1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
; RUN: llc < %s -march=nvptx -mcpu=sm_20 -nvptx-prec-divf32=0 -nvptx-prec-sqrtf32=0 \
; RUN: | FileCheck %s
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
declare float @llvm.sqrt.f32(float)
declare double @llvm.sqrt.f64(double)
; -- reciprocal sqrt --
; CHECK-LABEL: test_rsqrt32
define float @test_rsqrt32(float %a) #0 {
; CHECK: rsqrt.approx.f32
%val = tail call float @llvm.sqrt.f32(float %a)
%ret = fdiv float 1.0, %val
ret float %ret
}
; CHECK-LABEL: test_rsqrt_ftz
define float @test_rsqrt_ftz(float %a) #0 #1 {
; CHECK: rsqrt.approx.ftz.f32
%val = tail call float @llvm.sqrt.f32(float %a)
%ret = fdiv float 1.0, %val
ret float %ret
}
; CHECK-LABEL: test_rsqrt64
define double @test_rsqrt64(double %a) #0 {
; CHECK: rsqrt.approx.f64
%val = tail call double @llvm.sqrt.f64(double %a)
%ret = fdiv double 1.0, %val
ret double %ret
}
; CHECK-LABEL: test_rsqrt64_ftz
define double @test_rsqrt64_ftz(double %a) #0 #1 {
; There's no rsqrt.approx.ftz.f64 instruction; we just use the non-ftz version.
; CHECK: rsqrt.approx.f64
%val = tail call double @llvm.sqrt.f64(double %a)
%ret = fdiv double 1.0, %val
ret double %ret
}
; -- sqrt --
; CHECK-LABEL: test_sqrt32
define float @test_sqrt32(float %a) #0 {
; CHECK: sqrt.rn.f32
%ret = tail call float @llvm.sqrt.f32(float %a)
ret float %ret
}
; CHECK-LABEL: test_sqrt32_ninf
define float @test_sqrt32_ninf(float %a) #0 {
; CHECK: sqrt.approx.f32
%ret = tail call ninf afn float @llvm.sqrt.f32(float %a)
ret float %ret
}
; CHECK-LABEL: test_sqrt_ftz
define float @test_sqrt_ftz(float %a) #0 #1 {
; CHECK: sqrt.rn.ftz.f32
%ret = tail call float @llvm.sqrt.f32(float %a)
ret float %ret
}
; CHECK-LABEL: test_sqrt_ftz_ninf
define float @test_sqrt_ftz_ninf(float %a) #0 #1 {
; CHECK: sqrt.approx.ftz.f32
%ret = tail call ninf afn float @llvm.sqrt.f32(float %a)
ret float %ret
}
; CHECK-LABEL: test_sqrt64
define double @test_sqrt64(double %a) #0 {
; CHECK: sqrt.rn.f64
%ret = tail call double @llvm.sqrt.f64(double %a)
ret double %ret
}
; CHECK-LABEL: test_sqrt64_ninf
define double @test_sqrt64_ninf(double %a) #0 {
; There's no sqrt.approx.f64 instruction; we emit
; reciprocal(rsqrt.approx.f64(x)). There's no non-ftz approximate reciprocal,
; so we just use the ftz version.
; CHECK: rsqrt.approx.f64
; CHECK: rcp.approx.ftz.f64
%ret = tail call ninf afn double @llvm.sqrt.f64(double %a)
ret double %ret
}
; CHECK-LABEL: test_sqrt64_ftz
define double @test_sqrt64_ftz(double %a) #0 #1 {
; CHECK: sqrt.rn.f64
%ret = tail call double @llvm.sqrt.f64(double %a)
ret double %ret
}
; CHECK-LABEL: test_sqrt64_ftz_ninf
define double @test_sqrt64_ftz_ninf(double %a) #0 #1 {
; There's no sqrt.approx.ftz.f64 instruction; we just use the non-ftz version.
; CHECK: rsqrt.approx.f64
; CHECK: rcp.approx.ftz.f64
%ret = tail call ninf afn double @llvm.sqrt.f64(double %a)
ret double %ret
}
; -- refined sqrt and rsqrt --
;
; The sqrt and rsqrt refinement algorithms both emit an rsqrt.approx, followed
; by some math.
