1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
|
//===------- VectorCombine.cpp - Optimize partial vector operations -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass optimizes scalar/vector interactions using target cost models. The
// transforms implemented here may not fit in traditional loop-based or SLP
// vectorization passes.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Vectorize/VectorCombine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Vectorize.h"
#define DEBUG_TYPE "vector-combine"
#include "llvm/Transforms/Utils/InstructionWorklist.h"
using namespace llvm;
using namespace llvm::PatternMatch;
STATISTIC(NumVecLoad, "Number of vector loads formed");
STATISTIC(NumVecCmp, "Number of vector compares formed");
STATISTIC(NumVecBO, "Number of vector binops formed");
STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
STATISTIC(NumScalarBO, "Number of scalar binops formed");
STATISTIC(NumScalarCmp, "Number of scalar compares formed");
static cl::opt<bool> DisableVectorCombine(
"disable-vector-combine", cl::init(false), cl::Hidden,
cl::desc("Disable all vector combine transforms"));
static cl::opt<bool> DisableBinopExtractShuffle(
"disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
cl::desc("Disable binop extract to shuffle transforms"));
static cl::opt<unsigned> MaxInstrsToScan(
"vector-combine-max-scan-instrs", cl::init(30), cl::Hidden,
cl::desc("Max number of instructions to scan for vector combining."));
static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
namespace {
class VectorCombine {
public:
VectorCombine(Function &F, const TargetTransformInfo &TTI,
const DominatorTree &DT, AAResults &AA, AssumptionCache &AC,
bool ScalarizationOnly)
: F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC),
ScalarizationOnly(ScalarizationOnly) {}
bool run();
private:
Function &F;
IRBuilder<> Builder;
const TargetTransformInfo &TTI;
const DominatorTree &DT;
AAResults &AA;
AssumptionCache &AC;
/// If true only perform scalarization combines and do not introduce new
/// vector operations.
bool ScalarizationOnly;
InstructionWorklist Worklist;
bool vectorizeLoadInsert(Instruction &I);
ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
ExtractElementInst *Ext1,
unsigned PreferredExtractIndex) const;
bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
const Instruction &I,
ExtractElementInst *&ConvertToShuffle,
unsigned PreferredExtractIndex);
void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
Instruction &I);
void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
Instruction &I);
bool foldExtractExtract(Instruction &I);
bool foldBitcastShuf(Instruction &I);
bool scalarizeBinopOrCmp(Instruction &I);
bool foldExtractedCmps(Instruction &I);
bool foldSingleElementStore(Instruction &I);
bool scalarizeLoadExtract(Instruction &I);
bool foldShuffleOfBinops(Instruction &I);
void replaceValue(Value &Old, Value &New) {
Old.replaceAllUsesWith(&New);
New.takeName(&Old);
if (auto *NewI = dyn_cast<Instruction>(&New)) {
Worklist.pushUsersToWorkList(*NewI);
Worklist.pushValue(NewI);
}
Worklist.pushValue(&Old);
}
void eraseInstruction(Instruction &I) {
for (Value *Op : I.operands())
Worklist.pushValue(Op);
Worklist.remove(&I);
I.eraseFromParent();
}
};
} // namespace
bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
// Match insert into fixed vector of scalar value.
// TODO: Handle non-zero insert index.
auto *Ty = dyn_cast<FixedVectorType>(I.getType());
Value *Scalar;
if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) ||
!Scalar->hasOneUse())
return false;
// Optionally match an extract from another vector.
Value *X;
bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt()));
if (!HasExtract)
X = Scalar;
// Match source value as load of scalar or vector.
// Do not vectorize scalar load (widening) if atomic/volatile or under
// asan/hwasan/memtag/tsan. The widened load may load data from dirty regions
// or create data races non-existent in the source.
auto *Load = dyn_cast<LoadInst>(X);
if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
mustSuppressSpeculation(*Load))
return false;
const DataLayout &DL = I.getModule()->getDataLayout();
Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
unsigned AS = Load->getPointerAddressSpace();
// We are potentially transforming byte-sized (8-bit) memory accesses, so make
// sure we have all of our type-based constraints in place for this target.
Type *ScalarTy = Scalar->getType();
uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
ScalarSize % 8 != 0)
return false;
// Check safety of replacing the scalar load with a larger vector load.
