1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
//===-- SchedClassResolution.cpp --------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SchedClassResolution.h"
#include "BenchmarkResult.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Support/FormatVariadic.h"
#include <limits>
#include <unordered_set>
#include <vector>
namespace llvm {
namespace exegesis {
// Return the non-redundant list of WriteProcRes used by the given sched class.
// The scheduling model for LLVM is such that each instruction has a certain
// number of uops which consume resources which are described by WriteProcRes
// entries. Each entry describe how many cycles are spent on a specific ProcRes
// kind.
// For example, an instruction might have 3 uOps, one dispatching on P0
// (ProcResIdx=1) and two on P06 (ProcResIdx = 7).
// Note that LLVM additionally denormalizes resource consumption to include
// usage of super resources by subresources. So in practice if there exists a
// P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by
// P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed
// by P06 are also consumed by P016. In the figure below, parenthesized cycles
// denote implied usage of superresources by subresources:
// P0 P06 P016
// uOp1 1 (1) (1)
// uOp2 1 (1)
// uOp3 1 (1)
// =============================
// 1 3 3
// Eventually we end up with three entries for the WriteProcRes of the
// instruction:
// {ProcResIdx=1, Cycles=1} // P0
// {ProcResIdx=7, Cycles=3} // P06
// {ProcResIdx=10, Cycles=3} // P016
//
// Note that in this case, P016 does not contribute any cycles, so it would
// be removed by this function.
// FIXME: Move this to MCSubtargetInfo and use it in llvm-mca.
static SmallVector<MCWriteProcResEntry, 8>
getNonRedundantWriteProcRes(const MCSchedClassDesc &SCDesc,
const MCSubtargetInfo &STI) {
SmallVector<MCWriteProcResEntry, 8> Result;
const auto &SM = STI.getSchedModel();
const unsigned NumProcRes = SM.getNumProcResourceKinds();
// This assumes that the ProcResDescs are sorted in topological order, which
// is guaranteed by the tablegen backend.
SmallVector<float, 32> ProcResUnitUsage(NumProcRes);
for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc),
*const WPREnd = STI.getWriteProcResEnd(&SCDesc);
WPR != WPREnd; ++WPR) {
const MCProcResourceDesc *const ProcResDesc =
SM.getProcResource(WPR->ProcResourceIdx);
if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
// This is a ProcResUnit.
Result.push_back({WPR->ProcResourceIdx, WPR->Cycles});
ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->Cycles;
} else {
// This is a ProcResGroup. First see if it contributes any cycles or if
// it has cycles just from subunits.
float RemainingCycles = WPR->Cycles;
for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
++SubResIdx) {
RemainingCycles -= ProcResUnitUsage[*SubResIdx];
}
if (RemainingCycles < 0.01f) {
// The ProcResGroup contributes no cycles of its own.
continue;
}
// The ProcResGroup contributes `RemainingCycles` cycles of its own.
Result.push_back({WPR->ProcResourceIdx,
static_cast<uint16_t>(std::round(RemainingCycles))});
// Spread the remaining cycles over all subunits.
for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
++SubResIdx) {
ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits;
}
}
}
return Result;
}
// Distributes a pressure budget as evenly as possible on the provided subunits
// given the already existing port pressure distribution.
//
// The algorithm is as follows: while there is remaining pressure to
// distribute, find the subunits with minimal pressure, and distribute
// remaining pressure equally up to the pressure of the unit with
// second-to-minimal pressure.
// For example, let's assume we want to distribute 2*P1256
// (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is:
// DensePressure = P0 P1 P2 P3 P4 P5 P6 P7
// 0.1 0.3 0.2 0.0 0.0 0.5 0.5 0.5
// RemainingPressure = 2.0
// We sort the subunits by pressure:
// Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)]
// We'll first start by the subunits with minimal pressure, which are at
// the beginning of the sorted array. In this example there is one (P2).
// The subunit with second-to-minimal pressure is the next one in the
// array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles
// from the budget.
// Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)]
// RemainingPressure = 1.9
// We repeat this process: distribute 0.2 pressure on each of the minimal
// P2 and P1, decrease budget by 2*0.2:
// Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)]
// RemainingPressure = 1.5
// There are no second-to-minimal subunits so we just share the remaining
// budget (1.5 cycles) equally:
// Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)]
// RemainingPressure = 0.0
// We stop as there is no remaining budget to distribute.
static void distributePressure(float RemainingPressure,
SmallVector<uint16_t, 32> Subunits,
SmallVector<float, 32> &DensePressure) {
// Find the number of subunits with minimal pressure (they are at the
// front).
sort(Subunits, [&DensePressure](const uint16_t A, const uint16_t B) {
return DensePressure[A] < DensePressure[B];
});
const auto getPressureForSubunit = [&DensePressure,
&Subunits](size_t I) -> float & {
return DensePressure[Subunits[I]];
};
size_t NumMinimalSU = 1;
while (NumMinimalSU < Subunits.size() &&
getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) {
++NumMinimalSU;
}
while (RemainingPressure > 0.0f) {
if (NumMinimalSU == Subunits.size()) {
// All units are minimal, just distribute evenly and be done.
for (size_t I = 0; I < NumMinimalSU; ++I) {
getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
}
return;
}
// Distribute the remaining pressure equally.
const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1);
const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU);
assert(MinimalPressure < SecondToMinimalPressure);
const float Increment = SecondToMinimalPressure - MinimalPressure;
if (RemainingPressure <= NumMinimalSU * Increment) {
// There is not enough remaining pressure.
for (size_t I = 0; I < NumMinimalSU; ++I) {
getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
}
return;
}
// Bump all minimal pressure subunits to `SecondToMinimalPressure`.
for (size_t I = 0; I < NumMinimalSU; ++I) {
getPressureForSubunit(I) = SecondToMinimalPressure;
RemainingPressure -= SecondToMinimalPressure;
}
while (NumMinimalSU < Subunits.size() &&
getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) {
++NumMinimalSU;
}
}
}
std::vector<std::pair<uint16_t, float>>
computeIdealizedProcResPressure(const MCSchedModel &SM,
SmallVector<MCWriteProcResEntry, 8> WPRS) {
// DensePressure[I] is the port pressure for Proc Resource I.
SmallVector<float, 32> DensePressure(SM.getNumProcResourceKinds());
sort(WPRS, [](const MCWriteProcResEntry &A, const MCWriteProcResEntry &B) {
return A.ProcResourceIdx < B.ProcResourceIdx;
});
for (const MCWriteProcResEntry &WPR : WPRS) {
// Get units for the entry.
const MCProcResourceDesc *const ProcResDesc =
SM.getProcResource(WPR.ProcResourceIdx);
if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
// This is a ProcResUnit.
DensePressure[WPR.ProcResourceIdx] += WPR.Cycles;
} else {
// This is a ProcResGroup.
SmallVector<uint16_t, 32> Subunits(ProcResDesc->SubUnitsIdxBegin,
ProcResDesc->SubUnitsIdxBegin +
ProcResDesc->NumUnits);
distributePressure(WPR.Cycles, Subunits, DensePressure);
}
}
// Turn dense pressure into sparse pressure by removing zero entries.
std::vector<std::pair<uint16_t, float>> Pressure;
for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) {
if (DensePressure[I] > 0.0f)
Pressure.emplace_back(I, DensePressure[I]);
}
return Pressure;
}
ResolvedSchedClass::ResolvedSchedClass(const MCSubtargetInfo &STI,
unsigned ResolvedSchedClassId,
bool WasVariant)
: SchedClassId(ResolvedSchedClassId),
SCDesc(STI.getSchedModel().getSchedClassDesc(ResolvedSchedClassId)),
WasVariant(WasVariant),
NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc, STI)),
IdealizedProcResPressure(computeIdealizedProcResPressure(
STI.getSchedModel(), NonRedundantWriteProcRes)) {
assert((SCDesc == nullptr || !SCDesc->isVariant()) &&
"ResolvedSchedClass should never be variant");
}
static unsigned ResolveVariantSchedClassId(const MCSubtargetInfo &STI,
const MCInstrInfo &InstrInfo,
unsigned SchedClassId,
const MCInst &MCI) {
const auto &SM = STI.getSchedModel();
while (SchedClassId && SM.getSchedClassDesc(SchedClassId)->isVariant()) {
SchedClassId = STI.resolveVariantSchedClass(SchedClassId, &MCI, &InstrInfo,
SM.getProcessorID());
}
return SchedClassId;
}
std::pair<unsigned /*SchedClassId*/, bool /*WasVariant*/>
ResolvedSchedClass::resolveSchedClassId(const MCSubtargetInfo &SubtargetInfo,
const MCInstrInfo &InstrInfo,
const MCInst &MCI) {
unsigned SchedClassId = InstrInfo.get(MCI.getOpcode()).getSchedClass();
const bool WasVariant = SchedClassId && SubtargetInfo.getSchedModel()
.getSchedClassDesc(SchedClassId)
->isVariant();
SchedClassId =
ResolveVariantSchedClassId(SubtargetInfo, InstrInfo, SchedClassId, MCI);
return std::make_pair(SchedClassId, WasVariant);
}
// Returns a ProxResIdx by id or name.
