1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
|
//===-- ProfiledBinary.h - Binary decoder -----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVM_PROFGEN_PROFILEDBINARY_H
#define LLVM_TOOLS_LLVM_PROFGEN_PROFILEDBINARY_H
#include "CallContext.h"
#include "ErrorHandling.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/Symbolize/Symbolize.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCPseudoProbe.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Path.h"
#include "llvm/Transforms/IPO/SampleContextTracker.h"
#include <list>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
extern cl::opt<bool> EnableCSPreInliner;
extern cl::opt<bool> UseContextCostForPreInliner;
using namespace llvm;
using namespace sampleprof;
using namespace llvm::object;
namespace llvm {
namespace sampleprof {
class ProfiledBinary;
struct InstructionPointer {
const ProfiledBinary *Binary;
union {
// Offset of the executable segment of the binary.
uint64_t Offset = 0;
// Also used as address in unwinder
uint64_t Address;
};
// Index to the sorted code address array of the binary.
uint64_t Index = 0;
InstructionPointer(const ProfiledBinary *Binary, uint64_t Address,
bool RoundToNext = false);
bool advance();
bool backward();
void update(uint64_t Addr);
};
// The special frame addresses.
enum SpecialFrameAddr {
// Dummy root of frame trie.
DummyRoot = 0,
// Represent all the addresses outside of current binary.
// This's also used to indicate the call stack should be truncated since this
// isn't a real call context the compiler will see.
ExternalAddr = 1,
};
using RangesTy = std::vector<std::pair<uint64_t, uint64_t>>;
struct BinaryFunction {
StringRef FuncName;
// End of range is an exclusive bound.
RangesTy Ranges;
uint64_t getFuncSize() {
uint64_t Sum = 0;
for (auto &R : Ranges) {
Sum += R.second - R.first;
}
return Sum;
}
};
// Info about function range. A function can be split into multiple
// non-continuous ranges, each range corresponds to one FuncRange.
struct FuncRange {
uint64_t StartOffset;
// EndOffset is an exclusive bound.
uint64_t EndOffset;
// Function the range belongs to
BinaryFunction *Func;
// Whether the start offset is the real entry of the function.
bool IsFuncEntry = false;
StringRef getFuncName() { return Func->FuncName; }
};
// PrologEpilog offset tracker, used to filter out broken stack samples
// Currently we use a heuristic size (two) to infer prolog and epilog
// based on the start address and return address. In the future,
// we will switch to Dwarf CFI based tracker
struct PrologEpilogTracker {
// A set of prolog and epilog offsets. Used by virtual unwinding.
std::unordered_set<uint64_t> PrologEpilogSet;
ProfiledBinary *Binary;
PrologEpilogTracker(ProfiledBinary *Bin) : Binary(Bin){};
// Take the two addresses from the start of function as prolog
void inferPrologOffsets(std::map<uint64_t, FuncRange> &FuncStartOffsetMap) {
for (auto I : FuncStartOffsetMap) {
PrologEpilogSet.insert(I.first);
InstructionPointer IP(Binary, I.first);
if (!IP.advance())
break;
PrologEpilogSet.insert(IP.Offset);
}
}
// Take the last two addresses before the return address as epilog
void inferEpilogOffsets(std::unordered_set<uint64_t> &RetAddrs) {
for (auto Addr : RetAddrs) {
PrologEpilogSet.insert(Addr);
InstructionPointer IP(Binary, Addr);
if (!IP.backward())
break;
PrologEpilogSet.insert(IP.Offset);
}
}
};
// Track function byte size under different context (outlined version as well as
// various inlined versions). It also provides query support to get function
// size with the best matching context, which is used to help pre-inliner use
// accurate post-optimization size to make decisions.
// TODO: If an inlinee is completely optimized away, ideally we should have zero
// for its context size, currently we would misss such context since it doesn't
// have instructions. To fix this, we need to mark all inlinee with entry probe
// but without instructions as having zero size.
class BinarySizeContextTracker {
public:
// Add instruction with given size to a context
void addInstructionForContext(const SampleContextFrameVector &Context,
uint32_t InstrSize);
// Get function size with a specific context. When there's no exact match
// for the given context, try to retrieve the size of that function from
// closest matching context.
uint32_t getFuncSizeForContext(const SampleContext &Context);
// For inlinees that are full optimized away, we can establish zero size using
// their remaining probes.
void trackInlineesOptimizedAway(MCPseudoProbeDecoder &ProbeDecoder);
void dump() { RootContext.dumpTree(); }
private:
using ProbeFrameStack = SmallVector<std::pair<StringRef, uint32_t>>;
void trackInlineesOptimizedAway(MCPseudoProbeDecoder &ProbeDecoder,
MCDecodedPseudoProbeInlineTree &ProbeNode,
ProbeFrameStack &Context);
// Root node for context trie tree, node that this is a reverse context trie
// with callee as parent and caller as child. This way we can traverse from
// root to find the best/longest matching context if an exact match does not
// exist. It gives us the best possible estimate for function's post-inline,
// post-optimization byte size.