// We use minimal alignment (maximum flexibility) because we only care about
// the dereferenceable region. When calculating cost and creating a new op,
// we may use a larger value based on alignment attributes.
unsigned MinVecNumElts = MinVectorSize / ScalarSize;
auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
unsigned OffsetEltIndex = 0;
Align Alignment = Load->getAlign();
if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) {
// It is not safe to load directly from the pointer, but we can still peek
// through gep offsets and check if it safe to load from a base address with
// updated alignment. If it is, we can shuffle the element(s) into place
// after loading.
unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType());
APInt Offset(OffsetBitWidth, 0);
SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
// We want to shuffle the result down from a high element of a vector, so
// the offset must be positive.
if (Offset.isNegative())
return false;
// The offset must be a multiple of the scalar element to shuffle cleanly
// in the element's size.
uint64_t ScalarSizeInBytes = ScalarSize / 8;
if (Offset.urem(ScalarSizeInBytes) != 0)
return false;
// If we load MinVecNumElts, will our target element still be loaded?
OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue();
if (OffsetEltIndex >= MinVecNumElts)
return false;
if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT))
return false;
// Update alignment with offset value. Note that the offset could be negated
// to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but
// negation does not change the result of the alignment calculation.
Alignment = commonAlignment(Alignment, Offset.getZExtValue());
}
// Original pattern: insertelt undef, load [free casts of] PtrOp, 0
// Use the greater of the alignment on the load or its source pointer.
Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment);
Type *LoadTy = Load->getType();
InstructionCost OldCost =
TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS);
APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts,
/* Insert */ true, HasExtract);
// New pattern: load VecPtr
InstructionCost NewCost =
TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS);
// Optionally, we are shuffling the loaded vector element(s) into place.
// For the mask set everything but element 0 to undef to prevent poison from
// propagating from the extra loaded memory. This will also optionally
// shrink/grow the vector from the loaded size to the output size.
// We assume this operation has no cost in codegen if there was no offset.
// Note that we could use freeze to avoid poison problems, but then we might
// still need a shuffle to change the vector size.
unsigned OutputNumElts = Ty->getNumElements();
SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem);
assert(OffsetEltIndex < MinVecNumElts && "Address offset too big");
Mask[0] = OffsetEltIndex;
if (OffsetEltIndex)
NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask);
// We can aggressively convert to the vector form because the backend can
// invert this transform if it does not result in a performance win.
if (OldCost < NewCost || !NewCost.isValid())
return false;
// It is safe and potentially profitable to load a vector directly:
// inselt undef, load Scalar, 0 --> load VecPtr
IRBuilder<> Builder(Load);
Value *CastedPtr = Builder.CreatePointerBitCastOrAddrSpaceCast(
SrcPtr, MinVecTy->getPointerTo(AS));
Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
VecLd = Builder.CreateShuffleVector(VecLd, Mask);
replaceValue(I, *VecLd);
++NumVecLoad;
return true;
}
/// Determine which, if any, of the inputs should be replaced by a shuffle
/// followed by extract from a different index.
ExtractElementInst *VectorCombine::getShuffleExtract(
ExtractElementInst *Ext0, ExtractElementInst *Ext1,
unsigned PreferredExtractIndex = InvalidIndex) const {
assert(isa<ConstantInt>(Ext0->getIndexOperand()) &&
isa<ConstantInt>(Ext1->getIndexOperand()) &&
"Expected constant extract indexes");
unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue();
unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue();
// If the extract indexes are identical, no shuffle is needed.
if (Index0 == Index1)
return nullptr;
Type *VecTy = Ext0->getVectorOperand()->getType();
assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
InstructionCost Cost0 =
TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
InstructionCost Cost1 =
TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
// If both costs are invalid no shuffle is needed
if (!Cost0.isValid() && !Cost1.isValid())
return nullptr;
// We are extracting from 2 different indexes, so one operand must be shuffled
// before performing a vector operation and/or extract. The more expensive
// extract will be replaced by a shuffle.
if (Cost0 > Cost1)
return Ext0;
if (Cost1 > Cost0)
return Ext1;
// If the costs are equal and there is a preferred extract index, shuffle the
// opposite operand.
if (PreferredExtractIndex == Index0)
return Ext1;
if (PreferredExtractIndex == Index1)
return Ext0;
// Otherwise, replace the extract with the higher index.
return Index0 > Index1 ? Ext0 : Ext1;
}
/// Compare the relative costs of 2 extracts followed by scalar operation vs.
/// vector operation(s) followed by extract. Return true if the existing
/// instructions are cheaper than a vector alternative. Otherwise, return false
/// and if one of the extracts should be transformed to a shufflevector, set
/// \p ConvertToShuffle to that extract instruction.
bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
ExtractElementInst *Ext1,
const Instruction &I,
ExtractElementInst *&ConvertToShuffle,
unsigned PreferredExtractIndex) {
assert(isa<ConstantInt>(Ext0->getOperand(1)) &&
isa<ConstantInt>(Ext1->getOperand(1)) &&
"Expected constant extract indexes");
unsigned Opcode = I.getOpcode();
Type *ScalarTy = Ext0->getType();
auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
InstructionCost ScalarOpCost, VectorOpCost;
// Get cost estimates for scalar and vector versions of the operation.
bool IsBinOp = Instruction::isBinaryOp(Opcode);
if (IsBinOp) {
ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
} else {
assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
"Expected a compare");
CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
ScalarOpCost = TTI.getCmpSelInstrCost(
Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
VectorOpCost = TTI.getCmpSelInstrCost(
Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
}
// Get cost estimates for the extract elements. These costs will factor into
// both sequences.
unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue();
unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue();
InstructionCost Extract0Cost =
TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index);
InstructionCost Extract1Cost =
TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index);
// A more expensive extract will always be replaced by a splat shuffle.
