1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
//===- TFUtilsTest.cpp - test for TFUtils ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Utils/TFUtils.h"
#include "google/protobuf/struct.pb.h"
#include "tensorflow/core/example/example.pb.h"
#include "tensorflow/core/example/feature.pb.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Testing/Support/SupportHelpers.h"
#include "gtest/gtest.h"
using namespace llvm;
extern const char *TestMainArgv0;
// NOTE! This test model is currently also used by test/Transforms/Inline/ML tests
//- relevant if updating this model.
static std::string getModelPath() {
SmallString<128> InputsDir = unittest::getInputFileDirectory(TestMainArgv0);
llvm::sys::path::append(InputsDir, "ir2native_x86_64_model");
return std::string(InputsDir);
}
// Test observable behavior when no model is provided.
TEST(TFUtilsTest, NoModel) {
TFModelEvaluator Evaluator("", {}, {});
EXPECT_FALSE(Evaluator.isValid());
}
// Test we can correctly load a savedmodel and evaluate it.
TEST(TFUtilsTest, LoadAndExecuteTest) {
// We use the ir2native model for test. We know it has one feature of
// dimension (1, 214)
const static int64_t KnownSize = 214;
std::vector<TensorSpec> InputSpecs{TensorSpec::createSpec<int32_t>(
"serving_default_input_1", {1, KnownSize})};
std::vector<TensorSpec> OutputSpecs{
TensorSpec::createSpec<float>("StatefulPartitionedCall", {1})};
TFModelEvaluator Evaluator(getModelPath(), InputSpecs, OutputSpecs);
EXPECT_TRUE(Evaluator.isValid());
int32_t *V = Evaluator.getInput<int32_t>(0);
// Fill it up with 1's, we know the output.
for (auto I = 0; I < KnownSize; ++I) {
V[I] = 1;
}
{
auto ER = Evaluator.evaluate();
EXPECT_TRUE(ER.hasValue());
float Ret = *ER->getTensorValue<float>(0);
EXPECT_EQ(static_cast<int64_t>(Ret), 80);
EXPECT_EQ(ER->getUntypedTensorValue(0),
reinterpret_cast<const void *>(ER->getTensorValue<float>(0)));
}
// The input vector should be unchanged
for (auto I = 0; I < KnownSize; ++I) {
EXPECT_EQ(V[I], 1);
}
// Zero-out the unused position '0' of the instruction histogram, which is
// after the first 9 calculated values. Should the the same result.
V[9] = 0;
{
auto ER = Evaluator.evaluate();
EXPECT_TRUE(ER.hasValue());
float Ret = *ER->getTensorValue<float>(0);
EXPECT_EQ(static_cast<int64_t>(Ret), 80);
}
}
// Test incorrect input setup
TEST(TFUtilsTest, EvalError) {
// We use the ir2native model for test. We know it has one feature of
// dimension (1, 214)
const static int64_t KnownSize = 213;
std::vector<TensorSpec> InputSpecs{TensorSpec::createSpec<int32_t>(
"serving_default_input_1", {1, KnownSize})};
std::vector<TensorSpec> OutputSpecs{
TensorSpec::createSpec<float>("StatefulPartitionedCall", {1})};
TFModelEvaluator Evaluator(getModelPath(), InputSpecs, OutputSpecs);
EXPECT_TRUE(Evaluator.isValid());
int32_t *V = Evaluator.getInput<int32_t>(0);
// Fill it up with 1's, we know the output.
