1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt -S -instcombine < %s | FileCheck %s
declare double @llvm.sqrt.f64(double) nounwind readnone speculatable
declare <2 x float> @llvm.sqrt.v2f32(<2 x float>)
declare void @use(double)
; sqrt(a) * sqrt(b) no math flags
define double @sqrt_a_sqrt_b(double %a, double %b) {
; CHECK-LABEL: @sqrt_a_sqrt_b(
; CHECK-NEXT: [[TMP1:%.*]] = call double @llvm.sqrt.f64(double [[A:%.*]])
; CHECK-NEXT: [[TMP2:%.*]] = call double @llvm.sqrt.f64(double [[B:%.*]])
; CHECK-NEXT: [[MUL:%.*]] = fmul double [[TMP1]], [[TMP2]]
; CHECK-NEXT: ret double [[MUL]]
;
%1 = call double @llvm.sqrt.f64(double %a)
%2 = call double @llvm.sqrt.f64(double %b)
%mul = fmul double %1, %2
ret double %mul
}
; sqrt(a) * sqrt(b) fast-math, multiple uses
define double @sqrt_a_sqrt_b_multiple_uses(double %a, double %b) {
; CHECK-LABEL: @sqrt_a_sqrt_b_multiple_uses(
; CHECK-NEXT: [[TMP1:%.*]] = call fast double @llvm.sqrt.f64(double [[A:%.*]])
; CHECK-NEXT: [[TMP2:%.*]] = call fast double @llvm.sqrt.f64(double [[B:%.*]])
; CHECK-NEXT: [[MUL:%.*]] = fmul fast double [[TMP1]], [[TMP2]]
; CHECK-NEXT: call void @use(double [[TMP2]])
; CHECK-NEXT: ret double [[MUL]]
;
%1 = call fast double @llvm.sqrt.f64(double %a)
%2 = call fast double @llvm.sqrt.f64(double %b)
%mul = fmul fast double %1, %2
call void @use(double %2)
ret double %mul
}
; sqrt(a) * sqrt(b) => sqrt(a*b) with fast-math
define double @sqrt_a_sqrt_b_reassoc_nnan(double %a, double %b) {
; CHECK-LABEL: @sqrt_a_sqrt_b_reassoc_nnan(
; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc nnan double [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[TMP2:%.*]] = call reassoc nnan double @llvm.sqrt.f64(double [[TMP1]])
; CHECK-NEXT: ret double [[TMP2]]
;
%1 = call double @llvm.sqrt.f64(double %a)
%2 = call double @llvm.sqrt.f64(double %b)
%mul = fmul reassoc nnan double %1, %2
ret double %mul
}
; nnan disallows the possibility that both operands are negative,
; so we won't return a number when the answer should be NaN.
define double @sqrt_a_sqrt_b_reassoc(double %a, double %b) {
; CHECK-LABEL: @sqrt_a_sqrt_b_reassoc(
; CHECK-NEXT: [[TMP1:%.*]] = call double @llvm.sqrt.f64(double [[A:%.*]])
; CHECK-NEXT: [[TMP2:%.*]] = call double @llvm.sqrt.f64(double [[B:%.*]])
; CHECK-NEXT: [[MUL:%.*]] = fmul reassoc double [[TMP1]], [[TMP2]]
; CHECK-NEXT: ret double [[MUL]]
;
%1 = call double @llvm.sqrt.f64(double %a)
%2 = call double @llvm.sqrt.f64(double %b)
%mul = fmul reassoc double %1, %2
ret double %mul
}
; sqrt(a) * sqrt(b) * sqrt(c) * sqrt(d) => sqrt(a*b*c*d) with fast-math
; 'reassoc nnan' on the fmuls is all that is required, but check propagation of other FMF.
