1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
|
//===- SampleProfileInference.cpp - Adjust sample profiles in the IR ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a profile inference algorithm. Given an incomplete and
// possibly imprecise block counts, the algorithm reconstructs realistic block
// and edge counts that satisfy flow conservation rules, while minimally modify
// input block counts.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/SampleProfileInference.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/Support/Debug.h"
#include <queue>
#include <set>
using namespace llvm;
#define DEBUG_TYPE "sample-profile-inference"
namespace {
/// A value indicating an infinite flow/capacity/weight of a block/edge.
/// Not using numeric_limits<int64_t>::max(), as the values can be summed up
/// during the execution.
static constexpr int64_t INF = ((int64_t)1) << 50;
/// The minimum-cost maximum flow algorithm.
///
/// The algorithm finds the maximum flow of minimum cost on a given (directed)
/// network using a modified version of the classical Moore-Bellman-Ford
/// approach. The algorithm applies a number of augmentation iterations in which
/// flow is sent along paths of positive capacity from the source to the sink.
/// The worst-case time complexity of the implementation is O(v(f)*m*n), where
/// where m is the number of edges, n is the number of vertices, and v(f) is the
/// value of the maximum flow. However, the observed running time on typical
/// instances is sub-quadratic, that is, o(n^2).
///
/// The input is a set of edges with specified costs and capacities, and a pair
/// of nodes (source and sink). The output is the flow along each edge of the
/// minimum total cost respecting the given edge capacities.
class MinCostMaxFlow {
public:
// Initialize algorithm's data structures for a network of a given size.
void initialize(uint64_t NodeCount, uint64_t SourceNode, uint64_t SinkNode) {
Source = SourceNode;
Target = SinkNode;
Nodes = std::vector<Node>(NodeCount);
Edges = std::vector<std::vector<Edge>>(NodeCount, std::vector<Edge>());
}
// Run the algorithm.
int64_t run() {
// Find an augmenting path and update the flow along the path
size_t AugmentationIters = 0;
while (findAugmentingPath()) {
augmentFlowAlongPath();
AugmentationIters++;
}
// Compute the total flow and its cost
int64_t TotalCost = 0;
int64_t TotalFlow = 0;
for (uint64_t Src = 0; Src < Nodes.size(); Src++) {
for (auto &Edge : Edges[Src]) {
if (Edge.Flow > 0) {
TotalCost += Edge.Cost * Edge.Flow;
if (Src == Source)
TotalFlow += Edge.Flow;
}
}
}
LLVM_DEBUG(dbgs() << "Completed profi after " << AugmentationIters
<< " iterations with " << TotalFlow << " total flow"
<< " of " << TotalCost << " cost\n");
(void)TotalFlow;
return TotalCost;
}
/// Adding an edge to the network with a specified capacity and a cost.
/// Multiple edges between a pair of nodes are allowed but self-edges
/// are not supported.
void addEdge(uint64_t Src, uint64_t Dst, int64_t Capacity, int64_t Cost) {
assert(Capacity > 0 && "adding an edge of zero capacity");
assert(Src != Dst && "loop edge are not supported");
Edge SrcEdge;
SrcEdge.Dst = Dst;
SrcEdge.Cost = Cost;
SrcEdge.Capacity = Capacity;
SrcEdge.Flow = 0;
SrcEdge.RevEdgeIndex = Edges[Dst].size();
Edge DstEdge;
DstEdge.Dst = Src;
DstEdge.Cost = -Cost;
DstEdge.Capacity = 0;
DstEdge.Flow = 0;
DstEdge.RevEdgeIndex = Edges[Src].size();
Edges[Src].push_back(SrcEdge);
Edges[Dst].push_back(DstEdge);
}
/// Adding an edge to the network of infinite capacity and a given cost.
void addEdge(uint64_t Src, uint64_t Dst, int64_t Cost) {
addEdge(Src, Dst, INF, Cost);
}
/// Get the total flow from a given source node.
