
eraseInstruction(MemSet);
return true;
}
/// Determine whether the instruction has undefined content for the given Size,
/// either because it was freshly alloca'd or started its lifetime.
static bool hasUndefContents(MemorySSA *MSSA, AliasAnalysis *AA, Value *V,
MemoryDef *Def, Value *Size) {
if (MSSA->isLiveOnEntryDef(Def))
return isa<AllocaInst>(getUnderlyingObject(V));
if (auto *II = dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) {
if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
auto *LTSize = cast<ConstantInt>(II->getArgOperand(0));
if (auto *CSize = dyn_cast<ConstantInt>(Size)) {
if (AA->isMustAlias(V, II->getArgOperand(1)) &&
LTSize->getZExtValue() >= CSize->getZExtValue())
return true;
}
// If the lifetime.start covers a whole alloca (as it almost always
// does) and we're querying a pointer based on that alloca, then we know
// the memory is definitely undef, regardless of how exactly we alias.
// The size also doesn't matter, as an out-of-bounds access would be UB.
if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V))) {
if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) {
const DataLayout &DL = Alloca->getModule()->getDataLayout();
if (Optional<TypeSize> AllocaSize =
Alloca->getAllocationSizeInBits(DL))
if (*AllocaSize == LTSize->getValue() * 8)
return true;
}
}
}
}
return false;
}
/// Transform memcpy to memset when its source was just memset.
/// In other words, turn:
/// \code
/// memset(dst1, c, dst1_size);
/// memcpy(dst2, dst1, dst2_size);
/// \endcode
/// into:
/// \code
/// memset(dst1, c, dst1_size);
/// memset(dst2, c, dst2_size);
/// \endcode
/// When dst2_size <= dst1_size.
bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
MemSetInst *MemSet) {
// Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
// memcpying from the same address. Otherwise it is hard to reason about.
if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
return false;
Value *MemSetSize = MemSet->getLength();
Value *CopySize = MemCpy->getLength();
if (MemSetSize != CopySize) {
// Make sure the memcpy doesn't read any more than what the memset wrote.
// Don't worry about sizes larger than i64.
// A known memset size is required.
auto *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize);
if (!CMemSetSize)
return false;
// A known memcpy size is also required.
auto *CCopySize = dyn_cast<ConstantInt>(CopySize);
if (!CCopySize)
return false;
if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) {
// If the memcpy is larger than the memset, but the memory was undef prior
// to the memset, we can just ignore the tail. Technically we're only
// interested in the bytes from MemSetSize..CopySize here, but as we can't
// easily represent this location, we use the full 0..CopySize range.
MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
bool CanReduceSize = false;
MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet);
MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
MemSetAccess->getDefiningAccess(), MemCpyLoc);
if (auto *MD = dyn_cast<MemoryDef>(Clobber))
if (hasUndefContents(MSSA, AA, MemCpy->getSource(), MD, CopySize))
CanReduceSize = true;
if (!CanReduceSize)
return false;
CopySize = MemSetSize;
}
}
IRBuilder<> Builder(MemCpy);
Instruction *NewM =
Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
CopySize, MaybeAlign(MemCpy->getDestAlignment()));
auto *LastDef =
cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
return true;
}
/// Perform simplification of memcpy's. If we have memcpy A
/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
/// B to be a memcpy from X to Z (or potentially a memmove, depending on
/// circumstances). This allows later passes to remove the first memcpy
/// altogether.
bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
// We can only optimize non-volatile memcpy's.
if (M->isVolatile()) return false;
// If the source and destination of the memcpy are the same, then zap it.
if (M->getSource() == M->getDest()) {
++BBI;
eraseInstruction(M);
return true;
}
// If copying from a constant, try to turn the memcpy into a memset.
if (auto *GV = dyn_cast<GlobalVariable>(M->getSource()))
if (GV->isConstant() && GV->hasDefinitiveInitializer())
if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
M->getModule()->getDataLayout())) {
IRBuilder<> Builder(M);
Instruction *NewM =
Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
MaybeAlign(M->getDestAlignment()), false);
auto *LastDef =
cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
auto *NewAccess =
MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
eraseInstruction(M);
++NumCpyToSet;
return true;
}
MemoryUseOrDef *MA = MSSA->getMemoryAccess(M);
MemoryAccess *AnyClobber = MSSA->getWalker()->getClobberingMemoryAccess(MA);
MemoryLocation DestLoc = MemoryLocation::getForDest(M);
const MemoryAccess *DestClobber =
MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc);
// Try to turn a partially redundant memset + memcpy into
// memcpy + smaller memset. We don't need the memcpy size for this.