ContextTrieNode RootContext;
};
using OffsetRange = std::pair<uint64_t, uint64_t>;
class ProfiledBinary {
// Absolute path of the executable binary.
std::string Path;
// Path of the debug info binary.
std::string DebugBinaryPath;
// Path of symbolizer path which should be pointed to binary with debug info.
StringRef SymbolizerPath;
// The target triple.
Triple TheTriple;
// The runtime base address that the first executable segment is loaded at.
uint64_t BaseAddress = 0;
// The runtime base address that the first loadabe segment is loaded at.
uint64_t FirstLoadableAddress = 0;
// The preferred load address of each executable segment.
std::vector<uint64_t> PreferredTextSegmentAddresses;
// The file offset of each executable segment.
std::vector<uint64_t> TextSegmentOffsets;
// Mutiple MC component info
std::unique_ptr<const MCRegisterInfo> MRI;
std::unique_ptr<const MCAsmInfo> AsmInfo;
std::unique_ptr<const MCSubtargetInfo> STI;
std::unique_ptr<const MCInstrInfo> MII;
std::unique_ptr<MCDisassembler> DisAsm;
std::unique_ptr<const MCInstrAnalysis> MIA;
std::unique_ptr<MCInstPrinter> IPrinter;
// A list of text sections sorted by start RVA and size. Used to check
// if a given RVA is a valid code address.
std::set<std::pair<uint64_t, uint64_t>> TextSections;
// A map of mapping function name to BinaryFunction info.
std::unordered_map<std::string, BinaryFunction> BinaryFunctions;
// An ordered map of mapping function's start offset to function range
// relevant info. Currently to determine if the offset of ELF is the start of
// a real function, we leverage the function range info from DWARF.
std::map<uint64_t, FuncRange> StartOffset2FuncRangeMap;
// Offset to context location map. Used to expand the context.
std::unordered_map<uint64_t, SampleContextFrameVector> Offset2LocStackMap;
// Offset to instruction size map. Also used for quick offset lookup.
std::unordered_map<uint64_t, uint64_t> Offset2InstSizeMap;
// An array of offsets of all instructions sorted in increasing order. The
// sorting is needed to fast advance to the next forward/backward instruction.
std::vector<uint64_t> CodeAddrOffsets;
// A set of call instruction offsets. Used by virtual unwinding.
std::unordered_set<uint64_t> CallOffsets;
// A set of return instruction offsets. Used by virtual unwinding.
std::unordered_set<uint64_t> RetOffsets;
// A set of branch instruction offsets.
std::unordered_set<uint64_t> BranchOffsets;
// Estimate and track function prolog and epilog ranges.
PrologEpilogTracker ProEpilogTracker;
// Track function sizes under different context
BinarySizeContextTracker FuncSizeTracker;
// The symbolizer used to get inline context for an instruction.
std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
// String table owning function name strings created from the symbolizer.
std::unordered_set<std::string> NameStrings;
// A collection of functions to print disassembly for.
StringSet<> DisassembleFunctionSet;
// Pseudo probe decoder
MCPseudoProbeDecoder ProbeDecoder;
bool UsePseudoProbes = false;
bool UseFSDiscriminator = false;
// Whether we need to symbolize all instructions to get function context size.
bool TrackFuncContextSize = false;
// Indicate if the base loading address is parsed from the mmap event or uses
// the preferred address
bool IsLoadedByMMap = false;
// Use to avoid redundant warning.
bool MissingMMapWarned = false;
void setPreferredTextSegmentAddresses(const ELFObjectFileBase *O);
template <class ELFT>
void setPreferredTextSegmentAddresses(const ELFFile<ELFT> &Obj, StringRef FileName);
void decodePseudoProbe(const ELFObjectFileBase *Obj);
void
checkUseFSDiscriminator(const ELFObjectFileBase *Obj,
std::map<SectionRef, SectionSymbolsTy> &AllSymbols);
// Set up disassembler and related components.
void setUpDisassembler(const ELFObjectFileBase *Obj);
void setupSymbolizer();
// Load debug info of subprograms from DWARF section.
void loadSymbolsFromDWARF(ObjectFile &Obj);
// A function may be spilt into multiple non-continuous address ranges. We use
// this to set whether start offset of a function is the real entry of the
// function and also set false to the non-function label.
void setIsFuncEntry(uint64_t Offset, StringRef RangeSymName);
// Warn if no entry range exists in the function.
void warnNoFuncEntry();
/// Dissassemble the text section and build various address maps.
void disassemble(const ELFObjectFileBase *O);
/// Helper function to dissassemble the symbol and extract info for unwinding
bool dissassembleSymbol(std::size_t SI, ArrayRef<uint8_t> Bytes,
SectionSymbolsTy &Symbols, const SectionRef &Section);
/// Symbolize a given instruction pointer and return a full call context.