/// Returns a list of pairs (target node, amount of flow to the target).
const std::vector<std::pair<uint64_t, int64_t>> getFlow(uint64_t Src) const {
std::vector<std::pair<uint64_t, int64_t>> Flow;
for (auto &Edge : Edges[Src]) {
if (Edge.Flow > 0)
Flow.push_back(std::make_pair(Edge.Dst, Edge.Flow));
}
return Flow;
}
/// Get the total flow between a pair of nodes.
int64_t getFlow(uint64_t Src, uint64_t Dst) const {
int64_t Flow = 0;
for (auto &Edge : Edges[Src]) {
if (Edge.Dst == Dst) {
Flow += Edge.Flow;
}
}
return Flow;
}
/// A cost of increasing a block's count by one.
static constexpr int64_t AuxCostInc = 10;
/// A cost of decreasing a block's count by one.
static constexpr int64_t AuxCostDec = 20;
/// A cost of increasing a count of zero-weight block by one.
static constexpr int64_t AuxCostIncZero = 11;
/// A cost of increasing the entry block's count by one.
static constexpr int64_t AuxCostIncEntry = 40;
/// A cost of decreasing the entry block's count by one.
static constexpr int64_t AuxCostDecEntry = 10;
/// A cost of taking an unlikely jump.
static constexpr int64_t AuxCostUnlikely = ((int64_t)1) << 30;
private:
/// Check for existence of an augmenting path with a positive capacity.
bool findAugmentingPath() {
// Initialize data structures
for (auto &Node : Nodes) {
Node.Distance = INF;
Node.ParentNode = uint64_t(-1);
Node.ParentEdgeIndex = uint64_t(-1);
Node.Taken = false;
}
std::queue<uint64_t> Queue;
Queue.push(Source);
Nodes[Source].Distance = 0;
Nodes[Source].Taken = true;
while (!Queue.empty()) {
uint64_t Src = Queue.front();
Queue.pop();
Nodes[Src].Taken = false;
// Although the residual network contains edges with negative costs
// (in particular, backward edges), it can be shown that there are no
// negative-weight cycles and the following two invariants are maintained:
// (i) Dist[Source, V] >= 0 and (ii) Dist[V, Target] >= 0 for all nodes V,
// where Dist is the length of the shortest path between two nodes. This
// allows to prune the search-space of the path-finding algorithm using
// the following early-stop criteria:
// -- If we find a path with zero-distance from Source to Target, stop the
// search, as the path is the shortest since Dist[Source, Target] >= 0;
// -- If we have Dist[Source, V] > Dist[Source, Target], then do not
// process node V, as it is guaranteed _not_ to be on a shortest path
// from Source to Target; it follows from inequalities
// Dist[Source, Target] >= Dist[Source, V] + Dist[V, Target]
// >= Dist[Source, V]
if (Nodes[Target].Distance == 0)
break;
if (Nodes[Src].Distance > Nodes[Target].Distance)
continue;
// Process adjacent edges
for (uint64_t EdgeIdx = 0; EdgeIdx < Edges[Src].size(); EdgeIdx++) {
auto &Edge = Edges[Src][EdgeIdx];
if (Edge.Flow < Edge.Capacity) {
uint64_t Dst = Edge.Dst;
int64_t NewDistance = Nodes[Src].Distance + Edge.Cost;
if (Nodes[Dst].Distance > NewDistance) {
// Update the distance and the parent node/edge
Nodes[Dst].Distance = NewDistance;
Nodes[Dst].ParentNode = Src;
Nodes[Dst].ParentEdgeIndex = EdgeIdx;
// Add the node to the queue, if it is not there yet
if (!Nodes[Dst].Taken) {
Queue.push(Dst);
Nodes[Dst].Taken = true;
}
}
}
}
}
return Nodes[Target].Distance != INF;
}
/// Update the current flow along the augmenting path.
void augmentFlowAlongPath() {
// Find path capacity
int64_t PathCapacity = INF;
uint64_t Now = Target;
while (Now != Source) {
uint64_t Pred = Nodes[Now].ParentNode;
auto &Edge = Edges[Pred][Nodes[Now].ParentEdgeIndex];
PathCapacity = std::min(PathCapacity, Edge.Capacity - Edge.Flow);
Now = Pred;
}
assert(PathCapacity > 0 && "found an incorrect augmenting path");
// Update the flow along the path
Now = Target;
while (Now != Source) {
uint64_t Pred = Nodes[Now].ParentNode;
auto &Edge = Edges[Pred][Nodes[Now].ParentEdgeIndex];
auto &RevEdge = Edges[Now][Edge.RevEdgeIndex];
Edge.Flow += PathCapacity;
RevEdge.Flow -= PathCapacity;
Now = Pred;
}
}
/// A node in a flow network.
struct Node {
/// The cost of the cheapest path from the source to the current node.
int64_t Distance;
/// The node preceding the current one in the path.
uint64_t ParentNode;
/// The index of the edge between ParentNode and the current node.
