File: ctpop.ll

package info (click to toggle)
llvm-toolchain-14 1%3A14.0.6-12
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,496,180 kB
  • sloc: cpp: 5,593,972; ansic: 986,872; asm: 585,869; python: 184,223; objc: 72,530; lisp: 31,119; f90: 27,793; javascript: 9,780; pascal: 9,762; sh: 9,482; perl: 7,468; ml: 5,432; awk: 3,523; makefile: 2,538; xml: 953; cs: 573; fortran: 567
file content (482 lines) | stat: -rw-r--r-- 17,435 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -S -instcombine | FileCheck %s

declare i32 @llvm.ctpop.i32(i32)
declare i64 @llvm.ctpop.i64(i64)
declare i8 @llvm.ctpop.i8(i8)
declare i7 @llvm.ctpop.i7(i7)
declare i1 @llvm.ctpop.i1(i1)
declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32>)
declare void @llvm.assume(i1)
declare void @use(i32)

define i1 @test1(i32 %arg) {
; CHECK-LABEL: @test1(
; CHECK-NEXT:    ret i1 false
;
  %and = and i32 %arg, 15
  %cnt = call i32 @llvm.ctpop.i32(i32 %and)
  %res = icmp eq i32 %cnt, 9
  ret i1 %res
}

define i1 @test2(i32 %arg) {
; CHECK-LABEL: @test2(
; CHECK-NEXT:    ret i1 false
;
  %and = and i32 %arg, 1
  %cnt = call i32 @llvm.ctpop.i32(i32 %and)
  %res = icmp eq i32 %cnt, 2
  ret i1 %res
}

define i1 @test3(i32 %arg) {
; CHECK-LABEL: @test3(
; CHECK-NEXT:    [[ASSUME:%.*]] = icmp eq i32 [[ARG:%.*]], 0
; CHECK-NEXT:    call void @llvm.assume(i1 [[ASSUME]])
; CHECK-NEXT:    ret i1 false
;
  ;; Use an assume to make all the bits known without triggering constant
  ;; folding.  This is trying to hit a corner case where we have to avoid
  ;; taking the log of 0.
  %assume = icmp eq i32 %arg, 0
  call void @llvm.assume(i1 %assume)
  %cnt = call i32 @llvm.ctpop.i32(i32 %arg)
  %res = icmp eq i32 %cnt, 2
  ret i1 %res
}

; Negative test for when we know nothing
define i1 @test4(i8 %arg) {
; CHECK-LABEL: @test4(
; CHECK-NEXT:    [[CNT:%.*]] = call i8 @llvm.ctpop.i8(i8 [[ARG:%.*]]), !range [[RNG0:![0-9]+]]
; CHECK-NEXT:    [[RES:%.*]] = icmp eq i8 [[CNT]], 2
; CHECK-NEXT:    ret i1 [[RES]]
;
  %cnt = call i8 @llvm.ctpop.i8(i8 %arg)
  %res = icmp eq i8 %cnt, 2
  ret i1 %res
}

; Test when the number of possible known bits isn't one less than a power of 2
; and the compare value is greater but less than the next power of 2.
define i1 @test5(i32 %arg) {
; CHECK-LABEL: @test5(
; CHECK-NEXT:    ret i1 false
;
  %and = and i32 %arg, 3
  %cnt = call i32 @llvm.ctpop.i32(i32 %and)
  %res = icmp eq i32 %cnt, 3
  ret i1 %res
}

; Test when the number of possible known bits isn't one less than a power of 2
; and the compare value is greater but less than the next power of 2.
; TODO: The icmp is unnecessary given the known bits of the input, but range
; metadata doesn't support vectors
define <2 x i1> @test5vec(<2 x i32> %arg) {
; CHECK-LABEL: @test5vec(
; CHECK-NEXT:    [[AND:%.*]] = and <2 x i32> [[ARG:%.*]], <i32 3, i32 3>
; CHECK-NEXT:    [[CNT:%.*]] = call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> [[AND]])
; CHECK-NEXT:    [[RES:%.*]] = icmp eq <2 x i32> [[CNT]], <i32 3, i32 3>
; CHECK-NEXT:    ret <2 x i1> [[RES]]
;
  %and = and <2 x i32> %arg, <i32 3, i32 3>
  %cnt = call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %and)
  %res = icmp eq <2 x i32> %cnt, <i32 3, i32 3>
  ret <2 x i1> %res
}