for (auto I = 0; I < KnownSize; ++I) {
V[I] = 1;
}
auto ER = Evaluator.evaluate();
EXPECT_FALSE(ER.hasValue());
EXPECT_FALSE(Evaluator.isValid());
}
TEST(TFUtilsTest, JSONParsing) {
auto Value = json::parse(
R"({"name": "tensor_name",
"port": 2,
"type": "int32_t",
"shape":[1,4]
})");
EXPECT_TRUE(!!Value);
LLVMContext Ctx;
Optional<TensorSpec> Spec = getTensorSpecFromJSON(Ctx, *Value);
EXPECT_TRUE(Spec.hasValue());
EXPECT_EQ(*Spec, TensorSpec::createSpec<int32_t>("tensor_name", {1, 4}, 2));
}
TEST(TFUtilsTest, JSONParsingInvalidTensorType) {
auto Value = json::parse(
R"(
{"name": "tensor_name",
"port": 2,
"type": "no such type",
"shape":[1,4]
}
)");
EXPECT_TRUE(!!Value);
LLVMContext Ctx;
auto Spec = getTensorSpecFromJSON(Ctx, *Value);
EXPECT_FALSE(Spec.hasValue());
}
TEST(TFUtilsTest, TensorSpecSizesAndTypes) {
auto Spec1D = TensorSpec::createSpec<int16_t>("Hi1", {1});
auto Spec2D = TensorSpec::createSpec<int16_t>("Hi2", {1, 1});
auto Spec1DLarge = TensorSpec::createSpec<float>("Hi3", {10});
auto Spec3DLarge = TensorSpec::createSpec<float>("Hi3", {2, 4, 10});
EXPECT_TRUE(Spec1D.isElementType<int16_t>());
EXPECT_FALSE(Spec3DLarge.isElementType<double>());
EXPECT_EQ(Spec1D.getElementCount(), 1U);
EXPECT_EQ(Spec2D.getElementCount(), 1U);
EXPECT_EQ(Spec1DLarge.getElementCount(), 10U);
EXPECT_EQ(Spec3DLarge.getElementCount(), 80U);
EXPECT_EQ(Spec3DLarge.getElementByteSize(), sizeof(float));
EXPECT_EQ(Spec1D.getElementByteSize(), sizeof(int16_t));
}
#define PROTO_CHECKER(FNAME, TYPE, INDEX, EXP) \
do { \
const auto &V = Expected.feature_lists() \
.feature_list() \
.at(FNAME) \
.feature(INDEX) \
.TYPE() \
.value(); \
for (auto I = 0; I < V.size(); ++I) \
EXPECT_EQ(V.at(I), EXP[I]); \
} while (false)
TEST(TFUtilsTest, Logger) {
std::vector<LoggedFeatureSpec> Features;
Features.push_back(
{TensorSpec::createSpec<float>("the_float", {2, 3}), None});
Features.push_back({TensorSpec::createSpec<int64_t>("the_int", {2}),
std::string("alternate_name")});
auto Rewards = TensorSpec::createSpec<float>("reward", {1});
Logger L(Features, Rewards, true);
const float F00[]{0.0, 0.1, 0.2, 0.3, 0.4, 0.5};
const int64_t F01[]{2, 3};
L.logFloatValue(0, F00);
L.logInt64Value(1, F01);
L.logFloatReward(3.4);
const float F10[]{0.0, 1.0, 2.0, 3.0, 4.0, 5.0};
const int64_t F11[]{-2, -3};
L.logFloatValue(0, F10);
L.logInt64Value(1, F11);
L.logFloatReward(-3.0);
std::string Result;
raw_string_ostream OS(Result);
L.flush(OS);
tensorflow::SequenceExample Expected;
ASSERT_TRUE(Expected.ParseFromString(Result));
PROTO_CHECKER("the_float", float_list, 0, F00);
PROTO_CHECKER("the_float", float_list, 1, F10);
PROTO_CHECKER("alternate_name", int64_list, 0, F01);
PROTO_CHECKER("alternate_name", int64_list, 1, F11);
float R0[]{3.4};
float R1[]{-3.0};
PROTO_CHECKER("reward", float_list, 0, R0);
PROTO_CHECKER("reward", float_list, 1, R1);
}
TEST(TFUtilsTest, LoggerInt32FeaturesAndReward) {
std::vector<LoggedFeatureSpec> Features;
Features.push_back(
{TensorSpec::createSpec<float>("the_float", {2, 3}), None});
Features.push_back({TensorSpec::createSpec<int32_t>("the_int", {2}),
std::string("alternate_name")});
auto Rewards = TensorSpec::createSpec<int32_t>("reward", {1});
Logger L(Features, Rewards, true);
const float F00[]{0.0, 0.1, 0.2, 0.3, 0.4, 0.5};
const int32_t F01[]{2, 3};
L.logFloatValue(0, F00);
L.logInt32Value(1, F01);
L.logInt32Reward(3);