uint64_t ParentEdgeIndex;
/// An indicator of whether the current node is in a queue.
bool Taken;
};
/// An edge in a flow network.
struct Edge {
/// The cost of the edge.
int64_t Cost;
/// The capacity of the edge.
int64_t Capacity;
/// The current flow on the edge.
int64_t Flow;
/// The destination node of the edge.
uint64_t Dst;
/// The index of the reverse edge between Dst and the current node.
uint64_t RevEdgeIndex;
};
/// The set of network nodes.
std::vector<Node> Nodes;
/// The set of network edges.
std::vector<std::vector<Edge>> Edges;
/// Source node of the flow.
uint64_t Source;
/// Target (sink) node of the flow.
uint64_t Target;
};
/// A post-processing adjustment of control flow. It applies two steps by
/// rerouting some flow and making it more realistic:
///
/// - First, it removes all isolated components ("islands") with a positive flow
/// that are unreachable from the entry block. For every such component, we
/// find the shortest from the entry to an exit passing through the component,
/// and increase the flow by one unit along the path.
///
/// - Second, it identifies all "unknown subgraphs" consisting of basic blocks
/// with no sampled counts. Then it rebalnces the flow that goes through such
/// a subgraph so that each branch is taken with probability 50%.
/// An unknown subgraph is such that for every two nodes u and v:
/// - u dominates v and u is not unknown;
/// - v post-dominates u; and
/// - all inner-nodes of all (u,v)-paths are unknown.
///
class FlowAdjuster {
public:
FlowAdjuster(FlowFunction &Func) : Func(Func) {
assert(Func.Blocks[Func.Entry].isEntry() &&
"incorrect index of the entry block");
}
// Run the post-processing
void run() {
/// Adjust the flow to get rid of isolated components.
joinIsolatedComponents();
/// Rebalance the flow inside unknown subgraphs.
rebalanceUnknownSubgraphs();
}
private:
void joinIsolatedComponents() {
// Find blocks that are reachable from the source
auto Visited = BitVector(NumBlocks(), false);
findReachable(Func.Entry, Visited);
// Iterate over all non-reachable blocks and adjust their weights
for (uint64_t I = 0; I < NumBlocks(); I++) {
auto &Block = Func.Blocks[I];
if (Block.Flow > 0 && !Visited[I]) {
// Find a path from the entry to an exit passing through the block I
auto Path = findShortestPath(I);
// Increase the flow along the path
assert(Path.size() > 0 && Path[0]->Source == Func.Entry &&
"incorrectly computed path adjusting control flow");
Func.Blocks[Func.Entry].Flow += 1;
for (auto &Jump : Path) {
Jump->Flow += 1;
Func.Blocks[Jump->Target].Flow += 1;
// Update reachability
findReachable(Jump->Target, Visited);
}
}
}
}
/// Run BFS from a given block along the jumps with a positive flow and mark
/// all reachable blocks.
void findReachable(uint64_t Src, BitVector &Visited) {
if (Visited[Src])
return;
std::queue<uint64_t> Queue;
Queue.push(Src);
Visited[Src] = true;
while (!Queue.empty()) {
Src = Queue.front();
Queue.pop();
for (auto Jump : Func.Blocks[Src].SuccJumps) {
uint64_t Dst = Jump->Target;
if (Jump->Flow > 0 && !Visited[Dst]) {
Queue.push(Dst);
Visited[Dst] = true;
}
}
}
}
/// Find the shortest path from the entry block to an exit block passing
/// through a given block.
std::vector<FlowJump *> findShortestPath(uint64_t BlockIdx) {
// A path from the entry block to BlockIdx
auto ForwardPath = findShortestPath(Func.Entry, BlockIdx);
// A path from BlockIdx to an exit block
auto BackwardPath = findShortestPath(BlockIdx, AnyExitBlock);
// Concatenate the two paths
std::vector<FlowJump *> Result;
Result.insert(Result.end(), ForwardPath.begin(), ForwardPath.end());
Result.insert(Result.end(), BackwardPath.begin(), BackwardPath.end());
return Result;
}
/// Apply the Dijkstra algorithm to find the shortest path from a given
/// Source to a given Target block.