; No intrinsic or range needed - ctpop of bool bit is the bit itself.

define i1 @test6(i1 %arg) {
; CHECK-LABEL: @test6(
; CHECK-NEXT:    ret i1 [[ARG:%.*]]
;
  %cnt = call i1 @llvm.ctpop.i1(i1 %arg)
  ret i1 %cnt
}

define i8 @mask_one_bit(i8 %x) {
; CHECK-LABEL: @mask_one_bit(
; CHECK-NEXT:    [[A:%.*]] = lshr i8 [[X:%.*]], 4
; CHECK-NEXT:    [[R:%.*]] = and i8 [[A]], 1
; CHECK-NEXT:    ret i8 [[R]]
;
  %a = and i8 %x, 16
  %r = call i8 @llvm.ctpop.i8(i8 %a)
  ret i8 %r
}

define <2 x i32> @mask_one_bit_splat(<2 x i32> %x, <2 x i32>* %p) {
; CHECK-LABEL: @mask_one_bit_splat(
; CHECK-NEXT:    [[A:%.*]] = and <2 x i32> [[X:%.*]], <i32 2048, i32 2048>
; CHECK-NEXT:    store <2 x i32> [[A]], <2 x i32>* [[P:%.*]], align 8
; CHECK-NEXT:    [[R:%.*]] = lshr exact <2 x i32> [[A]], <i32 11, i32 11>
; CHECK-NEXT:    ret <2 x i32> [[R]]
;
  %a = and <2 x i32> %x, <i32 2048, i32 2048>
  store <2 x i32> %a, <2 x i32>* %p
  %r = call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %a)
  ret <2 x i32> %r
}

define i32 @_parity_of_not(i32 %x) {
; CHECK-LABEL: @_parity_of_not(
; CHECK-NEXT:    [[TMP1:%.*]] = call i32 @llvm.ctpop.i32(i32 [[X:%.*]]), !range [[RNG1:![0-9]+]]
; CHECK-NEXT:    [[R:%.*]] = and i32 [[TMP1]], 1
; CHECK-NEXT:    ret i32 [[R]]
;
  %neg = xor i32 %x, -1
  %cnt = tail call i32 @llvm.ctpop.i32(i32 %neg)
  %r = and i32 %cnt, 1
  ret i32 %r
}

; Negative test - need even # of bits in type.

define i7 @_parity_of_not_odd_type(i7 %x) {
; CHECK-LABEL: @_parity_of_not_odd_type(
; CHECK-NEXT:    [[NEG:%.*]] = xor i7 [[X:%.*]], -1
; CHECK-NEXT:    [[CNT:%.*]] = tail call i7 @llvm.ctpop.i7(i7 [[NEG]]), !range [[RNG2:![0-9]+]]
; CHECK-NEXT:    [[R:%.*]] = and i7 [[CNT]], 1
; CHECK-NEXT:    ret i7 [[R]]
;
  %neg = xor i7 %x, -1
  %cnt = tail call i7 @llvm.ctpop.i7(i7 %neg)
  %r = and i7 %cnt, 1
  ret i7 %r
}

define <2 x i32> @_parity_of_not_vec(<2 x i32> %x) {
; CHECK-LABEL: @_parity_of_not_vec(
; CHECK-NEXT:    [[TMP1:%.*]] = call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> [[X:%.*]])
; CHECK-NEXT:    [[R:%.*]] = and <2 x i32> [[TMP1]], <i32 1, i32 1>
; CHECK-NEXT:    ret <2 x i32> [[R]]
;
  %neg = xor <2 x i32> %x, <i32 -1 ,i32 -1>
  %cnt = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %neg)
  %r = and <2 x i32> %cnt, <i32 1 ,i32 1>
  ret <2 x i32> %r
}

