File: TFUtilsTest.cpp

package info (click to toggle)
llvm-toolchain-14 1%3A14.0.6-12
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,496,180 kB
  • sloc: cpp: 5,593,972; ansic: 986,872; asm: 585,869; python: 184,223; objc: 72,530; lisp: 31,119; f90: 27,793; javascript: 9,780; pascal: 9,762; sh: 9,482; perl: 7,468; ml: 5,432; awk: 3,523; makefile: 2,538; xml: 953; cs: 573; fortran: 567
file content (315 lines) | stat: -rw-r--r-- 11,364 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
//===- TFUtilsTest.cpp - test for TFUtils ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/Utils/TFUtils.h"
#include "google/protobuf/struct.pb.h"
#include "tensorflow/core/example/example.pb.h"
#include "tensorflow/core/example/feature.pb.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Testing/Support/SupportHelpers.h"
#include "gtest/gtest.h"

using namespace llvm;

extern const char *TestMainArgv0;

// NOTE! This test model is currently also used by test/Transforms/Inline/ML tests
//- relevant if updating this model.
static std::string getModelPath() {
  SmallString<128> InputsDir = unittest::getInputFileDirectory(TestMainArgv0);
  llvm::sys::path::append(InputsDir, "ir2native_x86_64_model");
  return std::string(InputsDir);
}

// Test observable behavior when no model is provided.
TEST(TFUtilsTest, NoModel) {
  TFModelEvaluator Evaluator("", {}, {});
  EXPECT_FALSE(Evaluator.isValid());
}

// Test we can correctly load a savedmodel and evaluate it.
TEST(TFUtilsTest, LoadAndExecuteTest) {
  // We use the ir2native model for test. We know it has one feature of
  // dimension (1, 214)
  const static int64_t KnownSize = 214;
  std::vector<TensorSpec> InputSpecs{TensorSpec::createSpec<int32_t>(
      "serving_default_input_1", {1, KnownSize})};
  std::vector<TensorSpec> OutputSpecs{
      TensorSpec::createSpec<float>("StatefulPartitionedCall", {1})};

  TFModelEvaluator Evaluator(getModelPath(), InputSpecs, OutputSpecs);
  EXPECT_TRUE(Evaluator.isValid());

  int32_t *V = Evaluator.getInput<int32_t>(0);
  // Fill it up with 1's, we know the output.
  for (auto I = 0; I < KnownSize; ++I) {
    V[I] = 1;
  }
  {
    auto ER = Evaluator.evaluate();
    EXPECT_TRUE(ER.hasValue());
    float Ret = *ER->getTensorValue<float>(0);
    EXPECT_EQ(static_cast<int64_t>(Ret), 80);
    EXPECT_EQ(ER->getUntypedTensorValue(0),
              reinterpret_cast<const void *>(ER->getTensorValue<float>(0)));
  }
  // The input vector should be unchanged
  for (auto I = 0; I < KnownSize; ++I) {
    EXPECT_EQ(V[I], 1);
  }
  // Zero-out the unused position '0' of the instruction histogram, which is
  // after the first 9 calculated values. Should the the same result.
  V[9] = 0;
  {
    auto ER = Evaluator.evaluate();
    EXPECT_TRUE(ER.hasValue());
    float Ret = *ER->getTensorValue<float>(0);
    EXPECT_EQ(static_cast<int64_t>(Ret), 80);
  }
}

// Test incorrect input setup
TEST(TFUtilsTest, EvalError) {
  // We use the ir2native model for test. We know it has one feature of
  // dimension (1, 214)
  const static int64_t KnownSize = 213;
  std::vector<TensorSpec> InputSpecs{TensorSpec::createSpec<int32_t>(
      "serving_default_input_1", {1, KnownSize})};
  std::vector<TensorSpec> OutputSpecs{
      TensorSpec::createSpec<float>("StatefulPartitionedCall", {1})};

  TFModelEvaluator Evaluator(getModelPath(), InputSpecs, OutputSpecs);
  EXPECT_TRUE(Evaluator.isValid());

  int32_t *V = Evaluator.getInput<int32_t>(0);
  // Fill it up with 1's, we know the output.
  for (auto I = 0; I < KnownSize; ++I) {
    V[I] = 1;
  }
  auto ER = Evaluator.evaluate();
  EXPECT_FALSE(ER.hasValue());
  EXPECT_FALSE(Evaluator.isValid());
}