/// If Target == -1, then the path ends at an exit block.
std::vector<FlowJump *> findShortestPath(uint64_t Source, uint64_t Target) {
// Quit early, if possible
if (Source == Target)
return std::vector<FlowJump *>();
if (Func.Blocks[Source].isExit() && Target == AnyExitBlock)
return std::vector<FlowJump *>();
// Initialize data structures
auto Distance = std::vector<int64_t>(NumBlocks(), INF);
auto Parent = std::vector<FlowJump *>(NumBlocks(), nullptr);
Distance[Source] = 0;
std::set<std::pair<uint64_t, uint64_t>> Queue;
Queue.insert(std::make_pair(Distance[Source], Source));
// Run the Dijkstra algorithm
while (!Queue.empty()) {
uint64_t Src = Queue.begin()->second;
Queue.erase(Queue.begin());
// If we found a solution, quit early
if (Src == Target ||
(Func.Blocks[Src].isExit() && Target == AnyExitBlock))
break;
for (auto Jump : Func.Blocks[Src].SuccJumps) {
uint64_t Dst = Jump->Target;
int64_t JumpDist = jumpDistance(Jump);
if (Distance[Dst] > Distance[Src] + JumpDist) {
Queue.erase(std::make_pair(Distance[Dst], Dst));
Distance[Dst] = Distance[Src] + JumpDist;
Parent[Dst] = Jump;
Queue.insert(std::make_pair(Distance[Dst], Dst));
}
}
}
// If Target is not provided, find the closest exit block
if (Target == AnyExitBlock) {
for (uint64_t I = 0; I < NumBlocks(); I++) {
if (Func.Blocks[I].isExit() && Parent[I] != nullptr) {
if (Target == AnyExitBlock || Distance[Target] > Distance[I]) {
Target = I;
}
}
}
}
assert(Parent[Target] != nullptr && "a path does not exist");
// Extract the constructed path
std::vector<FlowJump *> Result;
uint64_t Now = Target;
while (Now != Source) {
assert(Now == Parent[Now]->Target && "incorrect parent jump");
Result.push_back(Parent[Now]);
Now = Parent[Now]->Source;
}
// Reverse the path, since it is extracted from Target to Source
std::reverse(Result.begin(), Result.end());
return Result;
}
/// A distance of a path for a given jump.
/// In order to incite the path to use blocks/jumps with large positive flow,
/// and avoid changing branch probability of outgoing edges drastically,
/// set the distance as follows:
/// if Jump.Flow > 0, then distance = max(100 - Jump->Flow, 0)
/// if Block.Weight > 0, then distance = 1
/// otherwise distance >> 1
int64_t jumpDistance(FlowJump *Jump) const {
int64_t BaseDistance = 100;
if (Jump->IsUnlikely)
return MinCostMaxFlow::AuxCostUnlikely;
if (Jump->Flow > 0)
return std::max(BaseDistance - (int64_t)Jump->Flow, (int64_t)0);
if (Func.Blocks[Jump->Target].Weight > 0)
return BaseDistance;
return BaseDistance * (NumBlocks() + 1);
};
uint64_t NumBlocks() const { return Func.Blocks.size(); }
/// Rebalance unknown subgraphs so that the flow is split evenly across the
/// outgoing branches of every block of the subgraph. The method iterates over
/// blocks with known weight and identifies unknown subgraphs rooted at the
/// blocks. Then it verifies if flow rebalancing is feasible and applies it.
void rebalanceUnknownSubgraphs() {
// Try to find unknown subgraphs from each block
for (uint64_t I = 0; I < Func.Blocks.size(); I++) {
auto SrcBlock = &Func.Blocks[I];
// Verify if rebalancing rooted at SrcBlock is feasible
if (!canRebalanceAtRoot(SrcBlock))
continue;
// Find an unknown subgraphs starting at SrcBlock. Along the way,
// fill in known destinations and intermediate unknown blocks.
std::vector<FlowBlock *> UnknownBlocks;
std::vector<FlowBlock *> KnownDstBlocks;
findUnknownSubgraph(SrcBlock, KnownDstBlocks, UnknownBlocks);
// Verify if rebalancing of the subgraph is feasible. If the search is
// successful, find the unique destination block (which can be null)
FlowBlock *DstBlock = nullptr;
if (!canRebalanceSubgraph(SrcBlock, KnownDstBlocks, UnknownBlocks,
DstBlock))
continue;
// We cannot rebalance subgraphs containing cycles among unknown blocks
if (!isAcyclicSubgraph(SrcBlock, DstBlock, UnknownBlocks))
continue;
// Rebalance the flow
rebalanceUnknownSubgraph(SrcBlock, DstBlock, UnknownBlocks);
}
}
/// Verify if rebalancing rooted at a given block is possible.