; CHECK-LABEL: test_rsqrt32_refined
define float @test_rsqrt32_refined(float %a) #0 #2 {
; CHECK: rsqrt.approx.f32
%val = tail call float @llvm.sqrt.f32(float %a)
%ret = fdiv float 1.0, %val
ret float %ret
}
; CHECK-LABEL: test_sqrt32_refined
define float @test_sqrt32_refined(float %a) #0 #2 {
; CHECK: sqrt.rn.f32
%ret = tail call float @llvm.sqrt.f32(float %a)
ret float %ret
}
; CHECK-LABEL: test_sqrt32_refined_ninf
define float @test_sqrt32_refined_ninf(float %a) #0 #2 {
; CHECK: rsqrt.approx.f32
%ret = tail call ninf afn float @llvm.sqrt.f32(float %a)
ret float %ret
}
; CHECK-LABEL: test_rsqrt64_refined
define double @test_rsqrt64_refined(double %a) #0 #2 {
; CHECK: rsqrt.approx.f64
%val = tail call double @llvm.sqrt.f64(double %a)
%ret = fdiv double 1.0, %val
ret double %ret
}
; CHECK-LABEL: test_sqrt64_refined
define double @test_sqrt64_refined(double %a) #0 #2 {
; CHECK: sqrt.rn.f64
%ret = tail call double @llvm.sqrt.f64(double %a)
ret double %ret
}
; CHECK-LABEL: test_sqrt64_refined_ninf
define double @test_sqrt64_refined_ninf(double %a) #0 #2 {
; CHECK: rsqrt.approx.f64
%ret = tail call ninf afn double @llvm.sqrt.f64(double %a)
ret double %ret
}
; -- refined sqrt and rsqrt with ftz enabled --
; CHECK-LABEL: test_rsqrt32_refined_ftz
define float @test_rsqrt32_refined_ftz(float %a) #0 #1 #2 {
; CHECK: rsqrt.approx.ftz.f32
%val = tail call float @llvm.sqrt.f32(float %a)
%ret = fdiv float 1.0, %val
ret float %ret
}
; CHECK-LABEL: test_sqrt32_refined_ftz
define float @test_sqrt32_refined_ftz(float %a) #0 #1 #2 {
; CHECK: sqrt.rn.ftz.f32
%ret = tail call float @llvm.sqrt.f32(float %a)
ret float %ret
}
; CHECK-LABEL: test_sqrt32_refined_ftz_ninf
define float @test_sqrt32_refined_ftz_ninf(float %a) #0 #1 #2 {
; CHECK: rsqrt.approx.ftz.f32
%ret = tail call ninf afn float @llvm.sqrt.f32(float %a)
ret float %ret
}
; CHECK-LABEL: test_rsqrt64_refined_ftz
define double @test_rsqrt64_refined_ftz(double %a) #0 #1 #2 {
; There's no rsqrt.approx.ftz.f64, so we just use the non-ftz version.
; CHECK: rsqrt.approx.f64
%val = tail call double @llvm.sqrt.f64(double %a)
%ret = fdiv double 1.0, %val
ret double %ret
}
; CHECK-LABEL: test_sqrt64_refined_ftz
define double @test_sqrt64_refined_ftz(double %a) #0 #1 #2 {
; CHECK: sqrt.rn.f64
%ret = tail call double @llvm.sqrt.f64(double %a)
ret double %ret
}
; CHECK-LABEL: test_sqrt64_refined_ftz_ninf
define double @test_sqrt64_refined_ftz_ninf(double %a) #0 #1 #2 {
; CHECK: rsqrt.approx.f64
%ret = tail call ninf afn double @llvm.sqrt.f64(double %a)
ret double %ret
}
attributes #0 = { "unsafe-fp-math" = "true" }
attributes #1 = { "denormal-fp-math-f32" = "preserve-sign,preserve-sign" }
attributes #2 = { "reciprocal-estimates" = "rsqrtf:1,rsqrtd:1,sqrtf:1,sqrtd:1" }
|