1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
|
//===-- Clustering.cpp ------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Clustering.h"
#include "Error.h"
#include "SchedClassResolution.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include <algorithm>
#include <deque>
#include <string>
#include <vector>
namespace llvm {
namespace exegesis {
// The clustering problem has the following characteristics:
// (A) - Low dimension (dimensions are typically proc resource units,
// typically < 10).
// (B) - Number of points : ~thousands (points are measurements of an MCInst)
// (C) - Number of clusters: ~tens.
// (D) - The number of clusters is not known /a priory/.
// (E) - The amount of noise is relatively small.
// The problem is rather small. In terms of algorithms, (D) disqualifies
// k-means and makes algorithms such as DBSCAN[1] or OPTICS[2] more applicable.
//
// We've used DBSCAN here because it's simple to implement. This is a pretty
// straightforward and inefficient implementation of the pseudocode in [2].
//
// [1] https://en.wikipedia.org/wiki/DBSCAN
// [2] https://en.wikipedia.org/wiki/OPTICS_algorithm
// Finds the points at distance less than sqrt(EpsilonSquared) of Q (not
// including Q).
void InstructionBenchmarkClustering::rangeQuery(
const size_t Q, std::vector<size_t> &Neighbors) const {
Neighbors.clear();
Neighbors.reserve(Points_.size() - 1); // The Q itself isn't a neighbor.
const auto &QMeasurements = Points_[Q].Measurements;
for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
if (P == Q)
continue;
const auto &PMeasurements = Points_[P].Measurements;
if (PMeasurements.empty()) // Error point.
continue;
if (isNeighbour(PMeasurements, QMeasurements,
AnalysisClusteringEpsilonSquared_)) {
Neighbors.push_back(P);
}
}
}
// Given a set of points, checks that all the points are neighbours
// up to AnalysisClusteringEpsilon. This is O(2*N).
bool InstructionBenchmarkClustering::areAllNeighbours(
ArrayRef<size_t> Pts) const {
// First, get the centroid of this group of points. This is O(N).
SchedClassClusterCentroid G;
for_each(Pts, [this, &G](size_t P) {
assert(P < Points_.size());
ArrayRef<BenchmarkMeasure> Measurements = Points_[P].Measurements;
if (Measurements.empty()) // Error point.
return;
G.addPoint(Measurements);
});
const std::vector<BenchmarkMeasure> Centroid = G.getAsPoint();
// Since we will be comparing with the centroid, we need to halve the epsilon.
double AnalysisClusteringEpsilonHalvedSquared =
AnalysisClusteringEpsilonSquared_ / 4.0;
// And now check that every point is a neighbour of the centroid. Also O(N).
return all_of(
Pts, [this, &Centroid, AnalysisClusteringEpsilonHalvedSquared](size_t P) {
assert(P < Points_.size());
const auto &PMeasurements = Points_[P].Measurements;
if (PMeasurements.empty()) // Error point.
return true; // Pretend that error point is a neighbour.
return isNeighbour(PMeasurements, Centroid,
AnalysisClusteringEpsilonHalvedSquared);
});
}
InstructionBenchmarkClustering::InstructionBenchmarkClustering(
const std::vector<InstructionBenchmark> &Points,
const double AnalysisClusteringEpsilonSquared)
: Points_(Points),
AnalysisClusteringEpsilonSquared_(AnalysisClusteringEpsilonSquared),
NoiseCluster_(ClusterId::noise()), ErrorCluster_(ClusterId::error()) {}
Error InstructionBenchmarkClustering::validateAndSetup() {
ClusterIdForPoint_.resize(Points_.size());
// Mark erroneous measurements out.
// All points must have the same number of dimensions, in the same order.
const std::vector<BenchmarkMeasure> *LastMeasurement = nullptr;
for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
const auto &Point = Points_[P];
if (!Point.Error.empty()) {
ClusterIdForPoint_[P] = ClusterId::error();
ErrorCluster_.PointIndices.push_back(P);
continue;
}
const auto *CurMeasurement = &Point.Measurements;
if (LastMeasurement) {
if (LastMeasurement->size() != CurMeasurement->size()) {
return make_error<ClusteringError>(
"inconsistent measurement dimensions");
}
for (size_t I = 0, E = LastMeasurement->size(); I < E; ++I) {
if (LastMeasurement->at(I).Key != CurMeasurement->at(I).Key) {
return make_error<ClusteringError>(
"inconsistent measurement dimensions keys");
}
}
}
LastMeasurement = CurMeasurement;
}
if (LastMeasurement) {
NumDimensions_ = LastMeasurement->size();
}
return Error::success();
}
void InstructionBenchmarkClustering::clusterizeDbScan(const size_t MinPts) {
std::vector<size_t> Neighbors; // Persistent buffer to avoid allocs.