bool canRebalanceAtRoot(const FlowBlock *SrcBlock) {
// Do not attempt to find unknown subgraphs from an unknown or a
// zero-flow block
if (SrcBlock->UnknownWeight || SrcBlock->Flow == 0)
return false;
// Do not attempt to process subgraphs from a block w/o unknown sucessors
bool HasUnknownSuccs = false;
for (auto Jump : SrcBlock->SuccJumps) {
if (Func.Blocks[Jump->Target].UnknownWeight) {
HasUnknownSuccs = true;
break;
}
}
if (!HasUnknownSuccs)
return false;
return true;
}
/// Find an unknown subgraph starting at block SrcBlock. The method sets
/// identified destinations, KnownDstBlocks, and intermediate UnknownBlocks.
void findUnknownSubgraph(const FlowBlock *SrcBlock,
std::vector<FlowBlock *> &KnownDstBlocks,
std::vector<FlowBlock *> &UnknownBlocks) {
// Run BFS from SrcBlock and make sure all paths are going through unknown
// blocks and end at a non-unknown DstBlock
auto Visited = BitVector(NumBlocks(), false);
std::queue<uint64_t> Queue;
Queue.push(SrcBlock->Index);
Visited[SrcBlock->Index] = true;
while (!Queue.empty()) {
auto &Block = Func.Blocks[Queue.front()];
Queue.pop();
// Process blocks reachable from Block
for (auto Jump : Block.SuccJumps) {
// If Jump can be ignored, skip it
if (ignoreJump(SrcBlock, nullptr, Jump))
continue;
uint64_t Dst = Jump->Target;
// If Dst has been visited, skip Jump
if (Visited[Dst])
continue;
// Process block Dst
Visited[Dst] = true;
if (!Func.Blocks[Dst].UnknownWeight) {
KnownDstBlocks.push_back(&Func.Blocks[Dst]);
} else {
Queue.push(Dst);
UnknownBlocks.push_back(&Func.Blocks[Dst]);
}
}
}
}
/// Verify if rebalancing of the subgraph is feasible. If the checks are
/// successful, set the unique destination block, DstBlock (can be null).
bool canRebalanceSubgraph(const FlowBlock *SrcBlock,
const std::vector<FlowBlock *> &KnownDstBlocks,
const std::vector<FlowBlock *> &UnknownBlocks,
FlowBlock *&DstBlock) {
// If the list of unknown blocks is empty, we don't need rebalancing
if (UnknownBlocks.empty())
return false;
// If there are multiple known sinks, we can't rebalance
if (KnownDstBlocks.size() > 1)
return false;
DstBlock = KnownDstBlocks.empty() ? nullptr : KnownDstBlocks.front();
// Verify sinks of the subgraph
for (auto Block : UnknownBlocks) {
if (Block->SuccJumps.empty()) {
// If there are multiple (known and unknown) sinks, we can't rebalance
if (DstBlock != nullptr)
return false;
continue;
}
size_t NumIgnoredJumps = 0;
for (auto Jump : Block->SuccJumps) {
if (ignoreJump(SrcBlock, DstBlock, Jump))
NumIgnoredJumps++;
}
// If there is a non-sink block in UnknownBlocks with all jumps ignored,
// then we can't rebalance
if (NumIgnoredJumps == Block->SuccJumps.size())
return false;
}
return true;
}
/// Decide whether the Jump is ignored while processing an unknown subgraphs
/// rooted at basic block SrcBlock with the destination block, DstBlock.
bool ignoreJump(const FlowBlock *SrcBlock, const FlowBlock *DstBlock,
const FlowJump *Jump) {
// Ignore unlikely jumps with zero flow
if (Jump->IsUnlikely && Jump->Flow == 0)
return true;
auto JumpSource = &Func.Blocks[Jump->Source];
auto JumpTarget = &Func.Blocks[Jump->Target];
// Do not ignore jumps coming into DstBlock
if (DstBlock != nullptr && JumpTarget == DstBlock)
return false;
// Ignore jumps out of SrcBlock to known blocks
if (!JumpTarget->UnknownWeight && JumpSource == SrcBlock)
return true;
// Ignore jumps to known blocks with zero flow
if (!JumpTarget->UnknownWeight && JumpTarget->Flow == 0)
return true;
return false;
}
/// Verify if the given unknown subgraph is acyclic, and if yes, reorder
/// UnknownBlocks in the topological order (so that all jumps are "forward").