define <2 x i32> @_parity_of_not_undef(<2 x i32> %x) {
; CHECK-LABEL: @_parity_of_not_undef(
; CHECK-NEXT:    [[TMP1:%.*]] = call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> [[X:%.*]])
; CHECK-NEXT:    [[R:%.*]] = and <2 x i32> [[TMP1]], <i32 1, i32 1>
; CHECK-NEXT:    ret <2 x i32> [[R]]
;
  %neg = xor <2 x i32> %x, <i32 undef ,i32 -1>
  %cnt = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %neg)
  %r = and <2 x i32> %cnt, <i32 1 ,i32 1>
  ret <2 x i32> %r
}

define <2 x i32> @_parity_of_not_undef2(<2 x i32> %x) {
; CHECK-LABEL: @_parity_of_not_undef2(
; CHECK-NEXT:    [[NEG:%.*]] = xor <2 x i32> [[X:%.*]], <i32 -1, i32 -1>
; CHECK-NEXT:    [[CNT:%.*]] = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> [[NEG]])
; CHECK-NEXT:    [[R:%.*]] = and <2 x i32> [[CNT]], <i32 1, i32 undef>
; CHECK-NEXT:    ret <2 x i32> [[R]]
;
  %neg = xor <2 x i32> %x, <i32 -1 ,i32 -1>
  %cnt = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %neg)
  %r = and <2 x i32> %cnt, <i32 1 ,i32 undef>
  ret <2 x i32> %r
}

; PR48999
define i32 @ctpop_add(i32 %a, i32 %b) {
; CHECK-LABEL: @ctpop_add(
; CHECK-NEXT:    [[AND8:%.*]] = lshr i32 [[A:%.*]], 3
; CHECK-NEXT:    [[CTPOP1:%.*]] = and i32 [[AND8]], 1
; CHECK-NEXT:    [[AND2:%.*]] = lshr i32 [[B:%.*]], 1
; CHECK-NEXT:    [[CTPOP2:%.*]] = and i32 [[AND2]], 1
; CHECK-NEXT:    [[RES:%.*]] = add nuw nsw i32 [[CTPOP1]], [[CTPOP2]]
; CHECK-NEXT:    ret i32 [[RES]]
;
  %and8 = and i32 %a, 8
  %ctpop1 = tail call i32 @llvm.ctpop.i32(i32 %and8)
  %and2 = and i32 %b, 2
  %ctpop2 = tail call i32 @llvm.ctpop.i32(i32 %and2)
  %res = add i32 %ctpop1, %ctpop2
  ret i32 %res
}

define i32 @ctpop_add_no_common_bits(i32 %a, i32 %b) {
; CHECK-LABEL: @ctpop_add_no_common_bits(
; CHECK-NEXT:    [[TMP1:%.*]] = call i32 @llvm.fshl.i32(i32 [[A:%.*]], i32 [[B:%.*]], i32 16)
; CHECK-NEXT:    [[TMP2:%.*]] = call i32 @llvm.ctpop.i32(i32 [[TMP1]]), !range [[RNG1]]
; CHECK-NEXT:    ret i32 [[TMP2]]
;
  %shl16 = shl i32 %a, 16
  %ctpop1 = tail call i32 @llvm.ctpop.i32(i32 %shl16)
  %lshl16 = lshr i32 %b, 16
  %ctpop2 = tail call i32 @llvm.ctpop.i32(i32 %lshl16)
  %res = add i32 %ctpop1, %ctpop2
  ret i32 %res
}

define <2 x i32> @ctpop_add_no_common_bits_vec(<2 x i32> %a, <2 x i32> %b) {
; CHECK-LABEL: @ctpop_add_no_common_bits_vec(
; CHECK-NEXT:    [[TMP1:%.*]] = call <2 x i32> @llvm.fshl.v2i32(<2 x i32> [[A:%.*]], <2 x i32> [[B:%.*]], <2 x i32> <i32 16, i32 16>)
; CHECK-NEXT:    [[TMP2:%.*]] = call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> [[TMP1]])
; CHECK-NEXT:    ret <2 x i32> [[TMP2]]
;
  %shl16 = shl <2 x i32> %a, <i32 16, i32 16>
  %ctpop1 = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %shl16)
  %lshl16 = lshr <2 x i32> %b, <i32 16, i32 16>
  %ctpop2 = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %lshl16)
  %res = add <2 x i32> %ctpop1, %ctpop2
  ret <2 x i32> %res
}

