File: fixed-vectors-elen.ll

package info (click to toggle)
llvm-toolchain-14 1%3A14.0.6-12
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,496,180 kB
  • sloc: cpp: 5,593,972; ansic: 986,872; asm: 585,869; python: 184,223; objc: 72,530; lisp: 31,119; f90: 27,793; javascript: 9,780; pascal: 9,762; sh: 9,482; perl: 7,468; ml: 5,432; awk: 3,523; makefile: 2,538; xml: 953; cs: 573; fortran: 567
file content (186 lines) | stat: -rw-r--r-- 6,109 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc -mtriple=riscv32 -mattr=+d,+v -riscv-v-vector-bits-min=128 -riscv-v-fixed-length-vector-elen-max=32 -verify-machineinstrs < %s | FileCheck %s --check-prefixes=CHECK,RV32
; RUN: llc -mtriple=riscv64 -mattr=+d,+v -riscv-v-vector-bits-min=128 -riscv-v-fixed-length-vector-elen-max=32 -verify-machineinstrs < %s | FileCheck %s --check-prefixes=CHECK,RV64
; RUN: llc -mtriple=riscv32 -mattr=+d,+zve32f -riscv-v-vector-bits-min=128 -verify-machineinstrs < %s | FileCheck %s --check-prefixes=CHECK,RV32
; RUN: llc -mtriple=riscv64 -mattr=+d,+zve32f -riscv-v-vector-bits-min=128 -verify-machineinstrs < %s | FileCheck %s --check-prefixes=CHECK,RV64

; Test that limiting ELEN, either through the command line or zve32, scalarizes
; elements larger than that and disables some fractional LMULs.

; This should use LMUL=1.
define void @add_v4i32(<4 x i32>* %x, <4 x i32>* %y) {
; CHECK-LABEL: add_v4i32:
; CHECK:       # %bb.0:
; CHECK-NEXT:    vsetivli zero, 4, e32, m1, ta, mu
; CHECK-NEXT:    vle32.v v8, (a0)
; CHECK-NEXT:    vle32.v v9, (a1)
; CHECK-NEXT:    vadd.vv v8, v8, v9
; CHECK-NEXT:    vse32.v v8, (a0)
; CHECK-NEXT:    ret
  %a = load <4 x i32>, <4 x i32>* %x
  %b = load <4 x i32>, <4 x i32>* %y
  %c = add <4 x i32> %a, %b
  store <4 x i32> %c, <4 x i32>* %x
  ret void
}

; i64 vectors should be scalarized
define void @add_v2i64(<2 x i64>* %x, <2 x i64>* %y) {
; RV32-LABEL: add_v2i64:
; RV32:       # %bb.0:
; RV32-NEXT:    lw a2, 8(a0)
; RV32-NEXT:    lw a3, 12(a0)
; RV32-NEXT:    lw a4, 0(a0)
; RV32-NEXT:    lw a5, 4(a0)
; RV32-NEXT:    lw a6, 4(a1)
; RV32-NEXT:    lw a7, 0(a1)
; RV32-NEXT:    lw t0, 8(a1)
; RV32-NEXT:    lw a1, 12(a1)
; RV32-NEXT:    add a5, a5, a6
; RV32-NEXT:    add a6, a4, a7
; RV32-NEXT:    sltu a4, a6, a4
; RV32-NEXT:    add a4, a5, a4
; RV32-NEXT:    add a1, a3, a1
; RV32-NEXT:    add a3, a2, t0
; RV32-NEXT:    sltu a2, a3, a2
; RV32-NEXT:    add a1, a1, a2
; RV32-NEXT:    sw a3, 8(a0)
; RV32-NEXT:    sw a6, 0(a0)
; RV32-NEXT:    sw a1, 12(a0)
; RV32-NEXT:    sw a4, 4(a0)
; RV32-NEXT:    ret
;
; RV64-LABEL: add_v2i64:
; RV64:       # %bb.0:
; RV64-NEXT:    ld a2, 8(a0)
; RV64-NEXT:    ld a3, 0(a0)
; RV64-NEXT:    ld a4, 0(a1)
; RV64-NEXT:    ld a1, 8(a1)
; RV64-NEXT:    add a3, a3, a4
; RV64-NEXT:    add a1, a2, a1
; RV64-NEXT:    sd a1, 8(a0)
; RV64-NEXT:    sd a3, 0(a0)
; RV64-NEXT:    ret
  %a = load <2 x i64>, <2 x i64>* %x
  %b = load <2 x i64>, <2 x i64>* %y
  %c = add <2 x i64> %a, %b
  store <2 x i64> %c, <2 x i64>* %x
  ret void
}

; This should use LMUL=1 becuase there are no fractional i32 LMULs with ELEN=32
define void @add_v2i32(<2 x i32>* %x, <2 x i32>* %y) {
; CHECK-LABEL: add_v2i32:
; CHECK:       # %bb.0:
; CHECK-NEXT:    vsetivli zero, 2, e32, m1, ta, mu
; CHECK-NEXT:    vle32.v v8, (a0)
; CHECK-NEXT:    vle32.v v9, (a1)
; CHECK-NEXT:    vadd.vv v8, v8, v9
; CHECK-NEXT:    vse32.v v8, (a0)
; CHECK-NEXT:    ret
  %a = load <2 x i32>, <2 x i32>* %x
  %b = load <2 x i32>, <2 x i32>* %y
  %c = add <2 x i32> %a, %b
  store <2 x i32> %c, <2 x i32>* %x
  ret void
}