// The memcpy most post-dom the memset, so limit this to the same basic
// block. A non-local generalization is likely not worthwhile.
if (auto *MD = dyn_cast<MemoryDef>(DestClobber))
if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst()))
if (DestClobber->getBlock() == M->getParent())
if (processMemSetMemCpyDependence(M, MDep))
return true;
MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess(
AnyClobber, MemoryLocation::getForSource(M));
// There are four possible optimizations we can do for memcpy:
// a) memcpy-memcpy xform which exposes redundance for DSE.
// b) call-memcpy xform for return slot optimization.
// c) memcpy from freshly alloca'd space or space that has just started
// its lifetime copies undefined data, and we can therefore eliminate
// the memcpy in favor of the data that was already at the destination.
// d) memcpy from a just-memset'd source can be turned into memset.
if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) {
if (Instruction *MI = MD->getMemoryInst()) {
if (auto *CopySize = dyn_cast<ConstantInt>(M->getLength())) {
if (auto *C = dyn_cast<CallInst>(MI)) {
// The memcpy must post-dom the call. Limit to the same block for
// now. Additionally, we need to ensure that there are no accesses
// to dest between the call and the memcpy. Accesses to src will be
// checked by performCallSlotOptzn().
// TODO: Support non-local call-slot optimization?
if (C->getParent() == M->getParent() &&
!accessedBetween(*AA, DestLoc, MD, MA)) {
// FIXME: Can we pass in either of dest/src alignment here instead
// of conservatively taking the minimum?
Align Alignment = std::min(M->getDestAlign().valueOrOne(),
M->getSourceAlign().valueOrOne());
if (performCallSlotOptzn(
M, M, M->getDest(), M->getSource(),
TypeSize::getFixed(CopySize->getZExtValue()), Alignment,
C)) {
LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n"
<< " call: " << *C << "\n"
<< " memcpy: " << *M << "\n");
eraseInstruction(M);
++NumMemCpyInstr;
return true;
}
}
}
}
if (auto *MDep = dyn_cast<MemCpyInst>(MI))
return processMemCpyMemCpyDependence(M, MDep);
if (auto *MDep = dyn_cast<MemSetInst>(MI)) {
if (performMemCpyToMemSetOptzn(M, MDep)) {
LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n");
eraseInstruction(M);
++NumCpyToSet;
return true;
}
}
}
if (hasUndefContents(MSSA, AA, M->getSource(), MD, M->getLength())) {
LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n");
eraseInstruction(M);
++NumMemCpyInstr;
return true;
}
}
return false;
}
/// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
/// not to alias.
bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
// See if the source could be modified by this memmove potentially.
if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(M))))
return false;
LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
<< "\n");
// If not, then we know we can transform this.
Type *ArgTys[3] = { M->getRawDest()->getType(),
M->getRawSource()->getType(),
M->getLength()->getType() };
M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
Intrinsic::memcpy, ArgTys));
// For MemorySSA nothing really changes (except that memcpy may imply stricter
// aliasing guarantees).
++NumMoveToCpy;
return true;
}
/// This is called on every byval argument in call sites.
bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) {
const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout();
// Find out what feeds this byval argument.
Value *ByValArg = CB.getArgOperand(ArgNo);
Type *ByValTy = CB.getParamByValType(ArgNo);
TypeSize ByValSize = DL.getTypeAllocSize(ByValTy);
MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize));
MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB);
if (!CallAccess)
return false;
MemCpyInst *MDep = nullptr;
MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
CallAccess->getDefiningAccess(), Loc);
if (auto *MD = dyn_cast<MemoryDef>(Clobber))
MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst());
// If the byval argument isn't fed by a memcpy, ignore it. If it is fed by
// a memcpy, see if we can byval from the source of the memcpy instead of the
// result.
if (!MDep || MDep->isVolatile() ||
ByValArg->stripPointerCasts() != MDep->getDest())
return false;
// The length of the memcpy must be larger or equal to the size of the byval.
auto *C1 = dyn_cast<ConstantInt>(MDep->getLength());
if (!C1 || !TypeSize::isKnownGE(
TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize))
return false;
// Get the alignment of the byval. If the call doesn't specify the alignment,
// then it is some target specific value that we can't know.