for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
if (!ClusterIdForPoint_[P].isUndef())
continue; // Previously processed in inner loop.
rangeQuery(P, Neighbors);
if (Neighbors.size() + 1 < MinPts) { // Density check.
// The region around P is not dense enough to create a new cluster, mark
// as noise for now.
ClusterIdForPoint_[P] = ClusterId::noise();
continue;
}
// Create a new cluster, add P.
Clusters_.emplace_back(ClusterId::makeValid(Clusters_.size()));
Cluster &CurrentCluster = Clusters_.back();
ClusterIdForPoint_[P] = CurrentCluster.Id; /* Label initial point */
CurrentCluster.PointIndices.push_back(P);
// Process P's neighbors.
SetVector<size_t, std::deque<size_t>> ToProcess;
ToProcess.insert(Neighbors.begin(), Neighbors.end());
while (!ToProcess.empty()) {
// Retrieve a point from the set.
const size_t Q = *ToProcess.begin();
ToProcess.erase(ToProcess.begin());
if (ClusterIdForPoint_[Q].isNoise()) {
// Change noise point to border point.
ClusterIdForPoint_[Q] = CurrentCluster.Id;
CurrentCluster.PointIndices.push_back(Q);
continue;
}
if (!ClusterIdForPoint_[Q].isUndef()) {
continue; // Previously processed.
}
// Add Q to the current custer.
ClusterIdForPoint_[Q] = CurrentCluster.Id;
CurrentCluster.PointIndices.push_back(Q);
// And extend to the neighbors of Q if the region is dense enough.
rangeQuery(Q, Neighbors);
if (Neighbors.size() + 1 >= MinPts) {
ToProcess.insert(Neighbors.begin(), Neighbors.end());
}
}
}
// assert(Neighbors.capacity() == (Points_.size() - 1));
// ^ True, but it is not quaranteed to be true in all the cases.
// Add noisy points to noise cluster.
for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
if (ClusterIdForPoint_[P].isNoise()) {
NoiseCluster_.PointIndices.push_back(P);
}
}
}
void InstructionBenchmarkClustering::clusterizeNaive(
const MCSubtargetInfo &SubtargetInfo, const MCInstrInfo &InstrInfo) {
// Given an instruction Opcode, which sched class id's are represented,
// and which are the benchmarks for each sched class?
std::vector<SmallMapVector<unsigned, SmallVector<size_t, 1>, 1>>
OpcodeToSchedClassesToPoints;
const unsigned NumOpcodes = InstrInfo.getNumOpcodes();
OpcodeToSchedClassesToPoints.resize(NumOpcodes);
size_t NumClusters = 0;
for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
const InstructionBenchmark &Point = Points_[P];
const MCInst &MCI = Point.keyInstruction();
unsigned SchedClassId;
std::tie(SchedClassId, std::ignore) =
ResolvedSchedClass::resolveSchedClassId(SubtargetInfo, InstrInfo, MCI);
const unsigned Opcode = MCI.getOpcode();
assert(Opcode < NumOpcodes && "NumOpcodes is incorrect (too small)");
auto &Points = OpcodeToSchedClassesToPoints[Opcode][SchedClassId];
if (Points.empty()) // If we previously have not seen any points of
++NumClusters; // this opcode's sched class, then new cluster begins.
Points.emplace_back(P);
}
assert(NumClusters <= NumOpcodes &&
"can't see more opcodes than there are total opcodes");
assert(NumClusters <= Points_.size() &&
"can't see more opcodes than there are total points");
Clusters_.reserve(NumClusters); // We already know how many clusters there is.
for (const auto &SchedClassesOfOpcode : OpcodeToSchedClassesToPoints) {
if (SchedClassesOfOpcode.empty())
continue;
for (ArrayRef<size_t> PointsOfSchedClass :
make_second_range(SchedClassesOfOpcode)) {
if (PointsOfSchedClass.empty())
continue;
// Create a new cluster.
