1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
//===- Reg2Mem.cpp - Convert registers to allocas -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file demotes all registers to memory references. It is intended to be
// the inverse of PromoteMemoryToRegister. By converting to loads, the only
// values live across basic blocks are allocas and loads before phi nodes.
// It is intended that this should make CFG hacking much easier.
// To make later hacking easier, the entry block is split into two, such that
// all introduced allocas and nothing else are in the entry block.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/Reg2Mem.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include <list>
using namespace llvm;
#define DEBUG_TYPE "reg2mem"
STATISTIC(NumRegsDemoted, "Number of registers demoted");
STATISTIC(NumPhisDemoted, "Number of phi-nodes demoted");
static bool valueEscapes(const Instruction &Inst) {
const BasicBlock *BB = Inst.getParent();
for (const User *U : Inst.users()) {
const Instruction *UI = cast<Instruction>(U);
if (UI->getParent() != BB || isa<PHINode>(UI))
return true;
}
return false;
}
static bool runPass(Function &F) {
// Insert all new allocas into entry block.
BasicBlock *BBEntry = &F.getEntryBlock();
assert(pred_empty(BBEntry) &&
"Entry block to function must not have predecessors!");
// Find first non-alloca instruction and create insertion point. This is
// safe if block is well-formed: it always have terminator, otherwise
// we'll get and assertion.
BasicBlock::iterator I = BBEntry->begin();
while (isa<AllocaInst>(I)) ++I;
CastInst *AllocaInsertionPoint = new BitCastInst(
Constant::getNullValue(Type::getInt32Ty(F.getContext())),
Type::getInt32Ty(F.getContext()), "reg2mem alloca point", &*I);
// Find the escaped instructions. But don't create stack slots for
// allocas in entry block.
std::list<Instruction*> WorkList;
for (Instruction &I : instructions(F))
if (!(isa<AllocaInst>(I) && I.getParent() == BBEntry) && valueEscapes(I))
WorkList.push_front(&I);
// Demote escaped instructions
NumRegsDemoted += WorkList.size();
for (Instruction *I : WorkList)
DemoteRegToStack(*I, false, AllocaInsertionPoint);
WorkList.clear();
// Find all phi's
for (BasicBlock &BB : F)
for (auto &Phi : BB.phis())
WorkList.push_front(&Phi);
// Demote phi nodes
NumPhisDemoted += WorkList.size();
for (Instruction *I : WorkList)
DemotePHIToStack(cast<PHINode>(I), AllocaInsertionPoint);
return true;
}
PreservedAnalyses RegToMemPass::run(Function &F, FunctionAnalysisManager &AM) {
auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
auto *LI = &AM.getResult<LoopAnalysis>(F);
unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
bool Changed = runPass(F);
if (N == 0 && !Changed)
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<DominatorTreeAnalysis>();
PA.preserve<LoopAnalysis>();
return PA;
}
namespace {
struct RegToMemLegacy : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
RegToMemLegacy() : FunctionPass(ID) {
initializeRegToMemLegacyPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequiredID(BreakCriticalEdgesID);
AU.addPreservedID(BreakCriticalEdgesID);
}
bool runOnFunction(Function &F) override {
if (F.isDeclaration() || skipFunction(F))
return false;
return runPass(F);
}
};
} // namespace
char RegToMemLegacy::ID = 0;
INITIALIZE_PASS_BEGIN(RegToMemLegacy, "reg2mem",
"Demote all values to stack slots", false, false)
INITIALIZE_PASS_DEPENDENCY(BreakCriticalEdges)
INITIALIZE_PASS_END(RegToMemLegacy, "reg2mem",
"Demote all values to stack slots", false, false)
// createDemoteRegisterToMemory - Provide an entry point to create this pass.
char &llvm::DemoteRegisterToMemoryID = RegToMemLegacy::ID;
FunctionPass *llvm::createDemoteRegisterToMemoryPass() {
return new RegToMemLegacy();
}
|