define <2 x i32> @ctpop_add_no_common_bits_vec_use(<2 x i32> %a, <2 x i32> %b, <2 x i32>* %p) {
; CHECK-LABEL: @ctpop_add_no_common_bits_vec_use(
; CHECK-NEXT:    [[SHL16:%.*]] = shl <2 x i32> [[A:%.*]], <i32 16, i32 16>
; CHECK-NEXT:    [[CTPOP1:%.*]] = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> [[SHL16]])
; CHECK-NEXT:    [[LSHL16:%.*]] = lshr <2 x i32> [[B:%.*]], <i32 16, i32 16>
; CHECK-NEXT:    [[CTPOP2:%.*]] = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> [[LSHL16]])
; CHECK-NEXT:    store <2 x i32> [[CTPOP2]], <2 x i32>* [[P:%.*]], align 8
; CHECK-NEXT:    [[RES:%.*]] = add nuw nsw <2 x i32> [[CTPOP1]], [[CTPOP2]]
; CHECK-NEXT:    ret <2 x i32> [[RES]]
;
  %shl16 = shl <2 x i32> %a, <i32 16, i32 16>
  %ctpop1 = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %shl16)
  %lshl16 = lshr <2 x i32> %b, <i32 16, i32 16>
  %ctpop2 = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %lshl16)
  store <2 x i32> %ctpop2, <2 x i32>* %p
  %res = add <2 x i32> %ctpop1, %ctpop2
  ret <2 x i32> %res
}

define <2 x i32> @ctpop_add_no_common_bits_vec_use2(<2 x i32> %a, <2 x i32> %b, <2 x i32>* %p) {
; CHECK-LABEL: @ctpop_add_no_common_bits_vec_use2(
; CHECK-NEXT:    [[SHL16:%.*]] = shl <2 x i32> [[A:%.*]], <i32 16, i32 16>
; CHECK-NEXT:    [[CTPOP1:%.*]] = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> [[SHL16]])
; CHECK-NEXT:    store <2 x i32> [[CTPOP1]], <2 x i32>* [[P:%.*]], align 8
; CHECK-NEXT:    [[LSHL16:%.*]] = lshr <2 x i32> [[B:%.*]], <i32 16, i32 16>
; CHECK-NEXT:    [[CTPOP2:%.*]] = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> [[LSHL16]])
; CHECK-NEXT:    [[RES:%.*]] = add nuw nsw <2 x i32> [[CTPOP1]], [[CTPOP2]]
; CHECK-NEXT:    ret <2 x i32> [[RES]]
;
  %shl16 = shl <2 x i32> %a, <i32 16, i32 16>
  %ctpop1 = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %shl16)
  store <2 x i32> %ctpop1, <2 x i32>* %p
  %lshl16 = lshr <2 x i32> %b, <i32 16, i32 16>
  %ctpop2 = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %lshl16)
  %res = add <2 x i32> %ctpop1, %ctpop2
  ret <2 x i32> %res
}

define i8 @ctpop_rotate_left(i8 %a, i8 %amt)  {
; CHECK-LABEL: @ctpop_rotate_left(
; CHECK-NEXT:    [[RES:%.*]] = tail call i8 @llvm.ctpop.i8(i8 [[A:%.*]]), !range [[RNG0]]
; CHECK-NEXT:    ret i8 [[RES]]
;
  %rotl = tail call i8 @llvm.fshl.i8(i8 %a, i8 %a, i8 %amt)
  %res = tail call i8 @llvm.ctpop.i8(i8 %rotl)
  ret i8 %res
}