Clusters_.emplace_back(ClusterId::makeValid(
Clusters_.size(),
/*IsUnstable=*/!areAllNeighbours(PointsOfSchedClass)));
Cluster &CurrentCluster = Clusters_.back();
// Mark points as belonging to the new cluster.
for_each(PointsOfSchedClass, [this, &CurrentCluster](size_t P) {
ClusterIdForPoint_[P] = CurrentCluster.Id;
});
// And add all the points of this opcode's sched class to the new cluster.
CurrentCluster.PointIndices.reserve(PointsOfSchedClass.size());
CurrentCluster.PointIndices.assign(PointsOfSchedClass.begin(),
PointsOfSchedClass.end());
assert(CurrentCluster.PointIndices.size() == PointsOfSchedClass.size());
}
}
assert(Clusters_.size() == NumClusters);
}
// Given an instruction Opcode, we can make benchmarks (measurements) of the
// instruction characteristics/performance. Then, to facilitate further analysis
// we group the benchmarks with *similar* characteristics into clusters.
// Now, this is all not entirely deterministic. Some instructions have variable
// characteristics, depending on their arguments. And thus, if we do several
// benchmarks of the same instruction Opcode, we may end up with *different*
// performance characteristics measurements. And when we then do clustering,
// these several benchmarks of the same instruction Opcode may end up being
// clustered into *different* clusters. This is not great for further analysis.
// We shall find every opcode with benchmarks not in just one cluster, and move
// *all* the benchmarks of said Opcode into one new unstable cluster per Opcode.
void InstructionBenchmarkClustering::stabilize(unsigned NumOpcodes) {
// Given an instruction Opcode and Config, in which clusters do benchmarks of
// this instruction lie? Normally, they all should be in the same cluster.
struct OpcodeAndConfig {
explicit OpcodeAndConfig(const InstructionBenchmark &IB)
: Opcode(IB.keyInstruction().getOpcode()), Config(&IB.Key.Config) {}
unsigned Opcode;
const std::string *Config;
auto Tie() const -> auto { return std::tie(Opcode, *Config); }
bool operator<(const OpcodeAndConfig &O) const { return Tie() < O.Tie(); }
bool operator!=(const OpcodeAndConfig &O) const { return Tie() != O.Tie(); }
};
std::map<OpcodeAndConfig, SmallSet<ClusterId, 1>> OpcodeConfigToClusterIDs;
// Populate OpcodeConfigToClusterIDs and UnstableOpcodes data structures.
assert(ClusterIdForPoint_.size() == Points_.size() && "size mismatch");
for (auto Point : zip(Points_, ClusterIdForPoint_)) {
const ClusterId &ClusterIdOfPoint = std::get<1>(Point);
if (!ClusterIdOfPoint.isValid())
continue; // Only process fully valid clusters.
const OpcodeAndConfig Key(std::get<0>(Point));
SmallSet<ClusterId, 1> &ClusterIDsOfOpcode = OpcodeConfigToClusterIDs[Key];
ClusterIDsOfOpcode.insert(ClusterIdOfPoint);
}
for (const auto &OpcodeConfigToClusterID : OpcodeConfigToClusterIDs) {
const SmallSet<ClusterId, 1> &ClusterIDs = OpcodeConfigToClusterID.second;
const OpcodeAndConfig &Key = OpcodeConfigToClusterID.first;
// We only care about unstable instructions.
if (ClusterIDs.size() < 2)
continue;
// Create a new unstable cluster, one per Opcode.
Clusters_.emplace_back(ClusterId::makeValidUnstable(Clusters_.size()));
Cluster &UnstableCluster = Clusters_.back();
// We will find *at least* one point in each of these clusters.
UnstableCluster.PointIndices.reserve(ClusterIDs.size());
// Go through every cluster which we recorded as containing benchmarks
// of this UnstableOpcode. NOTE: we only recorded valid clusters.
for (const ClusterId &CID : ClusterIDs) {
assert(CID.isValid() &&
"We only recorded valid clusters, not noise/error clusters.");
Cluster &OldCluster = Clusters_[CID.getId()]; // Valid clusters storage.
// Within each cluster, go through each point, and either move it to the
// new unstable cluster, or 'keep' it.