bool isAcyclicSubgraph(const FlowBlock *SrcBlock, const FlowBlock *DstBlock,
std::vector<FlowBlock *> &UnknownBlocks) {
// Extract local in-degrees in the considered subgraph
auto LocalInDegree = std::vector<uint64_t>(NumBlocks(), 0);
auto fillInDegree = [&](const FlowBlock *Block) {
for (auto Jump : Block->SuccJumps) {
if (ignoreJump(SrcBlock, DstBlock, Jump))
continue;
LocalInDegree[Jump->Target]++;
}
};
fillInDegree(SrcBlock);
for (auto Block : UnknownBlocks) {
fillInDegree(Block);
}
// A loop containing SrcBlock
if (LocalInDegree[SrcBlock->Index] > 0)
return false;
std::vector<FlowBlock *> AcyclicOrder;
std::queue<uint64_t> Queue;
Queue.push(SrcBlock->Index);
while (!Queue.empty()) {
FlowBlock *Block = &Func.Blocks[Queue.front()];
Queue.pop();
// Stop propagation once we reach DstBlock, if any
if (DstBlock != nullptr && Block == DstBlock)
break;
// Keep an acyclic order of unknown blocks
if (Block->UnknownWeight && Block != SrcBlock)
AcyclicOrder.push_back(Block);
// Add to the queue all successors with zero local in-degree
for (auto Jump : Block->SuccJumps) {
if (ignoreJump(SrcBlock, DstBlock, Jump))
continue;
uint64_t Dst = Jump->Target;
LocalInDegree[Dst]--;
if (LocalInDegree[Dst] == 0) {
Queue.push(Dst);
}
}
}
// If there is a cycle in the subgraph, AcyclicOrder contains only a subset
// of all blocks
if (UnknownBlocks.size() != AcyclicOrder.size())
return false;
UnknownBlocks = AcyclicOrder;
return true;
}
/// Rebalance a given subgraph rooted at SrcBlock, ending at DstBlock and
/// having UnknownBlocks intermediate blocks.
void rebalanceUnknownSubgraph(const FlowBlock *SrcBlock,
const FlowBlock *DstBlock,
const std::vector<FlowBlock *> &UnknownBlocks) {
assert(SrcBlock->Flow > 0 && "zero-flow block in unknown subgraph");
// Ditribute flow from the source block
uint64_t BlockFlow = 0;
// SrcBlock's flow is the sum of outgoing flows along non-ignored jumps
for (auto Jump : SrcBlock->SuccJumps) {
if (ignoreJump(SrcBlock, DstBlock, Jump))
continue;
BlockFlow += Jump->Flow;
}
rebalanceBlock(SrcBlock, DstBlock, SrcBlock, BlockFlow);
// Ditribute flow from the remaining blocks
for (auto Block : UnknownBlocks) {
assert(Block->UnknownWeight && "incorrect unknown subgraph");
uint64_t BlockFlow = 0;
// Block's flow is the sum of incoming flows
for (auto Jump : Block->PredJumps) {
BlockFlow += Jump->Flow;
}
Block->Flow = BlockFlow;
rebalanceBlock(SrcBlock, DstBlock, Block, BlockFlow);
}
}
/// Redistribute flow for a block in a subgraph rooted at SrcBlock,
/// and ending at DstBlock.
void rebalanceBlock(const FlowBlock *SrcBlock, const FlowBlock *DstBlock,
const FlowBlock *Block, uint64_t BlockFlow) {
// Process all successor jumps and update corresponding flow values
size_t BlockDegree = 0;
for (auto Jump : Block->SuccJumps) {
if (ignoreJump(SrcBlock, DstBlock, Jump))
continue;
BlockDegree++;
}
// If all successor jumps of the block are ignored, skip it
if (DstBlock == nullptr && BlockDegree == 0)
return;
assert(BlockDegree > 0 && "all outgoing jumps are ignored");
// Each of the Block's successors gets the following amount of flow.
// Rounding the value up so that all flow is propagated
uint64_t SuccFlow = (BlockFlow + BlockDegree - 1) / BlockDegree;
for (auto Jump : Block->SuccJumps) {
if (ignoreJump(SrcBlock, DstBlock, Jump))
continue;
uint64_t Flow = std::min(SuccFlow, BlockFlow);
Jump->Flow = Flow;
BlockFlow -= Flow;
}
assert(BlockFlow == 0 && "not all flow is propagated");
}
/// A constant indicating an arbitrary exit block of a function.
static constexpr uint64_t AnyExitBlock = uint64_t(-1);
/// The function.