SampleContextFrameVector symbolize(const InstructionPointer &IP,
bool UseCanonicalFnName = false,
bool UseProbeDiscriminator = false);
/// Decode the interesting parts of the binary and build internal data
/// structures. On high level, the parts of interest are:
/// 1. Text sections, including the main code section and the PLT
/// entries that will be used to handle cross-module call transitions.
/// 2. The .debug_line section, used by Dwarf-based profile generation.
/// 3. Pseudo probe related sections, used by probe-based profile
/// generation.
void load();
public:
ProfiledBinary(const StringRef ExeBinPath, const StringRef DebugBinPath)
: Path(ExeBinPath), DebugBinaryPath(DebugBinPath), ProEpilogTracker(this),
TrackFuncContextSize(EnableCSPreInliner &&
UseContextCostForPreInliner) {
// Point to executable binary if debug info binary is not specified.
SymbolizerPath = DebugBinPath.empty() ? ExeBinPath : DebugBinPath;
setupSymbolizer();
load();
}
uint64_t virtualAddrToOffset(uint64_t VirtualAddress) const {
return VirtualAddress - BaseAddress;
}
uint64_t offsetToVirtualAddr(uint64_t Offset) const {
return Offset + BaseAddress;
}
StringRef getPath() const { return Path; }
StringRef getName() const { return llvm::sys::path::filename(Path); }
uint64_t getBaseAddress() const { return BaseAddress; }
void setBaseAddress(uint64_t Address) { BaseAddress = Address; }
// Return the preferred load address for the first executable segment.
uint64_t getPreferredBaseAddress() const { return PreferredTextSegmentAddresses[0]; }
// Return the preferred load address for the first loadable segment.
uint64_t getFirstLoadableAddress() const { return FirstLoadableAddress; }
// Return the file offset for the first executable segment.
uint64_t getTextSegmentOffset() const { return TextSegmentOffsets[0]; }
const std::vector<uint64_t> &getPreferredTextSegmentAddresses() const {
return PreferredTextSegmentAddresses;
}
const std::vector<uint64_t> &getTextSegmentOffsets() const {
return TextSegmentOffsets;
}
uint64_t getInstSize(uint64_t Offset) const {
auto I = Offset2InstSizeMap.find(Offset);
if (I == Offset2InstSizeMap.end())
return 0;
return I->second;
}
bool offsetIsCode(uint64_t Offset) const {
return Offset2InstSizeMap.find(Offset) != Offset2InstSizeMap.end();
}
bool addressIsCode(uint64_t Address) const {
uint64_t Offset = virtualAddrToOffset(Address);
return offsetIsCode(Offset);
}
bool addressIsCall(uint64_t Address) const {
uint64_t Offset = virtualAddrToOffset(Address);
return CallOffsets.count(Offset);
}
bool addressIsReturn(uint64_t Address) const {
uint64_t Offset = virtualAddrToOffset(Address);
return RetOffsets.count(Offset);
}
bool addressInPrologEpilog(uint64_t Address) const {
uint64_t Offset = virtualAddrToOffset(Address);
return ProEpilogTracker.PrologEpilogSet.count(Offset);
}
bool offsetIsTransfer(uint64_t Offset) {
return BranchOffsets.count(Offset) || RetOffsets.count(Offset) ||
CallOffsets.count(Offset);
}
uint64_t getAddressforIndex(uint64_t Index) const {
return offsetToVirtualAddr(CodeAddrOffsets[Index]);
}
size_t getCodeOffsetsSize() const { return CodeAddrOffsets.size(); }
bool usePseudoProbes() const { return UsePseudoProbes; }
bool useFSDiscriminator() const { return UseFSDiscriminator; }
// Get the index in CodeAddrOffsets for the address
// As we might get an address which is not the code
// here it would round to the next valid code address by
// using lower bound operation
uint32_t getIndexForOffset(uint64_t Offset) const {
auto Low = llvm::lower_bound(CodeAddrOffsets, Offset);
return Low - CodeAddrOffsets.begin();
}
uint32_t getIndexForAddr(uint64_t Address) const {
uint64_t Offset = virtualAddrToOffset(Address);
return getIndexForOffset(Offset);
}
uint64_t getCallAddrFromFrameAddr(uint64_t FrameAddr) const {
if (FrameAddr == ExternalAddr)
return ExternalAddr;
auto I = getIndexForAddr(FrameAddr);
FrameAddr = I ? getAddressforIndex(I - 1) : 0;
if (FrameAddr && addressIsCall(FrameAddr))
return FrameAddr;
return 0;
}
FuncRange *findFuncRangeForStartOffset(uint64_t Offset) {
auto I = StartOffset2FuncRangeMap.find(Offset);
if (I == StartOffset2FuncRangeMap.end())
return nullptr;
return &I->second;
}
// Binary search the function range which includes the input offset.