// In this case, we'll reshuffle OldCluster.PointIndices vector
// so that all the points that are *not* for UnstableOpcode are first,
// and the rest of the points is for the UnstableOpcode.
const auto it = std::stable_partition(
OldCluster.PointIndices.begin(), OldCluster.PointIndices.end(),
[this, &Key](size_t P) {
return OpcodeAndConfig(Points_[P]) != Key;
});
assert(std::distance(it, OldCluster.PointIndices.end()) > 0 &&
"Should have found at least one bad point");
// Mark to-be-moved points as belonging to the new cluster.
std::for_each(it, OldCluster.PointIndices.end(),
[this, &UnstableCluster](size_t P) {
ClusterIdForPoint_[P] = UnstableCluster.Id;
});
// Actually append to-be-moved points to the new cluster.
UnstableCluster.PointIndices.insert(UnstableCluster.PointIndices.end(),
it, OldCluster.PointIndices.end());
// And finally, remove "to-be-moved" points form the old cluster.
OldCluster.PointIndices.erase(it, OldCluster.PointIndices.end());
// Now, the old cluster may end up being empty, but let's just keep it
// in whatever state it ended up. Purging empty clusters isn't worth it.
};
assert(UnstableCluster.PointIndices.size() > 1 &&
"New unstable cluster should end up with more than one point.");
assert(UnstableCluster.PointIndices.size() >= ClusterIDs.size() &&
"New unstable cluster should end up with no less points than there "
"was clusters");
}
}
Expected<InstructionBenchmarkClustering> InstructionBenchmarkClustering::create(
const std::vector<InstructionBenchmark> &Points, const ModeE Mode,
const size_t DbscanMinPts, const double AnalysisClusteringEpsilon,
const MCSubtargetInfo *SubtargetInfo, const MCInstrInfo *InstrInfo) {
InstructionBenchmarkClustering Clustering(
Points, AnalysisClusteringEpsilon * AnalysisClusteringEpsilon);
if (auto Error = Clustering.validateAndSetup()) {
return std::move(Error);
}
if (Clustering.ErrorCluster_.PointIndices.size() == Points.size()) {
return Clustering; // Nothing to cluster.
}
if (Mode == ModeE::Dbscan) {
Clustering.clusterizeDbScan(DbscanMinPts);
if (InstrInfo)
Clustering.stabilize(InstrInfo->getNumOpcodes());
} else /*if(Mode == ModeE::Naive)*/ {
if (!SubtargetInfo || !InstrInfo)
return make_error<Failure>("'naive' clustering mode requires "
"SubtargetInfo and InstrInfo to be present");
Clustering.clusterizeNaive(*SubtargetInfo, *InstrInfo);
}
return Clustering;
}
void SchedClassClusterCentroid::addPoint(ArrayRef<BenchmarkMeasure> Point) {
if (Representative.empty())
Representative.resize(Point.size());
assert(Representative.size() == Point.size() &&
"All points should have identical dimensions.");
for (auto I : zip(Representative, Point))
std::get<0>(I).push(std::get<1>(I));
}
std::vector<BenchmarkMeasure> SchedClassClusterCentroid::getAsPoint() const {
std::vector<BenchmarkMeasure> ClusterCenterPoint(Representative.size());
for (auto I : zip(ClusterCenterPoint, Representative))
std::get<0>(I).PerInstructionValue = std::get<1>(I).avg();
return ClusterCenterPoint;
}
bool SchedClassClusterCentroid::validate(
InstructionBenchmark::ModeE Mode) const {
size_t NumMeasurements = Representative.size();
switch (Mode) {
case InstructionBenchmark::Latency:
if (NumMeasurements != 1) {
errs()
<< "invalid number of measurements in latency mode: expected 1, got "
<< NumMeasurements << "\n";
return false;
}
break;
case InstructionBenchmark::Uops:
// Can have many measurements.
break;
case InstructionBenchmark::InverseThroughput:
if (NumMeasurements != 1) {
errs() << "invalid number of measurements in inverse throughput "
"mode: expected 1, got "
<< NumMeasurements << "\n";
return false;
}
break;
default:
llvm_unreachable("unimplemented measurement matching mode");
return false;
}
return true; // All good.
}
} // namespace exegesis
} // namespace llvm
|