static unsigned findProcResIdx(const MCSubtargetInfo &STI,
const StringRef NameOrId) {
// Interpret the key as an ProcResIdx.
unsigned ProcResIdx = 0;
if (to_integer(NameOrId, ProcResIdx, 10))
return ProcResIdx;
// Interpret the key as a ProcRes name.
const auto &SchedModel = STI.getSchedModel();
for (int I = 0, E = SchedModel.getNumProcResourceKinds(); I < E; ++I) {
if (NameOrId == SchedModel.getProcResource(I)->Name)
return I;
}
return 0;
}
std::vector<BenchmarkMeasure> ResolvedSchedClass::getAsPoint(
InstructionBenchmark::ModeE Mode, const MCSubtargetInfo &STI,
ArrayRef<PerInstructionStats> Representative) const {
const size_t NumMeasurements = Representative.size();
std::vector<BenchmarkMeasure> SchedClassPoint(NumMeasurements);
if (Mode == InstructionBenchmark::Latency) {
assert(NumMeasurements == 1 && "Latency is a single measure.");
BenchmarkMeasure &LatencyMeasure = SchedClassPoint[0];
// Find the latency.
LatencyMeasure.PerInstructionValue = 0.0;
for (unsigned I = 0; I < SCDesc->NumWriteLatencyEntries; ++I) {
const MCWriteLatencyEntry *const WLE =
STI.getWriteLatencyEntry(SCDesc, I);
LatencyMeasure.PerInstructionValue =
std::max<double>(LatencyMeasure.PerInstructionValue, WLE->Cycles);
}
} else if (Mode == InstructionBenchmark::Uops) {
for (auto I : zip(SchedClassPoint, Representative)) {
BenchmarkMeasure &Measure = std::get<0>(I);
const PerInstructionStats &Stats = std::get<1>(I);
StringRef Key = Stats.key();
uint16_t ProcResIdx = findProcResIdx(STI, Key);
if (ProcResIdx > 0) {
// Find the pressure on ProcResIdx `Key`.
const auto ProcResPressureIt =
llvm::find_if(IdealizedProcResPressure,
[ProcResIdx](const std::pair<uint16_t, float> &WPR) {
return WPR.first == ProcResIdx;
});
Measure.PerInstructionValue =
ProcResPressureIt == IdealizedProcResPressure.end()
? 0.0
: ProcResPressureIt->second;
} else if (Key == "NumMicroOps") {
Measure.PerInstructionValue = SCDesc->NumMicroOps;
} else {
errs() << "expected `key` to be either a ProcResIdx or a ProcRes "
"name, got "
<< Key << "\n";
return {};
}
}
} else if (Mode == InstructionBenchmark::InverseThroughput) {
assert(NumMeasurements == 1 && "Inverse Throughput is a single measure.");
BenchmarkMeasure &RThroughputMeasure = SchedClassPoint[0];
RThroughputMeasure.PerInstructionValue =
MCSchedModel::getReciprocalThroughput(STI, *SCDesc);
} else {
llvm_unreachable("unimplemented measurement matching mode");
}
return SchedClassPoint;
}
} // namespace exegesis
} // namespace llvm
|