File: tripmultiple_calculation.ll

package info (click to toggle)
llvm-toolchain-14 1%3A14.0.6-12
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,496,180 kB
  • sloc: cpp: 5,593,972; ansic: 986,872; asm: 585,869; python: 184,223; objc: 72,530; lisp: 31,119; f90: 27,793; javascript: 9,780; pascal: 9,762; sh: 9,482; perl: 7,468; ml: 5,432; awk: 3,523; makefile: 2,538; xml: 953; cs: 573; fortran: 567
file content (149 lines) | stat: -rw-r--r-- 4,322 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
; RUN: opt -S -disable-output "-passes=print<scalar-evolution>" < %s 2>&1 2>&1 | FileCheck %s

; umin is represented using -1 * umax in scalar evolution. -1 is considered as the
; constant of the multiply expression (-1 * ((-1 + (-1 * %a)) umax (-1 + (-1 * %b)))).
; Returns the greatest power of 2 divisor by evaluating the minimal trailing zeros
; for the trip count expression.
;
; int foo(uint32_t a, uint32_t b, uint32_t *c) {
;   for (uint32_t i = 0; i < (uint32_t)(a < b ? a : b) + 1; i++)
;     c[i] = i;
;   return 0;
; }
;
; CHECK: Loop %for.body: Trip multiple is 1

define i32 @foo(i32 %a, i32 %b, i32* %c) {
entry:
  %cmp = icmp ult i32 %a, %b
  %cond = select i1 %cmp, i32 %a, i32 %b
  %add = add i32 %cond, 1
  %cmp18 = icmp eq i32 %add, 0
  br i1 %cmp18, label %for.cond.cleanup, label %for.body.preheader

for.body.preheader:                               ; preds = %entry
  br label %for.body

for.cond.cleanup.loopexit:                        ; preds = %for.body
  br label %for.cond.cleanup

for.cond.cleanup:                                 ; preds = %for.cond.cleanup.loopexit, %entry
  ret i32 0

for.body:                                         ; preds = %for.body.preheader, %for.body
  %i.09 = phi i32 [ %inc, %for.body ], [ 0, %for.body.preheader ]
  %arrayidx = getelementptr inbounds i32, i32* %c, i32 %i.09
  store i32 %i.09, i32* %arrayidx, align 4
  %inc = add nuw i32 %i.09, 1
  %cmp1 = icmp ult i32 %inc, %add
  br i1 %cmp1, label %for.body, label %for.cond.cleanup.loopexit
}

; Overflow may happen for the multiply expression n * 3, verify that trip
; multiple is set to 1 if NUW/NSW are not set.
;
; __attribute__((noinline)) void a(unsigned n) {
;   #pragma unroll(3)
;   for (unsigned i = 0; i != n * 3; ++i)
;     printf("TEST%u\n", i);
; }
; int main() { a(2863311531U); }
;
; CHECK: Loop %for.body: Trip multiple is 1

@.str2 = private unnamed_addr constant [8 x i8] c"TEST%u\0A\00", align 1

define void @foo2(i32 %n) {
entry:
  %mul = mul i32 %n, 3
  %cmp4 = icmp eq i32 %mul, 0
  br i1 %cmp4, label %for.cond.cleanup, label %for.body.preheader

for.body.preheader:                               ; preds = %entry
  br label %for.body

for.cond.cleanup.loopexit:                        ; preds = %for.body
  br label %for.cond.cleanup

for.cond.cleanup:                                 ; preds = %for.cond.cleanup.loopexit, %entry
  ret void

for.body:                                         ; preds = %for.body.preheader, %for.body
  %i.05 = phi i32 [ %inc, %for.body ], [ 0, %for.body.preheader ]
  %call = tail call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([8 x i8], [8 x i8]* @.str2, i32 0, i32 0), i32 %i.05)
  %inc = add nuw i32 %i.05, 1
  %cmp = icmp eq i32 %inc, %mul
  br i1 %cmp, label %for.cond.cleanup.loopexit, label %for.body
}

declare i32 @printf(i8* nocapture readonly, ...)


; If we couldn't prove no overflow for the multiply expression 24 * n,
; returns the greatest power of 2 divisor. If overflows happens
; the trip count is still divisible by the greatest power of 2 divisor.
;
; CHECK: Loop %l3: Trip multiple is 8

declare void @f()

define i32 @foo3(i32 %n) {
entry:
  %loop_ctl = mul i32 %n, 24
  br label %l3

l3:
  %x.0 = phi i32 [ 0, %entry ], [ %inc, %l3 ]
  call void @f()
  %inc = add i32 %x.0, 1
  %exitcond = icmp eq i32 %inc, %loop_ctl
  br i1 %exitcond, label %exit, label %l3

exit:
  ret i32 0
}

; If the trip count is a constant, verify that we obtained the trip
; count itself. For huge trip counts, or zero, we return 1.
;
; CHECK: Loop %l3: Trip multiple is 3

define i32 @foo4(i32 %n) {
entry:
  br label %l3

l3:
  %x.0 = phi i32 [ 0, %entry ], [ %inc, %l3 ]
  call void @f()
  %inc = add i32 %x.0, 1
  %exitcond = icmp eq i32 %inc, 3
  br i1 %exitcond, label %exit, label %l3

exit:
  ret i32 0
}

; If there are multiple exits, the result is the GCD of the multiples
; of each individual exit (since we don't know which is taken).

; CHECK: Loop %l4: Trip multiple is 50

define i32 @foo5(i32 %n) {
entry:
  br label %l4

l4:
  %x.0 = phi i32 [ 0, %entry ], [ %inc, %l4-latch ]
  call void @f()
  %inc = add i32 %x.0, 1
  %earlycond = icmp eq i32 %inc, 150
  br i1 %earlycond, label %exit, label %l4-latch

l4-latch:
  %exitcond = icmp eq i32 %inc, 200
  br i1 %exitcond, label %exit, label %l4

exit:
  ret i32 0
}