define i8 @ctpop_rotate_right(i8 %a, i8 %amt)  {
; CHECK-LABEL: @ctpop_rotate_right(
; CHECK-NEXT:    [[RES:%.*]] = tail call i8 @llvm.ctpop.i8(i8 [[A:%.*]]), !range [[RNG0]]
; CHECK-NEXT:    ret i8 [[RES]]
;
  %rotr = tail call i8 @llvm.fshr.i8(i8 %a, i8 %a, i8 %amt)
  %res = tail call i8 @llvm.ctpop.i8(i8 %rotr)
  ret i8 %res
}

declare i8 @llvm.fshl.i8(i8, i8, i8)
declare i8 @llvm.fshr.i8(i8, i8, i8)

define i8 @sub_ctpop(i8 %a)  {
; CHECK-LABEL: @sub_ctpop(
; CHECK-NEXT:    [[TMP1:%.*]] = xor i8 [[A:%.*]], -1
; CHECK-NEXT:    [[TMP2:%.*]] = call i8 @llvm.ctpop.i8(i8 [[TMP1]]), !range [[RNG0]]
; CHECK-NEXT:    ret i8 [[TMP2]]
;
  %cnt = tail call i8 @llvm.ctpop.i8(i8 %a)
  %res = sub i8 8, %cnt
  ret i8 %res
}

define i8 @sub_ctpop_wrong_cst(i8 %a)  {
; CHECK-LABEL: @sub_ctpop_wrong_cst(
; CHECK-NEXT:    [[CNT:%.*]] = tail call i8 @llvm.ctpop.i8(i8 [[A:%.*]]), !range [[RNG0]]
; CHECK-NEXT:    [[RES:%.*]] = sub nsw i8 5, [[CNT]]
; CHECK-NEXT:    ret i8 [[RES]]
;
  %cnt = tail call i8 @llvm.ctpop.i8(i8 %a)
  %res = sub i8 5, %cnt
  ret i8 %res
}

define i8 @sub_ctpop_unknown(i8 %a, i8 %b)  {
; CHECK-LABEL: @sub_ctpop_unknown(
; CHECK-NEXT:    [[CNT:%.*]] = tail call i8 @llvm.ctpop.i8(i8 [[A:%.*]]), !range [[RNG0]]
; CHECK-NEXT:    [[RES:%.*]] = sub i8 [[B:%.*]], [[CNT]]
; CHECK-NEXT:    ret i8 [[RES]]
;
  %cnt = tail call i8 @llvm.ctpop.i8(i8 %a)
  %res = sub i8 %b, %cnt
  ret i8 %res
}

define <2 x i32> @sub_ctpop_vec(<2 x i32> %a) {
; CHECK-LABEL: @sub_ctpop_vec(
; CHECK-NEXT:    [[TMP1:%.*]] = xor <2 x i32> [[A:%.*]], <i32 -1, i32 -1>
; CHECK-NEXT:    [[TMP2:%.*]] = call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> [[TMP1]])
; CHECK-NEXT:    ret <2 x i32> [[TMP2]]
;
  %cnt = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %a)
  %res = sub <2 x i32> <i32 32, i32 32>, %cnt
  ret <2 x i32> %res
}

define <2 x i32> @sub_ctpop_vec_extra_use(<2 x i32> %a, <2 x i32>* %p) {
; CHECK-LABEL: @sub_ctpop_vec_extra_use(
; CHECK-NEXT:    [[CNT:%.*]] = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> [[A:%.*]])
; CHECK-NEXT:    store <2 x i32> [[CNT]], <2 x i32>* [[P:%.*]], align 8
; CHECK-NEXT:    [[RES:%.*]] = sub nuw nsw <2 x i32> <i32 32, i32 32>, [[CNT]]
; CHECK-NEXT:    ret <2 x i32> [[RES]]
;
  %cnt = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %a)
  store <2 x i32> %cnt, <2 x i32>* %p
  %res = sub <2 x i32> <i32 32, i32 32>, %cnt
  ret <2 x i32> %res
}

