1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
//===-- VPlanPredicator.cpp -------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the VPlanPredicator class which contains the public
/// interfaces to predicate and linearize the VPlan region.
///
//===----------------------------------------------------------------------===//
#include "VPlanPredicator.h"
#include "VPlan.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "VPlanPredicator"
using namespace llvm;
// Generate VPInstructions at the beginning of CurrBB that calculate the
// predicate being propagated from PredBB to CurrBB depending on the edge type
// between them. For example if:
// i. PredBB is controlled by predicate %BP, and
// ii. The edge PredBB->CurrBB is the false edge, controlled by the condition
// bit value %CBV then this function will generate the following two
// VPInstructions at the start of CurrBB:
// %IntermediateVal = not %CBV
// %FinalVal = and %BP %IntermediateVal
// It returns %FinalVal.
VPValue *VPlanPredicator::getOrCreateNotPredicate(VPBasicBlock *PredBB,
VPBasicBlock *CurrBB) {
VPValue *CBV = PredBB->getCondBit();
// Set the intermediate value - this is either 'CBV', or 'not CBV'
// depending on the edge type.
EdgeType ET = getEdgeTypeBetween(PredBB, CurrBB);
VPValue *IntermediateVal = nullptr;
switch (ET) {
case EdgeType::TRUE_EDGE:
// CurrBB is the true successor of PredBB - nothing to do here.
IntermediateVal = CBV;
break;
case EdgeType::FALSE_EDGE:
// CurrBB is the False successor of PredBB - compute not of CBV.
IntermediateVal = Builder.createNot(CBV, {});
break;
}
// Now AND intermediate value with PredBB's block predicate if it has one.
VPValue *BP = PredBB->getPredicate();
if (BP)
return Builder.createAnd(BP, IntermediateVal, {});
else
return IntermediateVal;
}
// Generate a tree of ORs for all IncomingPredicates in WorkList.
// Note: This function destroys the original Worklist.
//
// P1 P2 P3 P4 P5
// \ / \ / /
// OR1 OR2 /
// \ | /
// \ +/-+
// \ / |
// OR3 |
// \ |
// OR4 <- Returns this
// |
//
// The algorithm uses a worklist of predicates as its main data structure.
// We pop a pair of values from the front (e.g. P1 and P2), generate an OR
// (in this example OR1), and push it back. In this example the worklist
// contains {P3, P4, P5, OR1}.
// The process iterates until we have only one element in the Worklist (OR4).
// The last element is the root predicate which is returned.
VPValue *VPlanPredicator::genPredicateTree(std::list<VPValue *> &Worklist) {
if (Worklist.empty())
return nullptr;
// The worklist initially contains all the leaf nodes. Initialize the tree
// using them.
while (Worklist.size() >= 2) {
// Pop a pair of values from the front.
VPValue *LHS = Worklist.front();
Worklist.pop_front();
VPValue *RHS = Worklist.front();
Worklist.pop_front();
// Create an OR of these values.
VPValue *Or = Builder.createOr(LHS, RHS, {});
// Push OR to the back of the worklist.
Worklist.push_back(Or);
}
assert(Worklist.size() == 1 && "Expected 1 item in worklist");
// The root is the last node in the worklist.
VPValue *Root = Worklist.front();
// This root needs to replace the existing block predicate. This is done in
// the caller function.
return Root;
}
// Return whether the edge FromBlock -> ToBlock is a TRUE_EDGE or FALSE_EDGE
VPlanPredicator::EdgeType
VPlanPredicator::getEdgeTypeBetween(VPBlockBase *FromBlock,
VPBlockBase *ToBlock) {
unsigned Count = 0;
for (VPBlockBase *SuccBlock : FromBlock->getSuccessors()) {
if (SuccBlock == ToBlock) {
assert(Count < 2 && "Switch not supported currently");
return (Count == 0) ? EdgeType::TRUE_EDGE : EdgeType::FALSE_EDGE;
}
Count++;
}
llvm_unreachable("Broken getEdgeTypeBetween");
}
// Generate all predicates needed for CurrBlock by going through its immediate
// predecessor blocks.
void VPlanPredicator::createOrPropagatePredicates(VPBlockBase *CurrBlock,
VPRegionBlock *Region) {
// Blocks that dominate region exit inherit the predicate from the region.