// For example, if Ext0 is more expensive:
// opcode (extelt V0, Ext0), (ext V1, Ext1) -->
// extelt (opcode (splat V0, Ext0), V1), Ext1
// TODO: Evaluate whether that always results in lowest cost. Alternatively,
// check the cost of creating a broadcast shuffle and shuffling both
// operands to element 0.
InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
// Extra uses of the extracts mean that we include those costs in the
// vector total because those instructions will not be eliminated.
InstructionCost OldCost, NewCost;
if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
// Handle a special case. If the 2 extracts are identical, adjust the
// formulas to account for that. The extra use charge allows for either the
// CSE'd pattern or an unoptimized form with identical values:
// opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
: !Ext0->hasOneUse() || !Ext1->hasOneUse();
OldCost = CheapExtractCost + ScalarOpCost;
NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
} else {
// Handle the general case. Each extract is actually a different value:
// opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
NewCost = VectorOpCost + CheapExtractCost +
!Ext0->hasOneUse() * Extract0Cost +
!Ext1->hasOneUse() * Extract1Cost;
}
ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
if (ConvertToShuffle) {
if (IsBinOp && DisableBinopExtractShuffle)
return true;
// If we are extracting from 2 different indexes, then one operand must be
// shuffled before performing the vector operation. The shuffle mask is
// undefined except for 1 lane that is being translated to the remaining
// extraction lane. Therefore, it is a splat shuffle. Ex:
// ShufMask = { undef, undef, 0, undef }
// TODO: The cost model has an option for a "broadcast" shuffle
// (splat-from-element-0), but no option for a more general splat.
NewCost +=
TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
}
// Aggressively form a vector op if the cost is equal because the transform
// may enable further optimization.
// Codegen can reverse this transform (scalarize) if it was not profitable.
return OldCost < NewCost;
}
/// Create a shuffle that translates (shifts) 1 element from the input vector
/// to a new element location.
static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
unsigned NewIndex, IRBuilder<> &Builder) {
// The shuffle mask is undefined except for 1 lane that is being translated
// to the new element index. Example for OldIndex == 2 and NewIndex == 0:
// ShufMask = { 2, undef, undef, undef }
auto *VecTy = cast<FixedVectorType>(Vec->getType());
SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
ShufMask[NewIndex] = OldIndex;
return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
}
/// Given an extract element instruction with constant index operand, shuffle
/// the source vector (shift the scalar element) to a NewIndex for extraction.
/// Return null if the input can be constant folded, so that we are not creating
/// unnecessary instructions.
static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
unsigned NewIndex,
IRBuilder<> &Builder) {
// If the extract can be constant-folded, this code is unsimplified. Defer
// to other passes to handle that.
Value *X = ExtElt->getVectorOperand();
Value *C = ExtElt->getIndexOperand();
assert(isa<ConstantInt>(C) && "Expected a constant index operand");
if (isa<Constant>(X))
return nullptr;
Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
NewIndex, Builder);
return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
}
/// Try to reduce extract element costs by converting scalar compares to vector
/// compares followed by extract.
/// cmp (ext0 V0, C), (ext1 V1, C)
void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
ExtractElementInst *Ext1, Instruction &I) {
assert(isa<CmpInst>(&I) && "Expected a compare");
assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
"Expected matching constant extract indexes");
// cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
++NumVecCmp;
CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
replaceValue(I, *NewExt);
}
/// Try to reduce extract element costs by converting scalar binops to vector
/// binops followed by extract.
/// bo (ext0 V0, C), (ext1 V1, C)
void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
ExtractElementInst *Ext1, Instruction &I) {
assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
"Expected matching constant extract indexes");
// bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
++NumVecBO;
Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
Value *VecBO =
Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
// All IR flags are safe to back-propagate because any potential poison
// created in unused vector elements is discarded by the extract.
if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
VecBOInst->copyIRFlags(&I);
Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
replaceValue(I, *NewExt);
}
/// Match an instruction with extracted vector operands.
bool VectorCombine::foldExtractExtract(Instruction &I) {
// It is not safe to transform things like div, urem, etc. because we may
// create undefined behavior when executing those on unknown vector elements.
if (!isSafeToSpeculativelyExecute(&I))
return false;
Instruction *I0, *I1;
CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
!match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
return false;
Value *V0, *V1;
uint64_t C0, C1;
if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
!match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
V0->getType() != V1->getType())
return false;
// If the scalar value 'I' is going to be re-inserted into a vector, then try
// to create an extract to that same element. The extract/insert can be
// reduced to a "select shuffle".