; i64 vectors should be scalarized
define void @add_v1i64(<1 x i64>* %x, <1 x i64>* %y) {
; RV32-LABEL: add_v1i64:
; RV32:       # %bb.0:
; RV32-NEXT:    lw a2, 0(a0)
; RV32-NEXT:    lw a3, 4(a0)
; RV32-NEXT:    lw a4, 4(a1)
; RV32-NEXT:    lw a1, 0(a1)
; RV32-NEXT:    add a3, a3, a4
; RV32-NEXT:    add a1, a2, a1
; RV32-NEXT:    sltu a2, a1, a2
; RV32-NEXT:    add a2, a3, a2
; RV32-NEXT:    sw a1, 0(a0)
; RV32-NEXT:    sw a2, 4(a0)
; RV32-NEXT:    ret
;
; RV64-LABEL: add_v1i64:
; RV64:       # %bb.0:
; RV64-NEXT:    ld a2, 0(a0)
; RV64-NEXT:    ld a1, 0(a1)
; RV64-NEXT:    add a1, a2, a1
; RV64-NEXT:    sd a1, 0(a0)
; RV64-NEXT:    ret
  %a = load <1 x i64>, <1 x i64>* %x
  %b = load <1 x i64>, <1 x i64>* %y
  %c = add <1 x i64> %a, %b
  store <1 x i64> %c, <1 x i64>* %x
  ret void
}

; This should use LMUL=1.
define void @fadd_v4f32(<4 x float>* %x, <4 x float>* %y) {
; CHECK-LABEL: fadd_v4f32:
; CHECK:       # %bb.0:
; CHECK-NEXT:    vsetivli zero, 4, e32, m1, ta, mu
; CHECK-NEXT:    vle32.v v8, (a0)
; CHECK-NEXT:    vle32.v v9, (a1)
; CHECK-NEXT:    vfadd.vv v8, v8, v9
; CHECK-NEXT:    vse32.v v8, (a0)
; CHECK-NEXT:    ret
  %a = load <4 x float>, <4 x float>* %x
  %b = load <4 x float>, <4 x float>* %y
  %c = fadd <4 x float> %a, %b
  store <4 x float> %c, <4 x float>* %x
  ret void
}

; double vectors should be scalarized
define void @fadd_v2f64(<2 x double>* %x, <2 x double>* %y) {
; CHECK-LABEL: fadd_v2f64:
; CHECK:       # %bb.0:
; CHECK-NEXT:    fld ft0, 8(a0)
; CHECK-NEXT:    fld ft1, 0(a0)
; CHECK-NEXT:    fld ft2, 0(a1)
; CHECK-NEXT:    fld ft3, 8(a1)
; CHECK-NEXT:    fadd.d ft1, ft1, ft2
; CHECK-NEXT:    fadd.d ft0, ft0, ft3
; CHECK-NEXT:    fsd ft0, 8(a0)
; CHECK-NEXT:    fsd ft1, 0(a0)
; CHECK-NEXT:    ret
  %a = load <2 x double>, <2 x double>* %x
  %b = load <2 x double>, <2 x double>* %y
  %c = fadd <2 x double> %a, %b
  store <2 x double> %c, <2 x double>* %x
  ret void
}

; This should use LMUL=1 becuase there are no fractional float LMULs with ELEN=32
define void @fadd_v2f32(<2 x float>* %x, <2 x float>* %y) {
; CHECK-LABEL: fadd_v2f32:
; CHECK:       # %bb.0:
; CHECK-NEXT:    vsetivli zero, 2, e32, m1, ta, mu
; CHECK-NEXT:    vle32.v v8, (a0)
; CHECK-NEXT:    vle32.v v9, (a1)
; CHECK-NEXT:    vfadd.vv v8, v8, v9
; CHECK-NEXT:    vse32.v v8, (a0)
; CHECK-NEXT:    ret
  %a = load <2 x float>, <2 x float>* %x
  %b = load <2 x float>, <2 x float>* %y
  %c = fadd <2 x float> %a, %b
  store <2 x float> %c, <2 x float>* %x
  ret void
}

; double vectors should be scalarized
define void @fadd_v1f64(<1 x double>* %x, <1 x double>* %y) {
; CHECK-LABEL: fadd_v1f64:
; CHECK:       # %bb.0:
; CHECK-NEXT:    fld ft0, 0(a0)
; CHECK-NEXT:    fld ft1, 0(a1)
; CHECK-NEXT:    fadd.d ft0, ft0, ft1
; CHECK-NEXT:    fsd ft0, 0(a0)
; CHECK-NEXT:    ret
  %a = load <1 x double>, <1 x double>* %x
  %b = load <1 x double>, <1 x double>* %y
  %c = fadd <1 x double> %a, %b
  store <1 x double> %c, <1 x double>* %x
  ret void
}