define double @sqrt_a_sqrt_b_sqrt_c_sqrt_d_reassoc(double %a, double %b, double %c, double %d) {
; CHECK-LABEL: @sqrt_a_sqrt_b_sqrt_c_sqrt_d_reassoc(
; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc nnan arcp double [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[TMP2:%.*]] = fmul reassoc nnan double [[TMP1]], [[C:%.*]]
; CHECK-NEXT: [[TMP3:%.*]] = fmul reassoc nnan ninf double [[TMP2]], [[D:%.*]]
; CHECK-NEXT: [[TMP4:%.*]] = call reassoc nnan ninf double @llvm.sqrt.f64(double [[TMP3]])
; CHECK-NEXT: ret double [[TMP4]]
;
%1 = call double @llvm.sqrt.f64(double %a)
%2 = call double @llvm.sqrt.f64(double %b)
%3 = call double @llvm.sqrt.f64(double %c)
%4 = call double @llvm.sqrt.f64(double %d)
%mul = fmul reassoc nnan arcp double %1, %2
%mul1 = fmul reassoc nnan double %mul, %3
%mul2 = fmul reassoc nnan ninf double %mul1, %4
ret double %mul2
}
define double @rsqrt_squared(double %x) {
; CHECK-LABEL: @rsqrt_squared(
; CHECK-NEXT: [[SQUARED:%.*]] = fdiv fast double 1.000000e+00, [[X:%.*]]
; CHECK-NEXT: ret double [[SQUARED]]
;
%sqrt = call fast double @llvm.sqrt.f64(double %x)
%rsqrt = fdiv fast double 1.0, %sqrt
%squared = fmul fast double %rsqrt, %rsqrt
ret double %squared
}
define double @rsqrt_x_reassociate_extra_use(double %x, double * %p) {
; CHECK-LABEL: @rsqrt_x_reassociate_extra_use(
; CHECK-NEXT: [[SQRT:%.*]] = call double @llvm.sqrt.f64(double [[X:%.*]])
; CHECK-NEXT: [[RSQRT:%.*]] = fdiv double 1.000000e+00, [[SQRT]]
; CHECK-NEXT: [[RES:%.*]] = fdiv reassoc nsz double [[X:%.*]], [[SQRT]]
; CHECK-NEXT: store double [[RSQRT]], double* [[P:%.*]], align 8
; CHECK-NEXT: ret double [[RES]]
;
%sqrt = call double @llvm.sqrt.f64(double %x)
%rsqrt = fdiv double 1.0, %sqrt
%res = fmul reassoc nsz double %rsqrt, %x
store double %rsqrt, double* %p
ret double %res
}
define <2 x float> @x_add_y_rsqrt_reassociate_extra_use(<2 x float> %x, <2 x float> %y, <2 x float>* %p) {
; CHECK-LABEL: @x_add_y_rsqrt_reassociate_extra_use(
; CHECK-NEXT: [[ADD:%.*]] = fadd fast <2 x float> [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[SQRT:%.*]] = call fast <2 x float> @llvm.sqrt.v2f32(<2 x float> [[ADD]])
; CHECK-NEXT: [[RSQRT:%.*]] = fdiv fast <2 x float> <float 1.000000e+00, float 1.000000e+00>, [[SQRT]]
; CHECK-NEXT: [[RES:%.*]] = fdiv fast <2 x float> [[ADD]], [[SQRT]]
; CHECK-NEXT: store <2 x float> [[RSQRT]], <2 x float>* [[P:%.*]], align 8
; CHECK-NEXT: ret <2 x float> [[RES]]
;
%add = fadd fast <2 x float> %x, %y ; thwart complexity-based canonicalization
%sqrt = call fast <2 x float> @llvm.sqrt.v2f32(<2 x float> %add)
%rsqrt = fdiv fast <2 x float> <float 1.0, float 1.0>, %sqrt
%res = fmul fast <2 x float> %add, %rsqrt
store <2 x float> %rsqrt, <2 x float>* %p
ret <2 x float> %res
}
define double @sqrt_divisor_squared(double %x, double %y) {
; CHECK-LABEL: @sqrt_divisor_squared(
; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc nnan nsz double [[Y:%.*]], [[Y]]
; CHECK-NEXT: [[SQUARED:%.*]] = fdiv reassoc nnan nsz double [[TMP1]], [[X:%.*]]
; CHECK-NEXT: ret double [[SQUARED]]
;
%sqrt = call double @llvm.sqrt.f64(double %x)
%div = fdiv double %y, %sqrt
%squared = fmul reassoc nnan nsz double %div, %div
ret double %squared
}
define <2 x float> @sqrt_dividend_squared(<2 x float> %x, <2 x float> %y) {
; CHECK-LABEL: @sqrt_dividend_squared(
; CHECK-NEXT: [[TMP1:%.*]] = fmul fast <2 x float> [[Y:%.*]], [[Y]]
; CHECK-NEXT: [[SQUARED:%.*]] = fdiv fast <2 x float> [[X:%.*]], [[TMP1]]
; CHECK-NEXT: ret <2 x float> [[SQUARED]]
;
%sqrt = call <2 x float> @llvm.sqrt.v2f32(<2 x float> %x)
%div = fdiv fast <2 x float> %sqrt, %y
%squared = fmul fast <2 x float> %div, %div
ret <2 x float> %squared
}
; We do not transform this because it would result in an extra instruction.