const float F10[]{0.0, 1.0, 2.0, 3.0, 4.0, 5.0};
const int32_t F11[]{-2, -3};
L.logFloatValue(0, F10);
L.logInt32Value(1, F11);
L.logInt32Reward(-3);
std::string Result;
raw_string_ostream OS(Result);
L.flush(OS);
tensorflow::SequenceExample Expected;
ASSERT_TRUE(Expected.ParseFromString(Result));
PROTO_CHECKER("the_float", float_list, 0, F00);
PROTO_CHECKER("the_float", float_list, 1, F10);
PROTO_CHECKER("alternate_name", int64_list, 0, F01);
PROTO_CHECKER("alternate_name", int64_list, 1, F11);
int32_t R0[]{3};
int32_t R1[]{-3};
PROTO_CHECKER("reward", int64_list, 0, R0);
PROTO_CHECKER("reward", int64_list, 1, R1);
}
TEST(TFUtilsTest, LoggerNoReward) {
std::vector<LoggedFeatureSpec> Features;
Features.push_back(
{TensorSpec::createSpec<float>("the_float", {2, 3}), None});
Features.push_back({TensorSpec::createSpec<int64_t>("the_int", {2}),
std::string("alternate_name")});
auto Rewards = TensorSpec::createSpec<float>("reward", {1});
Logger L(Features, Rewards, false);
const float F00[]{0.0, 0.1, 0.2, 0.3, 0.4, 0.5};
const int64_t F01[]{2, 3};
L.logFloatValue(0, F00);
L.logInt64Value(1, F01);
const float F10[]{0.0, 1.0, 2.0, 3.0, 4.0, 5.0};
const int64_t F11[]{-2, -3};
L.logFloatValue(0, F10);
L.logInt64Value(1, F11);
std::string Result;
raw_string_ostream OS(Result);
L.flush(OS);
tensorflow::SequenceExample Expected;
ASSERT_TRUE(Expected.ParseFromString(Result));
PROTO_CHECKER("the_float", float_list, 0, F00);
PROTO_CHECKER("the_float", float_list, 1, F10);
PROTO_CHECKER("alternate_name", int64_list, 0, F01);
PROTO_CHECKER("alternate_name", int64_list, 1, F11);
}
TEST(TFUtilsTest, LoggerFinalReward) {
std::vector<LoggedFeatureSpec> Features;
Features.push_back({TensorSpec::createSpec<float>("the_float", {1}), None});
Features.push_back({TensorSpec::createSpec<int64_t>("the_int", {1}), None});
auto Rewards = TensorSpec::createSpec<float>("reward", {1});
Logger L(Features, Rewards, true);
for (int64_t I = 0; I < 3; ++I) {
float F = static_cast<float>(I);
L.logFloatValue(0, &F);
L.logInt64Value(1, &I);
}
L.logFloatFinalReward(3.14);
std::string Result;
raw_string_ostream OS(Result);
L.flush(OS);
const float Zero[]{0.0};
const float R[]{3.14};
tensorflow::SequenceExample Expected;
ASSERT_TRUE(Expected.ParseFromString(Result));
PROTO_CHECKER("reward", float_list, 0, Zero);
PROTO_CHECKER("reward", float_list, 1, Zero);
PROTO_CHECKER("reward", float_list, 2, R);
}
TEST(TFUtilsTest, LoggerGroup) {
std::vector<LoggedFeatureSpec> Features;
Features.push_back({TensorSpec::createSpec<float>("the_float", {1}), None});
Features.push_back({TensorSpec::createSpec<int64_t>("the_int", {1}), None});
auto Rewards = TensorSpec::createSpec<float>("reward", {1});
StringMap<std::unique_ptr<Logger>> Loggers;
std::vector<std::string> Names{"a", "b"};
size_t Bump = 0;
for (auto Name : Names) {
auto L = std::make_unique<Logger>(Features, Rewards, true);
for (int64_t I = 0; I < 3; ++I) {
float F = static_cast<float>(I) + Bump;
L->logFloatValue(0, &F);
L->logInt64Value(1, &I);
}
L->logFloatFinalReward(3.14 + Bump);
Loggers.insert(std::make_pair(Name, std::move(L)));
}
std::string Result;
raw_string_ostream OS(Result);
Logger::flushLogs(OS, Loggers);
google::protobuf::Struct Expected;
ASSERT_TRUE(Expected.ParseFromString(Result));
EXPECT_EQ(Expected.fields_size(), 2);
EXPECT_TRUE(Expected.fields().contains("a"));
EXPECT_TRUE(Expected.fields().contains("b"));
}
|