// TODO: If we add a larger pattern match that starts from an insert, this
// probably becomes unnecessary.
auto *Ext0 = cast<ExtractElementInst>(I0);
auto *Ext1 = cast<ExtractElementInst>(I1);
uint64_t InsertIndex = InvalidIndex;
if (I.hasOneUse())
match(I.user_back(),
m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
ExtractElementInst *ExtractToChange;
if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex))
return false;
if (ExtractToChange) {
unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
ExtractElementInst *NewExtract =
translateExtract(ExtractToChange, CheapExtractIdx, Builder);
if (!NewExtract)
return false;
if (ExtractToChange == Ext0)
Ext0 = NewExtract;
else
Ext1 = NewExtract;
}
if (Pred != CmpInst::BAD_ICMP_PREDICATE)
foldExtExtCmp(Ext0, Ext1, I);
else
foldExtExtBinop(Ext0, Ext1, I);
Worklist.push(Ext0);
Worklist.push(Ext1);
return true;
}
/// If this is a bitcast of a shuffle, try to bitcast the source vector to the
/// destination type followed by shuffle. This can enable further transforms by
/// moving bitcasts or shuffles together.
bool VectorCombine::foldBitcastShuf(Instruction &I) {
Value *V;
ArrayRef<int> Mask;
if (!match(&I, m_BitCast(
m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))))))
return false;
// 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
// scalable type is unknown; Second, we cannot reason if the narrowed shuffle
// mask for scalable type is a splat or not.
// 2) Disallow non-vector casts and length-changing shuffles.
// TODO: We could allow any shuffle.
auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
auto *SrcTy = dyn_cast<FixedVectorType>(V->getType());
if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy)
return false;
unsigned DestNumElts = DestTy->getNumElements();
unsigned SrcNumElts = SrcTy->getNumElements();
SmallVector<int, 16> NewMask;
if (SrcNumElts <= DestNumElts) {
// The bitcast is from wide to narrow/equal elements. The shuffle mask can
// always be expanded to the equivalent form choosing narrower elements.
assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask");
unsigned ScaleFactor = DestNumElts / SrcNumElts;
narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
} else {
// The bitcast is from narrow elements to wide elements. The shuffle mask
// must choose consecutive elements to allow casting first.
assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask");
unsigned ScaleFactor = SrcNumElts / DestNumElts;
if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
return false;
}
// The new shuffle must not cost more than the old shuffle. The bitcast is
// moved ahead of the shuffle, so assume that it has the same cost as before.
InstructionCost DestCost = TTI.getShuffleCost(
TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask);
InstructionCost SrcCost =
TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask);
if (DestCost > SrcCost || !DestCost.isValid())
return false;
// bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
++NumShufOfBitcast;
Value *CastV = Builder.CreateBitCast(V, DestTy);
Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask);
replaceValue(I, *Shuf);
return true;
}
/// Match a vector binop or compare instruction with at least one inserted
/// scalar operand and convert to scalar binop/cmp followed by insertelement.
bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
Value *Ins0, *Ins1;
if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
!match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
return false;
// Do not convert the vector condition of a vector select into a scalar
// condition. That may cause problems for codegen because of differences in
// boolean formats and register-file transfers.
// TODO: Can we account for that in the cost model?
bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
if (IsCmp)
for (User *U : I.users())
if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
return false;
// Match against one or both scalar values being inserted into constant
// vectors:
// vec_op VecC0, (inselt VecC1, V1, Index)
// vec_op (inselt VecC0, V0, Index), VecC1
// vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
// TODO: Deal with mismatched index constants and variable indexes?
Constant *VecC0 = nullptr, *VecC1 = nullptr;
Value *V0 = nullptr, *V1 = nullptr;
uint64_t Index0 = 0, Index1 = 0;
if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
m_ConstantInt(Index0))) &&
!match(Ins0, m_Constant(VecC0)))
return false;
if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
m_ConstantInt(Index1))) &&
!match(Ins1, m_Constant(VecC1)))
return false;
bool IsConst0 = !V0;
bool IsConst1 = !V1;
if (IsConst0 && IsConst1)
return false;
if (!IsConst0 && !IsConst1 && Index0 != Index1)
return false;
// Bail for single insertion if it is a load.