FlowFunction &Func;
};
/// Initializing flow network for a given function.
///
/// Every block is split into three nodes that are responsible for (i) an
/// incoming flow, (ii) an outgoing flow, and (iii) penalizing an increase or
/// reduction of the block weight.
void initializeNetwork(MinCostMaxFlow &Network, FlowFunction &Func) {
uint64_t NumBlocks = Func.Blocks.size();
assert(NumBlocks > 1 && "Too few blocks in a function");
LLVM_DEBUG(dbgs() << "Initializing profi for " << NumBlocks << " blocks\n");
// Pre-process data: make sure the entry weight is at least 1
if (Func.Blocks[Func.Entry].Weight == 0) {
Func.Blocks[Func.Entry].Weight = 1;
}
// Introducing dummy source/sink pairs to allow flow circulation.
// The nodes corresponding to blocks of Func have indicies in the range
// [0..3 * NumBlocks); the dummy nodes are indexed by the next four values.
uint64_t S = 3 * NumBlocks;
uint64_t T = S + 1;
uint64_t S1 = S + 2;
uint64_t T1 = S + 3;
Network.initialize(3 * NumBlocks + 4, S1, T1);
// Create three nodes for every block of the function
for (uint64_t B = 0; B < NumBlocks; B++) {
auto &Block = Func.Blocks[B];
assert((!Block.UnknownWeight || Block.Weight == 0 || Block.isEntry()) &&
"non-zero weight of a block w/o weight except for an entry");
// Split every block into two nodes
uint64_t Bin = 3 * B;
uint64_t Bout = 3 * B + 1;
uint64_t Baux = 3 * B + 2;
if (Block.Weight > 0) {
Network.addEdge(S1, Bout, Block.Weight, 0);
Network.addEdge(Bin, T1, Block.Weight, 0);
}
// Edges from S and to T
assert((!Block.isEntry() || !Block.isExit()) &&
"a block cannot be an entry and an exit");
if (Block.isEntry()) {
Network.addEdge(S, Bin, 0);
} else if (Block.isExit()) {
Network.addEdge(Bout, T, 0);
}
// An auxiliary node to allow increase/reduction of block counts:
// We assume that decreasing block counts is more expensive than increasing,
// and thus, setting separate costs here. In the future we may want to tune
// the relative costs so as to maximize the quality of generated profiles.
int64_t AuxCostInc = MinCostMaxFlow::AuxCostInc;
int64_t AuxCostDec = MinCostMaxFlow::AuxCostDec;
if (Block.UnknownWeight) {
// Do not penalize changing weights of blocks w/o known profile count
AuxCostInc = 0;
AuxCostDec = 0;
} else {
// Increasing the count for "cold" blocks with zero initial count is more
// expensive than for "hot" ones
if (Block.Weight == 0) {
AuxCostInc = MinCostMaxFlow::AuxCostIncZero;
}
// Modifying the count of the entry block is expensive
if (Block.isEntry()) {
AuxCostInc = MinCostMaxFlow::AuxCostIncEntry;
AuxCostDec = MinCostMaxFlow::AuxCostDecEntry;
}
}
// For blocks with self-edges, do not penalize a reduction of the count,
// as all of the increase can be attributed to the self-edge
if (Block.HasSelfEdge) {
AuxCostDec = 0;
}
Network.addEdge(Bin, Baux, AuxCostInc);
Network.addEdge(Baux, Bout, AuxCostInc);
if (Block.Weight > 0) {
Network.addEdge(Bout, Baux, AuxCostDec);
Network.addEdge(Baux, Bin, AuxCostDec);
}
}
// Creating edges for every jump
for (auto &Jump : Func.Jumps) {
uint64_t Src = Jump.Source;
uint64_t Dst = Jump.Target;
if (Src != Dst) {
uint64_t SrcOut = 3 * Src + 1;
uint64_t DstIn = 3 * Dst;
uint64_t Cost = Jump.IsUnlikely ? MinCostMaxFlow::AuxCostUnlikely : 0;
Network.addEdge(SrcOut, DstIn, Cost);
}
}
// Make sure we have a valid flow circulation
Network.addEdge(T, S, 0);
}
/// Extract resulting block and edge counts from the flow network.