; This might still be a good optimization for the backend.
define double @sqrt_divisor_squared_extra_use(double %x, double %y) {
; CHECK-LABEL: @sqrt_divisor_squared_extra_use(
; CHECK-NEXT: [[SQRT:%.*]] = call double @llvm.sqrt.f64(double [[X:%.*]])
; CHECK-NEXT: [[DIV:%.*]] = fdiv double [[Y:%.*]], [[SQRT]]
; CHECK-NEXT: call void @use(double [[DIV]])
; CHECK-NEXT: [[SQUARED:%.*]] = fmul reassoc nnan nsz double [[DIV]], [[DIV]]
; CHECK-NEXT: ret double [[SQUARED]]
;
%sqrt = call double @llvm.sqrt.f64(double %x)
%div = fdiv double %y, %sqrt
call void @use(double %div)
%squared = fmul reassoc nnan nsz double %div, %div
ret double %squared
}
define double @sqrt_dividend_squared_extra_use(double %x, double %y) {
; CHECK-LABEL: @sqrt_dividend_squared_extra_use(
; CHECK-NEXT: [[SQRT:%.*]] = call double @llvm.sqrt.f64(double [[X:%.*]])
; CHECK-NEXT: call void @use(double [[SQRT]])
; CHECK-NEXT: [[TMP1:%.*]] = fmul fast double [[Y:%.*]], [[Y]]
; CHECK-NEXT: [[SQUARED:%.*]] = fdiv fast double [[X]], [[TMP1]]
; CHECK-NEXT: ret double [[SQUARED]]
;
%sqrt = call double @llvm.sqrt.f64(double %x)
call void @use(double %sqrt)
%div = fdiv fast double %sqrt, %y
%squared = fmul fast double %div, %div
ret double %squared
}
; Negative test - require 'nsz'.
define double @sqrt_divisor_not_enough_FMF(double %x, double %y) {
; CHECK-LABEL: @sqrt_divisor_not_enough_FMF(
; CHECK-NEXT: [[SQRT:%.*]] = call double @llvm.sqrt.f64(double [[X:%.*]])
; CHECK-NEXT: [[DIV:%.*]] = fdiv double [[Y:%.*]], [[SQRT]]
; CHECK-NEXT: [[SQUARED:%.*]] = fmul reassoc nnan double [[DIV]], [[DIV]]
; CHECK-NEXT: ret double [[SQUARED]]
;
%sqrt = call double @llvm.sqrt.f64(double %x)
%div = fdiv double %y, %sqrt
%squared = fmul reassoc nnan double %div, %div
ret double %squared
}
; TODO: This is a special-case of the general pattern. If we have a constant
; operand, the extra use limitation could be eased because this does not
; result in an extra instruction (1.0 * 1.0 is constant folded).
define double @rsqrt_squared_extra_use(double %x) {
; CHECK-LABEL: @rsqrt_squared_extra_use(
; CHECK-NEXT: [[SQRT:%.*]] = call fast double @llvm.sqrt.f64(double [[X:%.*]])
; CHECK-NEXT: [[RSQRT:%.*]] = fdiv fast double 1.000000e+00, [[SQRT]]
; CHECK-NEXT: call void @use(double [[RSQRT]])
; CHECK-NEXT: [[SQUARED:%.*]] = fmul fast double [[RSQRT]], [[RSQRT]]
; CHECK-NEXT: ret double [[SQUARED]]
;
%sqrt = call fast double @llvm.sqrt.f64(double %x)
%rsqrt = fdiv fast double 1.0, %sqrt
call void @use(double %rsqrt)
%squared = fmul fast double %rsqrt, %rsqrt
ret double %squared
}
|