// TODO: Handle this once getVectorInstrCost can cost for load/stores.
auto *I0 = dyn_cast_or_null<Instruction>(V0);
auto *I1 = dyn_cast_or_null<Instruction>(V1);
if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
(IsConst1 && I0 && I0->mayReadFromMemory()))
return false;
uint64_t Index = IsConst0 ? Index1 : Index0;
Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
Type *VecTy = I.getType();
assert(VecTy->isVectorTy() &&
(IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
(ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
ScalarTy->isPointerTy()) &&
"Unexpected types for insert element into binop or cmp");
unsigned Opcode = I.getOpcode();
InstructionCost ScalarOpCost, VectorOpCost;
if (IsCmp) {
CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
ScalarOpCost = TTI.getCmpSelInstrCost(
Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
VectorOpCost = TTI.getCmpSelInstrCost(
Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
} else {
ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
}
// Get cost estimate for the insert element. This cost will factor into
// both sequences.
InstructionCost InsertCost =
TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index);
InstructionCost OldCost =
(IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost;
InstructionCost NewCost = ScalarOpCost + InsertCost +
(IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
(IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
// We want to scalarize unless the vector variant actually has lower cost.
if (OldCost < NewCost || !NewCost.isValid())
return false;
// vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
// inselt NewVecC, (scalar_op V0, V1), Index
if (IsCmp)
++NumScalarCmp;
else
++NumScalarBO;
// For constant cases, extract the scalar element, this should constant fold.
if (IsConst0)
V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
if (IsConst1)
V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
Value *Scalar =
IsCmp ? Builder.CreateCmp(Pred, V0, V1)
: Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
Scalar->setName(I.getName() + ".scalar");
// All IR flags are safe to back-propagate. There is no potential for extra
// poison to be created by the scalar instruction.
if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
ScalarInst->copyIRFlags(&I);
// Fold the vector constants in the original vectors into a new base vector.
Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1)
: ConstantExpr::get(Opcode, VecC0, VecC1);
Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
replaceValue(I, *Insert);
return true;
}
/// Try to combine a scalar binop + 2 scalar compares of extracted elements of
/// a vector into vector operations followed by extract. Note: The SLP pass
/// may miss this pattern because of implementation problems.
bool VectorCombine::foldExtractedCmps(Instruction &I) {
// We are looking for a scalar binop of booleans.
// binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1))
return false;
// The compare predicates should match, and each compare should have a
// constant operand.
// TODO: Relax the one-use constraints.
Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
Instruction *I0, *I1;
Constant *C0, *C1;
CmpInst::Predicate P0, P1;
if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) ||
!match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) ||
P0 != P1)
return false;
// The compare operands must be extracts of the same vector with constant
// extract indexes.
// TODO: Relax the one-use constraints.
Value *X;
uint64_t Index0, Index1;
if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) ||
!match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1)))))
return false;
auto *Ext0 = cast<ExtractElementInst>(I0);
auto *Ext1 = cast<ExtractElementInst>(I1);
ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1);
if (!ConvertToShuf)
return false;
// The original scalar pattern is:
// binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
CmpInst::Predicate Pred = P0;
unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp
: Instruction::ICmp;
auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
if (!VecTy)
return false;
InstructionCost OldCost =
TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
OldCost +=
TTI.getCmpSelInstrCost(CmpOpcode, I0->getType(),
CmpInst::makeCmpResultType(I0->getType()), Pred) *
2;
OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType());
// The proposed vector pattern is:
// vcmp = cmp Pred X, VecC
// ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
InstructionCost NewCost = TTI.getCmpSelInstrCost(
CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred);
SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
ShufMask[CheapIndex] = ExpensiveIndex;
NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy,
ShufMask);
NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy);
NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex);
// Aggressively form vector ops if the cost is equal because the transform
// may enable further optimization.
// Codegen can reverse this transform (scalarize) if it was not profitable.
if (OldCost < NewCost || !NewCost.isValid())
return false;
// Create a vector constant from the 2 scalar constants.
SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
UndefValue::get(VecTy->getElementType()));
CmpC[Index0] = C0;
CmpC[Index1] = C1;
Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
VCmp, Shuf);
Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
replaceValue(I, *NewExt);
++NumVecCmpBO;
return true;
}
// Check if memory loc modified between two instrs in the same BB
static bool isMemModifiedBetween(BasicBlock::iterator Begin,
BasicBlock::iterator End,
const MemoryLocation &Loc, AAResults &AA) {
unsigned NumScanned = 0;
return std::any_of(Begin, End, [&](const Instruction &Instr) {
return isModSet(AA.getModRefInfo(&Instr, Loc)) ||
++NumScanned > MaxInstrsToScan;
});
}
/// Helper class to indicate whether a vector index can be safely scalarized and
/// if a freeze needs to be inserted.