FuncRange *findFuncRangeForOffset(uint64_t Offset) {
auto I = StartOffset2FuncRangeMap.upper_bound(Offset);
if (I == StartOffset2FuncRangeMap.begin())
return nullptr;
I--;
if (Offset >= I->second.EndOffset)
return nullptr;
return &I->second;
}
// Get all ranges of one function.
RangesTy getRangesForOffset(uint64_t Offset) {
auto *FRange = findFuncRangeForOffset(Offset);
// Ignore the range which falls into plt section or system lib.
if (!FRange)
return RangesTy();
return FRange->Func->Ranges;
}
const std::unordered_map<std::string, BinaryFunction> &
getAllBinaryFunctions() {
return BinaryFunctions;
}
BinaryFunction *getBinaryFunction(StringRef FName) {
auto I = BinaryFunctions.find(FName.str());
if (I == BinaryFunctions.end())
return nullptr;
return &I->second;
}
uint32_t getFuncSizeForContext(SampleContext &Context) {
return FuncSizeTracker.getFuncSizeForContext(Context);
}
// Load the symbols from debug table and populate into symbol list.
void populateSymbolListFromDWARF(ProfileSymbolList &SymbolList);
const SampleContextFrameVector &
getFrameLocationStack(uint64_t Offset, bool UseProbeDiscriminator = false) {
auto I = Offset2LocStackMap.emplace(Offset, SampleContextFrameVector());
if (I.second) {
InstructionPointer IP(this, Offset);
I.first->second = symbolize(IP, true, UseProbeDiscriminator);
}
return I.first->second;
}
Optional<SampleContextFrame> getInlineLeafFrameLoc(uint64_t Offset) {
const auto &Stack = getFrameLocationStack(Offset);
if (Stack.empty())
return {};
return Stack.back();
}
// Compare two addresses' inline context
bool inlineContextEqual(uint64_t Add1, uint64_t Add2);
// Get the full context of the current stack with inline context filled in.
// It will search the disassembling info stored in Offset2LocStackMap. This is
// used as the key of function sample map
SampleContextFrameVector
getExpandedContext(const SmallVectorImpl<uint64_t> &Stack,
bool &WasLeafInlined);
// Go through instructions among the given range and record its size for the
// inline context.
void computeInlinedContextSizeForRange(uint64_t StartOffset,
uint64_t EndOffset);
const MCDecodedPseudoProbe *getCallProbeForAddr(uint64_t Address) const {
return ProbeDecoder.getCallProbeForAddr(Address);
}
void getInlineContextForProbe(const MCDecodedPseudoProbe *Probe,
SampleContextFrameVector &InlineContextStack,
bool IncludeLeaf = false) const {
SmallVector<MCPseduoProbeFrameLocation, 16> ProbeInlineContext;
ProbeDecoder.getInlineContextForProbe(Probe, ProbeInlineContext,
IncludeLeaf);
for (uint32_t I = 0; I < ProbeInlineContext.size(); I++) {
auto &Callsite = ProbeInlineContext[I];
// Clear the current context for an unknown probe.
if (Callsite.second == 0 && I != ProbeInlineContext.size() - 1) {
InlineContextStack.clear();
continue;
}
InlineContextStack.emplace_back(Callsite.first,
LineLocation(Callsite.second, 0));
}
}
const AddressProbesMap &getAddress2ProbesMap() const {
return ProbeDecoder.getAddress2ProbesMap();
}
const MCPseudoProbeFuncDesc *getFuncDescForGUID(uint64_t GUID) {
return ProbeDecoder.getFuncDescForGUID(GUID);
}
const MCPseudoProbeFuncDesc *
getInlinerDescForProbe(const MCDecodedPseudoProbe *Probe) {
return ProbeDecoder.getInlinerDescForProbe(Probe);
}
bool getTrackFuncContextSize() { return TrackFuncContextSize; }
bool getIsLoadedByMMap() { return IsLoadedByMMap; }
void setIsLoadedByMMap(bool Value) { IsLoadedByMMap = Value; }
bool getMissingMMapWarned() { return MissingMMapWarned; }
void setMissingMMapWarned(bool Value) { MissingMMapWarned = Value; }
};
} // end namespace sampleprof
} // end namespace llvm
#endif
|