define i32 @zext_ctpop(i16 %x) {
; CHECK-LABEL: @zext_ctpop(
; CHECK-NEXT:    [[TMP1:%.*]] = call i16 @llvm.ctpop.i16(i16 [[X:%.*]]), !range [[RNG3:![0-9]+]]
; CHECK-NEXT:    [[P:%.*]] = zext i16 [[TMP1]] to i32
; CHECK-NEXT:    ret i32 [[P]]
;
  %z = zext i16 %x to i32
  %p = call i32 @llvm.ctpop.i32(i32 %z)
  ret i32 %p
}

define <2 x i32> @zext_ctpop_vec(<2 x i7> %x) {
; CHECK-LABEL: @zext_ctpop_vec(
; CHECK-NEXT:    [[TMP1:%.*]] = call <2 x i7> @llvm.ctpop.v2i7(<2 x i7> [[X:%.*]])
; CHECK-NEXT:    [[P:%.*]] = zext <2 x i7> [[TMP1]] to <2 x i32>
; CHECK-NEXT:    ret <2 x i32> [[P]]
;
  %z = zext <2 x i7> %x to <2 x i32>
  %p = call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %z)
  ret <2 x i32> %p
}

define i32 @zext_ctpop_extra_use(i16 %x, i32* %q) {
; CHECK-LABEL: @zext_ctpop_extra_use(
; CHECK-NEXT:    [[Z:%.*]] = zext i16 [[X:%.*]] to i32
; CHECK-NEXT:    store i32 [[Z]], i32* [[Q:%.*]], align 4
; CHECK-NEXT:    [[P:%.*]] = call i32 @llvm.ctpop.i32(i32 [[Z]]), !range [[RNG4:![0-9]+]]
; CHECK-NEXT:    ret i32 [[P]]
;
  %z = zext i16 %x to i32
  store i32 %z, i32* %q
  %p = call i32 @llvm.ctpop.i32(i32 %z)
  ret i32 %p
}

define i32 @parity_xor(i32 %arg, i32 %arg1) {
; CHECK-LABEL: @parity_xor(
; CHECK-NEXT:    [[TMP1:%.*]] = xor i32 [[ARG1:%.*]], [[ARG:%.*]]
; CHECK-NEXT:    [[TMP2:%.*]] = call i32 @llvm.ctpop.i32(i32 [[TMP1]]), !range [[RNG1]]
; CHECK-NEXT:    [[I4:%.*]] = and i32 [[TMP2]], 1
; CHECK-NEXT:    ret i32 [[I4]]
;
  %i = tail call i32 @llvm.ctpop.i32(i32 %arg)
  %i2 = tail call i32 @llvm.ctpop.i32(i32 %arg1)
  %i3 = xor i32 %i2, %i
  %i4 = and i32 %i3, 1
  ret i32 %i4
}

define i32 @parity_xor_trunc(i64 %arg, i64 %arg1) {
; CHECK-LABEL: @parity_xor_trunc(
; CHECK-NEXT:    [[TMP1:%.*]] = xor i64 [[ARG1:%.*]], [[ARG:%.*]]
; CHECK-NEXT:    [[TMP2:%.*]] = call i64 @llvm.ctpop.i64(i64 [[TMP1]]), !range [[RNG5:![0-9]+]]
; CHECK-NEXT:    [[I4:%.*]] = trunc i64 [[TMP2]] to i32
; CHECK-NEXT:    [[I5:%.*]] = and i32 [[I4]], 1
; CHECK-NEXT:    ret i32 [[I5]]
;
  %i = tail call i64 @llvm.ctpop.i64(i64 %arg)
  %i2 = tail call i64 @llvm.ctpop.i64(i64 %arg1)
  %i3 = xor i64 %i2, %i
  %i4 = trunc i64 %i3 to i32
  %i5 = and i32 %i4, 1
  ret i32 %i5
}