class ScalarizationResult {
enum class StatusTy { Unsafe, Safe, SafeWithFreeze };
StatusTy Status;
Value *ToFreeze;
ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr)
: Status(Status), ToFreeze(ToFreeze) {}
public:
ScalarizationResult(const ScalarizationResult &Other) = default;
~ScalarizationResult() {
assert(!ToFreeze && "freeze() not called with ToFreeze being set");
}
static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; }
static ScalarizationResult safe() { return {StatusTy::Safe}; }
static ScalarizationResult safeWithFreeze(Value *ToFreeze) {
return {StatusTy::SafeWithFreeze, ToFreeze};
}
/// Returns true if the index can be scalarize without requiring a freeze.
bool isSafe() const { return Status == StatusTy::Safe; }
/// Returns true if the index cannot be scalarized.
bool isUnsafe() const { return Status == StatusTy::Unsafe; }
/// Returns true if the index can be scalarize, but requires inserting a
/// freeze.
bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; }
/// Reset the state of Unsafe and clear ToFreze if set.
void discard() {
ToFreeze = nullptr;
Status = StatusTy::Unsafe;
}
/// Freeze the ToFreeze and update the use in \p User to use it.
void freeze(IRBuilder<> &Builder, Instruction &UserI) {
assert(isSafeWithFreeze() &&
"should only be used when freezing is required");
assert(is_contained(ToFreeze->users(), &UserI) &&
"UserI must be a user of ToFreeze");
IRBuilder<>::InsertPointGuard Guard(Builder);
Builder.SetInsertPoint(cast<Instruction>(&UserI));
Value *Frozen =
Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen");
for (Use &U : make_early_inc_range((UserI.operands())))
if (U.get() == ToFreeze)
U.set(Frozen);
ToFreeze = nullptr;
}
};
/// Check if it is legal to scalarize a memory access to \p VecTy at index \p
/// Idx. \p Idx must access a valid vector element.
static ScalarizationResult canScalarizeAccess(FixedVectorType *VecTy,
Value *Idx, Instruction *CtxI,
AssumptionCache &AC,
const DominatorTree &DT) {
if (auto *C = dyn_cast<ConstantInt>(Idx)) {
if (C->getValue().ult(VecTy->getNumElements()))
return ScalarizationResult::safe();
return ScalarizationResult::unsafe();
}
unsigned IntWidth = Idx->getType()->getScalarSizeInBits();
APInt Zero(IntWidth, 0);
APInt MaxElts(IntWidth, VecTy->getNumElements());
ConstantRange ValidIndices(Zero, MaxElts);
ConstantRange IdxRange(IntWidth, true);
if (isGuaranteedNotToBePoison(Idx, &AC)) {
if (ValidIndices.contains(computeConstantRange(Idx, /* ForSigned */ false,
true, &AC, CtxI, &DT)))
return ScalarizationResult::safe();
return ScalarizationResult::unsafe();
}
// If the index may be poison, check if we can insert a freeze before the
// range of the index is restricted.
Value *IdxBase;
ConstantInt *CI;
if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) {
IdxRange = IdxRange.binaryAnd(CI->getValue());
} else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) {
IdxRange = IdxRange.urem(CI->getValue());
}
if (ValidIndices.contains(IdxRange))
return ScalarizationResult::safeWithFreeze(IdxBase);
return ScalarizationResult::unsafe();
}
/// The memory operation on a vector of \p ScalarType had alignment of
/// \p VectorAlignment. Compute the maximal, but conservatively correct,
/// alignment that will be valid for the memory operation on a single scalar
/// element of the same type with index \p Idx.
static Align computeAlignmentAfterScalarization(Align VectorAlignment,
Type *ScalarType, Value *Idx,
const DataLayout &DL) {
if (auto *C = dyn_cast<ConstantInt>(Idx))
return commonAlignment(VectorAlignment,
C->getZExtValue() * DL.getTypeStoreSize(ScalarType));
return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType));
}
// Combine patterns like:
// %0 = load <4 x i32>, <4 x i32>* %a
// %1 = insertelement <4 x i32> %0, i32 %b, i32 1
// store <4 x i32> %1, <4 x i32>* %a
// to:
// %0 = bitcast <4 x i32>* %a to i32*
// %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1
// store i32 %b, i32* %1
bool VectorCombine::foldSingleElementStore(Instruction &I) {
StoreInst *SI = dyn_cast<StoreInst>(&I);
if (!SI || !SI->isSimple() ||
!isa<FixedVectorType>(SI->getValueOperand()->getType()))
return false;
// TODO: Combine more complicated patterns (multiple insert) by referencing
// TargetTransformInfo.