// Return after setting the predicate.
if (VPDomTree.dominates(CurrBlock, Region->getExit())) {
VPValue *RegionBP = Region->getPredicate();
CurrBlock->setPredicate(RegionBP);
return;
}
// Collect all incoming predicates in a worklist.
std::list<VPValue *> IncomingPredicates;
// Set the builder's insertion point to the top of the current BB
VPBasicBlock *CurrBB = cast<VPBasicBlock>(CurrBlock->getEntryBasicBlock());
Builder.setInsertPoint(CurrBB, CurrBB->begin());
// For each predecessor, generate the VPInstructions required for
// computing 'BP AND (not) CBV" at the top of CurrBB.
// Collect the outcome of this calculation for all predecessors
// into IncomingPredicates.
for (VPBlockBase *PredBlock : CurrBlock->getPredecessors()) {
// Skip back-edges
if (VPBlockUtils::isBackEdge(PredBlock, CurrBlock, VPLI))
continue;
VPValue *IncomingPredicate = nullptr;
unsigned NumPredSuccsNoBE =
VPBlockUtils::countSuccessorsNoBE(PredBlock, VPLI);
// If there is an unconditional branch to the currBB, then we don't create
// edge predicates. We use the predecessor's block predicate instead.
if (NumPredSuccsNoBE == 1)
IncomingPredicate = PredBlock->getPredicate();
else if (NumPredSuccsNoBE == 2) {
// Emit recipes into CurrBlock if required
assert(isa<VPBasicBlock>(PredBlock) && "Only BBs have multiple exits");
IncomingPredicate =
getOrCreateNotPredicate(cast<VPBasicBlock>(PredBlock), CurrBB);
} else
llvm_unreachable("FIXME: switch statement ?");
if (IncomingPredicate)
IncomingPredicates.push_back(IncomingPredicate);
}
// Logically OR all incoming predicates by building the Predicate Tree.
VPValue *Predicate = genPredicateTree(IncomingPredicates);
// Now update the block's predicate with the new one.
CurrBlock->setPredicate(Predicate);
}
// Generate all predicates needed for Region.
void VPlanPredicator::predicateRegionRec(VPRegionBlock *Region) {
VPBasicBlock *EntryBlock = cast<VPBasicBlock>(Region->getEntry());
ReversePostOrderTraversal<VPBlockBase *> RPOT(EntryBlock);
// Generate edge predicates and append them to the block predicate. RPO is
// necessary since the predecessor blocks' block predicate needs to be set
// before the current block's block predicate can be computed.
for (VPBlockBase *Block : RPOT) {
// TODO: Handle nested regions once we start generating the same.
assert(!isa<VPRegionBlock>(Block) && "Nested region not expected");
createOrPropagatePredicates(Block, Region);
}
}
// Linearize the CFG within Region.
// TODO: Predication and linearization need RPOT for every region.
// This traversal is expensive. Since predication is not adding new
// blocks, we should be able to compute RPOT once in predication and
// reuse it here. This becomes even more important once we have nested
// regions.
void VPlanPredicator::linearizeRegionRec(VPRegionBlock *Region) {
ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
VPBlockBase *PrevBlock = nullptr;
for (VPBlockBase *CurrBlock : RPOT) {
// TODO: Handle nested regions once we start generating the same.
assert(!isa<VPRegionBlock>(CurrBlock) && "Nested region not expected");
// Linearize control flow by adding an unconditional edge between PrevBlock
// and CurrBlock skipping loop headers and latches to keep intact loop
// header predecessors and loop latch successors.
if (PrevBlock && !VPLI->isLoopHeader(CurrBlock) &&
!VPBlockUtils::blockIsLoopLatch(PrevBlock, VPLI)) {
LLVM_DEBUG(dbgs() << "Linearizing: " << PrevBlock->getName() << "->"
<< CurrBlock->getName() << "\n");
PrevBlock->clearSuccessors();
CurrBlock->clearPredecessors();
VPBlockUtils::connectBlocks(PrevBlock, CurrBlock);
}
PrevBlock = CurrBlock;
}
}
// Entry point. The driver function for the predicator.
void VPlanPredicator::predicate() {
// Predicate the blocks within Region.
predicateRegionRec(cast<VPRegionBlock>(Plan.getEntry()));
// Linearlize the blocks with Region.
linearizeRegionRec(cast<VPRegionBlock>(Plan.getEntry()));
}
VPlanPredicator::VPlanPredicator(VPlan &Plan)
: Plan(Plan), VPLI(&(Plan.getVPLoopInfo())) {
// FIXME: Predicator is currently computing the dominator information for the
// top region. Once we start storing dominator information in a VPRegionBlock,
// we can avoid this recalculation.
VPDomTree.recalculate(*(cast<VPRegionBlock>(Plan.getEntry())));
}
|