void extractWeights(MinCostMaxFlow &Network, FlowFunction &Func) {
uint64_t NumBlocks = Func.Blocks.size();
// Extract resulting block counts
for (uint64_t Src = 0; Src < NumBlocks; Src++) {
auto &Block = Func.Blocks[Src];
uint64_t SrcOut = 3 * Src + 1;
int64_t Flow = 0;
for (auto &Adj : Network.getFlow(SrcOut)) {
uint64_t DstIn = Adj.first;
int64_t DstFlow = Adj.second;
bool IsAuxNode = (DstIn < 3 * NumBlocks && DstIn % 3 == 2);
if (!IsAuxNode || Block.HasSelfEdge) {
Flow += DstFlow;
}
}
Block.Flow = Flow;
assert(Flow >= 0 && "negative block flow");
}
// Extract resulting jump counts
for (auto &Jump : Func.Jumps) {
uint64_t Src = Jump.Source;
uint64_t Dst = Jump.Target;
int64_t Flow = 0;
if (Src != Dst) {
uint64_t SrcOut = 3 * Src + 1;
uint64_t DstIn = 3 * Dst;
Flow = Network.getFlow(SrcOut, DstIn);
} else {
uint64_t SrcOut = 3 * Src + 1;
uint64_t SrcAux = 3 * Src + 2;
int64_t AuxFlow = Network.getFlow(SrcOut, SrcAux);
if (AuxFlow > 0)
Flow = AuxFlow;
}
Jump.Flow = Flow;
assert(Flow >= 0 && "negative jump flow");
}
}
#ifndef NDEBUG
/// Verify that the computed flow values satisfy flow conservation rules
void verifyWeights(const FlowFunction &Func) {
const uint64_t NumBlocks = Func.Blocks.size();
auto InFlow = std::vector<uint64_t>(NumBlocks, 0);
auto OutFlow = std::vector<uint64_t>(NumBlocks, 0);
for (auto &Jump : Func.Jumps) {
InFlow[Jump.Target] += Jump.Flow;
OutFlow[Jump.Source] += Jump.Flow;
}
uint64_t TotalInFlow = 0;
uint64_t TotalOutFlow = 0;
for (uint64_t I = 0; I < NumBlocks; I++) {
auto &Block = Func.Blocks[I];
if (Block.isEntry()) {
TotalInFlow += Block.Flow;
assert(Block.Flow == OutFlow[I] && "incorrectly computed control flow");
} else if (Block.isExit()) {
TotalOutFlow += Block.Flow;
assert(Block.Flow == InFlow[I] && "incorrectly computed control flow");
} else {
assert(Block.Flow == OutFlow[I] && "incorrectly computed control flow");
assert(Block.Flow == InFlow[I] && "incorrectly computed control flow");
}
}
assert(TotalInFlow == TotalOutFlow && "incorrectly computed control flow");
// Verify that there are no isolated flow components
// One could modify FlowFunction to hold edges indexed by the sources, which
// will avoid a creation of the object
auto PositiveFlowEdges = std::vector<std::vector<uint64_t>>(NumBlocks);
for (auto &Jump : Func.Jumps) {
if (Jump.Flow > 0) {
PositiveFlowEdges[Jump.Source].push_back(Jump.Target);
}
}
// Run BFS from the source along edges with positive flow
std::queue<uint64_t> Queue;
auto Visited = BitVector(NumBlocks, false);
Queue.push(Func.Entry);
Visited[Func.Entry] = true;
while (!Queue.empty()) {
uint64_t Src = Queue.front();
Queue.pop();
for (uint64_t Dst : PositiveFlowEdges[Src]) {
if (!Visited[Dst]) {
Queue.push(Dst);
Visited[Dst] = true;
}
}
}
// Verify that every block that has a positive flow is reached from the source
// along edges with a positive flow
for (uint64_t I = 0; I < NumBlocks; I++) {
auto &Block = Func.Blocks[I];
assert((Visited[I] || Block.Flow == 0) && "an isolated flow component");
}
}
#endif
} // end of anonymous namespace
/// Apply the profile inference algorithm for a given flow function
void llvm::applyFlowInference(FlowFunction &Func) {
// Create and apply an inference network model
auto InferenceNetwork = MinCostMaxFlow();
initializeNetwork(InferenceNetwork, Func);
InferenceNetwork.run();
// Extract flow values for every block and every edge
extractWeights(InferenceNetwork, Func);
// Post-processing adjustments to the flow
auto Adjuster = FlowAdjuster(Func);
Adjuster.run();
#ifndef NDEBUG
// Verify the result
verifyWeights(Func);
#endif
}
|