Instruction *Source;
Value *NewElement;
Value *Idx;
if (!match(SI->getValueOperand(),
m_InsertElt(m_Instruction(Source), m_Value(NewElement),
m_Value(Idx))))
return false;
if (auto *Load = dyn_cast<LoadInst>(Source)) {
auto VecTy = cast<FixedVectorType>(SI->getValueOperand()->getType());
const DataLayout &DL = I.getModule()->getDataLayout();
Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts();
// Don't optimize for atomic/volatile load or store. Ensure memory is not
// modified between, vector type matches store size, and index is inbounds.
if (!Load->isSimple() || Load->getParent() != SI->getParent() ||
!DL.typeSizeEqualsStoreSize(Load->getType()) ||
SrcAddr != SI->getPointerOperand()->stripPointerCasts())
return false;
auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT);
if (ScalarizableIdx.isUnsafe() ||
isMemModifiedBetween(Load->getIterator(), SI->getIterator(),
MemoryLocation::get(SI), AA))
return false;
if (ScalarizableIdx.isSafeWithFreeze())
ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx));
Value *GEP = Builder.CreateInBoundsGEP(
SI->getValueOperand()->getType(), SI->getPointerOperand(),
{ConstantInt::get(Idx->getType(), 0), Idx});
StoreInst *NSI = Builder.CreateStore(NewElement, GEP);
NSI->copyMetadata(*SI);
Align ScalarOpAlignment = computeAlignmentAfterScalarization(
std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx,
DL);
NSI->setAlignment(ScalarOpAlignment);
replaceValue(I, *NSI);
eraseInstruction(I);
return true;
}
return false;
}
/// Try to scalarize vector loads feeding extractelement instructions.
bool VectorCombine::scalarizeLoadExtract(Instruction &I) {
Value *Ptr;
if (!match(&I, m_Load(m_Value(Ptr))))
return false;
auto *LI = cast<LoadInst>(&I);
const DataLayout &DL = I.getModule()->getDataLayout();
if (LI->isVolatile() || !DL.typeSizeEqualsStoreSize(LI->getType()))
return false;
auto *FixedVT = dyn_cast<FixedVectorType>(LI->getType());
if (!FixedVT)
return false;
InstructionCost OriginalCost =
TTI.getMemoryOpCost(Instruction::Load, LI->getType(), LI->getAlign(),
LI->getPointerAddressSpace());
InstructionCost ScalarizedCost = 0;
Instruction *LastCheckedInst = LI;
unsigned NumInstChecked = 0;
// Check if all users of the load are extracts with no memory modifications
// between the load and the extract. Compute the cost of both the original
// code and the scalarized version.
for (User *U : LI->users()) {
auto *UI = dyn_cast<ExtractElementInst>(U);
if (!UI || UI->getParent() != LI->getParent())
return false;
if (!isGuaranteedNotToBePoison(UI->getOperand(1), &AC, LI, &DT))
return false;
// Check if any instruction between the load and the extract may modify
// memory.
if (LastCheckedInst->comesBefore(UI)) {
for (Instruction &I :
make_range(std::next(LI->getIterator()), UI->getIterator())) {
// Bail out if we reached the check limit or the instruction may write
// to memory.
if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory())
return false;
NumInstChecked++;
}
}
if (!LastCheckedInst)
LastCheckedInst = UI;
else if (LastCheckedInst->comesBefore(UI))
LastCheckedInst = UI;
auto ScalarIdx = canScalarizeAccess(FixedVT, UI->getOperand(1), &I, AC, DT);
if (!ScalarIdx.isSafe()) {
// TODO: Freeze index if it is safe to do so.
ScalarIdx.discard();
return false;
}
auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1));
OriginalCost +=
TTI.getVectorInstrCost(Instruction::ExtractElement, LI->getType(),
Index ? Index->getZExtValue() : -1);
ScalarizedCost +=
TTI.getMemoryOpCost(Instruction::Load, FixedVT->getElementType(),
Align(1), LI->getPointerAddressSpace());
ScalarizedCost += TTI.getAddressComputationCost(FixedVT->getElementType());
}
if (ScalarizedCost >= OriginalCost)
return false;
// Replace extracts with narrow scalar loads.
for (User *U : LI->users()) {
auto *EI = cast<ExtractElementInst>(U);
Builder.SetInsertPoint(EI);
Value *Idx = EI->getOperand(1);
Value *GEP =
Builder.CreateInBoundsGEP(FixedVT, Ptr, {Builder.getInt32(0), Idx});
auto *NewLoad = cast<LoadInst>(Builder.CreateLoad(
FixedVT->getElementType(), GEP, EI->getName() + ".scalar"));
Align ScalarOpAlignment = computeAlignmentAfterScalarization(
LI->getAlign(), FixedVT->getElementType(), Idx, DL);
NewLoad->setAlignment(ScalarOpAlignment);
replaceValue(*EI, *NewLoad);
}
return true;
}
/// Try to convert "shuffle (binop), (binop)" with a shared binop operand into
/// "binop (shuffle), (shuffle)".
bool VectorCombine::foldShuffleOfBinops(Instruction &I) {
auto *VecTy = dyn_cast<FixedVectorType>(I.getType());
if (!VecTy)
return false;
BinaryOperator *B0, *B1;
ArrayRef<int> Mask;
if (!match(&I, m_Shuffle(m_OneUse(m_BinOp(B0)), m_OneUse(m_BinOp(B1)),
m_Mask(Mask))) ||
B0->getOpcode() != B1->getOpcode() || B0->getType() != VecTy)
return false;
// Try to replace a binop with a shuffle if the shuffle is not costly.