define <2 x i32> @parity_xor_vec(<2 x i32> %arg, <2 x i32> %arg1) {
; CHECK-LABEL: @parity_xor_vec(
; CHECK-NEXT:    [[TMP1:%.*]] = xor <2 x i32> [[ARG1:%.*]], [[ARG:%.*]]
; CHECK-NEXT:    [[TMP2:%.*]] = call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> [[TMP1]])
; CHECK-NEXT:    [[I4:%.*]] = and <2 x i32> [[TMP2]], <i32 1, i32 1>
; CHECK-NEXT:    ret <2 x i32> [[I4]]
;
  %i = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %arg)
  %i2 = tail call <2 x i32> @llvm.ctpop.v2i32(<2 x i32> %arg1)
  %i3 = xor <2 x i32> %i2, %i
  %i4 = and <2 x i32> %i3, <i32 1, i32 1>
  ret <2 x i32> %i4
}

define i32 @parity_xor_wrong_cst(i32 %arg, i32 %arg1) {
; CHECK-LABEL: @parity_xor_wrong_cst(
; CHECK-NEXT:    [[I:%.*]] = tail call i32 @llvm.ctpop.i32(i32 [[ARG:%.*]]), !range [[RNG1]]
; CHECK-NEXT:    [[I2:%.*]] = tail call i32 @llvm.ctpop.i32(i32 [[ARG1:%.*]]), !range [[RNG1]]
; CHECK-NEXT:    [[I3:%.*]] = xor i32 [[I2]], [[I]]
; CHECK-NEXT:    [[I4:%.*]] = and i32 [[I3]], 3
; CHECK-NEXT:    ret i32 [[I4]]
;
  %i = tail call i32 @llvm.ctpop.i32(i32 %arg)
  %i2 = tail call i32 @llvm.ctpop.i32(i32 %arg1)
  %i3 = xor i32 %i2, %i
  %i4 = and i32 %i3, 3
  ret i32 %i4
}

define i32 @parity_xor_extra_use(i32 %arg, i32 %arg1) {
; CHECK-LABEL: @parity_xor_extra_use(
; CHECK-NEXT:    [[I:%.*]] = tail call i32 @llvm.ctpop.i32(i32 [[ARG:%.*]]), !range [[RNG1]]
; CHECK-NEXT:    [[I2:%.*]] = and i32 [[I]], 1
; CHECK-NEXT:    tail call void @use(i32 [[I2]])
; CHECK-NEXT:    [[I3:%.*]] = tail call i32 @llvm.ctpop.i32(i32 [[ARG1:%.*]]), !range [[RNG1]]
; CHECK-NEXT:    [[I4:%.*]] = and i32 [[I3]], 1
; CHECK-NEXT:    [[I5:%.*]] = xor i32 [[I4]], [[I2]]
; CHECK-NEXT:    ret i32 [[I5]]
;
  %i = tail call i32 @llvm.ctpop.i32(i32 %arg)
  %i2 = and i32 %i, 1
  tail call void @use(i32 %i2)
  %i3 = tail call i32 @llvm.ctpop.i32(i32 %arg1)
  %i4 = and i32 %i3, 1
  %i5 = xor i32 %i4, %i2
  ret i32 %i5
}

define i32 @parity_xor_extra_use2(i32 %arg, i32 %arg1) {
; CHECK-LABEL: @parity_xor_extra_use2(
; CHECK-NEXT:    [[I:%.*]] = tail call i32 @llvm.ctpop.i32(i32 [[ARG1:%.*]]), !range [[RNG1]]
; CHECK-NEXT:    [[I2:%.*]] = and i32 [[I]], 1
; CHECK-NEXT:    tail call void @use(i32 [[I2]])
; CHECK-NEXT:    [[I3:%.*]] = tail call i32 @llvm.ctpop.i32(i32 [[ARG:%.*]]), !range [[RNG1]]
; CHECK-NEXT:    [[I4:%.*]] = and i32 [[I3]], 1
; CHECK-NEXT:    [[I5:%.*]] = xor i32 [[I2]], [[I4]]
; CHECK-NEXT:    ret i32 [[I5]]
;
  %i = tail call i32 @llvm.ctpop.i32(i32 %arg1)
  %i2 = and i32 %i, 1
  tail call void @use(i32 %i2)
  %i3 = tail call i32 @llvm.ctpop.i32(i32 %arg)
  %i4 = and i32 %i3, 1
  %i5 = xor i32 %i2, %i4
  ret i32 %i5
}