1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
//===-- Clustering.h --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Utilities to compute benchmark result clusters.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVM_EXEGESIS_CLUSTERING_H
#define LLVM_TOOLS_LLVM_EXEGESIS_CLUSTERING_H
#include "BenchmarkResult.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Support/Error.h"
#include <limits>
#include <vector>
namespace llvm {
namespace exegesis {
class InstructionBenchmarkClustering {
public:
enum ModeE { Dbscan, Naive };
// Clusters `Points` using DBSCAN with the given parameters. See the cc file
// for more explanations on the algorithm.
static Expected<InstructionBenchmarkClustering>
create(const std::vector<InstructionBenchmark> &Points, ModeE Mode,
size_t DbscanMinPts, double AnalysisClusteringEpsilon,
const MCSubtargetInfo *SubtargetInfo = nullptr,
const MCInstrInfo *InstrInfo = nullptr);
class ClusterId {
public:
static ClusterId noise() { return ClusterId(kNoise); }
static ClusterId error() { return ClusterId(kError); }
static ClusterId makeValid(size_t Id, bool IsUnstable = false) {
return ClusterId(Id, IsUnstable);
}
static ClusterId makeValidUnstable(size_t Id) {
return makeValid(Id, /*IsUnstable=*/true);
}
ClusterId() : Id_(kUndef), IsUnstable_(false) {}
// Compare id's, ignoring the 'unstability' bit.
bool operator==(const ClusterId &O) const { return Id_ == O.Id_; }
bool operator<(const ClusterId &O) const { return Id_ < O.Id_; }
bool isValid() const { return Id_ <= kMaxValid; }
bool isUnstable() const { return IsUnstable_; }
bool isNoise() const { return Id_ == kNoise; }
bool isError() const { return Id_ == kError; }
bool isUndef() const { return Id_ == kUndef; }
// Precondition: isValid().
size_t getId() const {
assert(isValid());
return Id_;
}
private:
ClusterId(size_t Id, bool IsUnstable = false)
: Id_(Id), IsUnstable_(IsUnstable) {}
static constexpr const size_t kMaxValid =
(std::numeric_limits<size_t>::max() >> 1) - 4;
static constexpr const size_t kNoise = kMaxValid + 1;
static constexpr const size_t kError = kMaxValid + 2;
static constexpr const size_t kUndef = kMaxValid + 3;
size_t Id_ : (std::numeric_limits<size_t>::digits - 1);
size_t IsUnstable_ : 1;
};
static_assert(sizeof(ClusterId) == sizeof(size_t), "should be a bit field.");
struct Cluster {
Cluster() = delete;
explicit Cluster(const ClusterId &Id) : Id(Id) {}
const ClusterId Id;
// Indices of benchmarks within the cluster.
std::vector<int> PointIndices;
};
ClusterId getClusterIdForPoint(size_t P) const {
return ClusterIdForPoint_[P];
}
const std::vector<InstructionBenchmark> &getPoints() const { return Points_; }
const Cluster &getCluster(ClusterId Id) const {
assert(!Id.isUndef() && "unlabeled cluster");
if (Id.isNoise()) {
return NoiseCluster_;
}
if (Id.isError()) {
return ErrorCluster_;
}
return Clusters_[Id.getId()];
}
const std::vector<Cluster> &getValidClusters() const { return Clusters_; }
// Returns true if the given point is within a distance Epsilon of each other.
bool isNeighbour(const std::vector<BenchmarkMeasure> &P,
const std::vector<BenchmarkMeasure> &Q,
const double EpsilonSquared_) const {
double DistanceSquared = 0.0;
for (size_t I = 0, E = P.size(); I < E; ++I) {
const auto Diff = P[I].PerInstructionValue - Q[I].PerInstructionValue;
DistanceSquared += Diff * Diff;
}
return DistanceSquared <= EpsilonSquared_;
}
private:
InstructionBenchmarkClustering(
const std::vector<InstructionBenchmark> &Points,
double AnalysisClusteringEpsilonSquared);
Error validateAndSetup();
void clusterizeDbScan(size_t MinPts);
void clusterizeNaive(const MCSubtargetInfo &SubtargetInfo,
const MCInstrInfo &InstrInfo);
// Stabilization is only needed if dbscan was used to clusterize.
void stabilize(unsigned NumOpcodes);
void rangeQuery(size_t Q, std::vector<size_t> &Scratchpad) const;
bool areAllNeighbours(ArrayRef<size_t> Pts) const;
const std::vector<InstructionBenchmark> &Points_;
const double AnalysisClusteringEpsilonSquared_;
int NumDimensions_ = 0;
// ClusterForPoint_[P] is the cluster id for Points[P].
std::vector<ClusterId> ClusterIdForPoint_;
std::vector<Cluster> Clusters_;
Cluster NoiseCluster_;
Cluster ErrorCluster_;
};
class SchedClassClusterCentroid {
public:
const std::vector<PerInstructionStats> &getStats() const {
return Representative;
}
std::vector<BenchmarkMeasure> getAsPoint() const;
void addPoint(ArrayRef<BenchmarkMeasure> Point);
bool validate(InstructionBenchmark::ModeE Mode) const;
private:
// Measurement stats for the points in the SchedClassCluster.
std::vector<PerInstructionStats> Representative;
};
} // namespace exegesis
} // namespace llvm
#endif // LLVM_TOOLS_LLVM_EXEGESIS_CLUSTERING_H
|