// The new shuffle will choose from a single, common operand, so it may be
// cheaper than the existing two-operand shuffle.
SmallVector<int> UnaryMask = createUnaryMask(Mask, Mask.size());
Instruction::BinaryOps Opcode = B0->getOpcode();
InstructionCost BinopCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
InstructionCost ShufCost = TTI.getShuffleCost(
TargetTransformInfo::SK_PermuteSingleSrc, VecTy, UnaryMask);
if (ShufCost > BinopCost)
return false;
// If we have something like "add X, Y" and "add Z, X", swap ops to match.
Value *X = B0->getOperand(0), *Y = B0->getOperand(1);
Value *Z = B1->getOperand(0), *W = B1->getOperand(1);
if (BinaryOperator::isCommutative(Opcode) && X != Z && Y != W)
std::swap(X, Y);
Value *Shuf0, *Shuf1;
if (X == Z) {
// shuf (bo X, Y), (bo X, W) --> bo (shuf X), (shuf Y, W)
Shuf0 = Builder.CreateShuffleVector(X, UnaryMask);
Shuf1 = Builder.CreateShuffleVector(Y, W, Mask);
} else if (Y == W) {
// shuf (bo X, Y), (bo Z, Y) --> bo (shuf X, Z), (shuf Y)
Shuf0 = Builder.CreateShuffleVector(X, Z, Mask);
Shuf1 = Builder.CreateShuffleVector(Y, UnaryMask);
} else {
return false;
}
Value *NewBO = Builder.CreateBinOp(Opcode, Shuf0, Shuf1);
// Intersect flags from the old binops.
if (auto *NewInst = dyn_cast<Instruction>(NewBO)) {
NewInst->copyIRFlags(B0);
NewInst->andIRFlags(B1);
}
replaceValue(I, *NewBO);
return true;
}
/// This is the entry point for all transforms. Pass manager differences are
/// handled in the callers of this function.
bool VectorCombine::run() {
if (DisableVectorCombine)
return false;
// Don't attempt vectorization if the target does not support vectors.
if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
return false;
bool MadeChange = false;
auto FoldInst = [this, &MadeChange](Instruction &I) {
Builder.SetInsertPoint(&I);
if (!ScalarizationOnly) {
MadeChange |= vectorizeLoadInsert(I);
MadeChange |= foldExtractExtract(I);
MadeChange |= foldBitcastShuf(I);
MadeChange |= foldExtractedCmps(I);
MadeChange |= foldShuffleOfBinops(I);
}
MadeChange |= scalarizeBinopOrCmp(I);
MadeChange |= scalarizeLoadExtract(I);
MadeChange |= foldSingleElementStore(I);
};
for (BasicBlock &BB : F) {
// Ignore unreachable basic blocks.
if (!DT.isReachableFromEntry(&BB))
continue;
// Use early increment range so that we can erase instructions in loop.
for (Instruction &I : make_early_inc_range(BB)) {
if (I.isDebugOrPseudoInst())
continue;
FoldInst(I);
}
}
while (!Worklist.isEmpty()) {
Instruction *I = Worklist.removeOne();
if (!I)
continue;
if (isInstructionTriviallyDead(I)) {
eraseInstruction(*I);
continue;
}
FoldInst(*I);
}
return MadeChange;
}
// Pass manager boilerplate below here.
namespace {
class VectorCombineLegacyPass : public FunctionPass {
public:
static char ID;
VectorCombineLegacyPass() : FunctionPass(ID) {
initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<AAResultsWrapperPass>();
AU.setPreservesCFG();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
AU.addPreserved<BasicAAWrapperPass>();
FunctionPass::getAnalysisUsage(AU);
}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
VectorCombine Combiner(F, TTI, DT, AA, AC, false);
return Combiner.run();
}
};
} // namespace
char VectorCombineLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
"Optimize scalar/vector ops", false,
false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
"Optimize scalar/vector ops", false, false)
Pass *llvm::createVectorCombinePass() {
return new VectorCombineLegacyPass();
}
PreservedAnalyses VectorCombinePass::run(Function &F,
FunctionAnalysisManager &FAM) {
auto &AC = FAM.getResult<AssumptionAnalysis>(F);
TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
AAResults &AA = FAM.getResult<AAManager>(F);
VectorCombine Combiner(F, TTI, DT, AA, AC, ScalarizationOnly);
if (!Combiner.run())
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
return PA;
}
|