MaybeAlign ByValAlign = CB.getParamAlign(ArgNo);
if (!ByValAlign) return false;
// If it is greater than the memcpy, then we check to see if we can force the
// source of the memcpy to the alignment we need. If we fail, we bail out.
MaybeAlign MemDepAlign = MDep->getSourceAlign();
if ((!MemDepAlign || *MemDepAlign < *ByValAlign) &&
getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC,
DT) < *ByValAlign)
return false;
// The address space of the memcpy source must match the byval argument
if (MDep->getSource()->getType()->getPointerAddressSpace() !=
ByValArg->getType()->getPointerAddressSpace())
return false;
// Verify that the copied-from memory doesn't change in between the memcpy and
// the byval call.
// memcpy(a <- b)
// *b = 42;
// foo(*a)
// It would be invalid to transform the second memcpy into foo(*b).
if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep),
MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB)))
return false;
Value *TmpCast = MDep->getSource();
if (MDep->getSource()->getType() != ByValArg->getType()) {
BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
"tmpcast", &CB);
// Set the tmpcast's DebugLoc to MDep's
TmpBitCast->setDebugLoc(MDep->getDebugLoc());
TmpCast = TmpBitCast;
}
LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
<< " " << *MDep << "\n"
<< " " << CB << "\n");
// Otherwise we're good! Update the byval argument.
CB.setArgOperand(ArgNo, TmpCast);
++NumMemCpyInstr;
return true;
}
/// Executes one iteration of MemCpyOptPass.
bool MemCpyOptPass::iterateOnFunction(Function &F) {
bool MadeChange = false;
// Walk all instruction in the function.
for (BasicBlock &BB : F) {
// Skip unreachable blocks. For example processStore assumes that an
// instruction in a BB can't be dominated by a later instruction in the
// same BB (which is a scenario that can happen for an unreachable BB that
// has itself as a predecessor).
if (!DT->isReachableFromEntry(&BB))
continue;
for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
// Avoid invalidating the iterator.
Instruction *I = &*BI++;
bool RepeatInstruction = false;
if (auto *SI = dyn_cast<StoreInst>(I))
MadeChange |= processStore(SI, BI);
else if (auto *M = dyn_cast<MemSetInst>(I))
RepeatInstruction = processMemSet(M, BI);
else if (auto *M = dyn_cast<MemCpyInst>(I))
RepeatInstruction = processMemCpy(M, BI);
else if (auto *M = dyn_cast<MemMoveInst>(I))
RepeatInstruction = processMemMove(M);
else if (auto *CB = dyn_cast<CallBase>(I)) {
for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
if (CB->isByValArgument(i))
MadeChange |= processByValArgument(*CB, i);
}
// Reprocess the instruction if desired.
if (RepeatInstruction) {
if (BI != BB.begin())
--BI;
MadeChange = true;
}
}
}
return MadeChange;
}
PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
auto *AA = &AM.getResult<AAManager>(F);
auto *AC = &AM.getResult<AssumptionAnalysis>(F);
auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
auto *MSSA = &AM.getResult<MemorySSAAnalysis>(F);
bool MadeChange = runImpl(F, &TLI, AA, AC, DT, &MSSA->getMSSA());
if (!MadeChange)
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
PA.preserve<MemorySSAAnalysis>();
return PA;
}
bool MemCpyOptPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
AliasAnalysis *AA_, AssumptionCache *AC_,
DominatorTree *DT_, MemorySSA *MSSA_) {
bool MadeChange = false;
TLI = TLI_;
AA = AA_;
AC = AC_;
DT = DT_;
MSSA = MSSA_;
MemorySSAUpdater MSSAU_(MSSA_);
MSSAU = &MSSAU_;
while (true) {
if (!iterateOnFunction(F))
break;
MadeChange = true;
}
if (VerifyMemorySSA)
MSSA_->verifyMemorySSA();
return MadeChange;
}
/// This is the main transformation entry point for a function.
bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
return Impl.runImpl(F, TLI, AA, AC, DT, MSSA);
}
|