TEST(TFUtilsTest, JSONParsing) {
  auto Value = json::parse(
      R"({"name": "tensor_name", 
        "port": 2, 
        "type": "int32_t", 
        "shape":[1,4]
        })");
  EXPECT_TRUE(!!Value);
  LLVMContext Ctx;
  Optional<TensorSpec> Spec = getTensorSpecFromJSON(Ctx, *Value);
  EXPECT_TRUE(Spec.hasValue());
  EXPECT_EQ(*Spec, TensorSpec::createSpec<int32_t>("tensor_name", {1, 4}, 2));
}

TEST(TFUtilsTest, JSONParsingInvalidTensorType) {
  auto Value = json::parse(
      R"(
        {"name": "tensor_name", 
        "port": 2, 
        "type": "no such type", 
        "shape":[1,4]
        }
      )");
  EXPECT_TRUE(!!Value);
  LLVMContext Ctx;
  auto Spec = getTensorSpecFromJSON(Ctx, *Value);
  EXPECT_FALSE(Spec.hasValue());
}

TEST(TFUtilsTest, TensorSpecSizesAndTypes) {
  auto Spec1D = TensorSpec::createSpec<int16_t>("Hi1", {1});
  auto Spec2D = TensorSpec::createSpec<int16_t>("Hi2", {1, 1});
  auto Spec1DLarge = TensorSpec::createSpec<float>("Hi3", {10});
  auto Spec3DLarge = TensorSpec::createSpec<float>("Hi3", {2, 4, 10});
  EXPECT_TRUE(Spec1D.isElementType<int16_t>());
  EXPECT_FALSE(Spec3DLarge.isElementType<double>());
  EXPECT_EQ(Spec1D.getElementCount(), 1U);
  EXPECT_EQ(Spec2D.getElementCount(), 1U);
  EXPECT_EQ(Spec1DLarge.getElementCount(), 10U);
  EXPECT_EQ(Spec3DLarge.getElementCount(), 80U);
  EXPECT_EQ(Spec3DLarge.getElementByteSize(), sizeof(float));
  EXPECT_EQ(Spec1D.getElementByteSize(), sizeof(int16_t));
}

#define PROTO_CHECKER(FNAME, TYPE, INDEX, EXP)                                 \
  do {                                                                         \
    const auto &V = Expected.feature_lists()                                   \
                        .feature_list()                                        \
                        .at(FNAME)                                             \
                        .feature(INDEX)                                        \
                        .TYPE()                                                \
                        .value();                                              \
    for (auto I = 0; I < V.size(); ++I)                                        \
      EXPECT_EQ(V.at(I), EXP[I]);                                              \
  } while (false)

TEST(TFUtilsTest, Logger) {
  std::vector<LoggedFeatureSpec> Features;
  Features.push_back(
      {TensorSpec::createSpec<float>("the_float", {2, 3}), None});
  Features.push_back({TensorSpec::createSpec<int64_t>("the_int", {2}),
                      std::string("alternate_name")});

  auto Rewards = TensorSpec::createSpec<float>("reward", {1});
  Logger L(Features, Rewards, true);
  const float F00[]{0.0, 0.1, 0.2, 0.3, 0.4, 0.5};
  const int64_t F01[]{2, 3};

  L.logFloatValue(0, F00);
  L.logInt64Value(1, F01);
  L.logFloatReward(3.4);
  const float F10[]{0.0, 1.0, 2.0, 3.0, 4.0, 5.0};
  const int64_t F11[]{-2, -3};
  L.logFloatValue(0, F10);
  L.logInt64Value(1, F11);
  L.logFloatReward(-3.0);
  std::string Result;
  raw_string_ostream OS(Result);
  L.flush(OS);

  tensorflow::SequenceExample Expected;
  ASSERT_TRUE(Expected.ParseFromString(Result));
  PROTO_CHECKER("the_float", float_list, 0, F00);
  PROTO_CHECKER("the_float", float_list, 1, F10);
  PROTO_CHECKER("alternate_name", int64_list, 0, F01);
  PROTO_CHECKER("alternate_name", int64_list, 1, F11);
  float R0[]{3.4};
  float R1[]{-3.0};
  PROTO_CHECKER("reward", float_list, 0, R0);
  PROTO_CHECKER("reward", float_list, 1, R1);
}

TEST(TFUtilsTest, LoggerInt32FeaturesAndReward) {
  std::vector<LoggedFeatureSpec> Features;
  Features.push_back(
      {TensorSpec::createSpec<float>("the_float", {2, 3}), None});
  Features.push_back({TensorSpec::createSpec<int32_t>("the_int", {2}),
                      std::string("alternate_name")});

  auto Rewards = TensorSpec::createSpec<int32_t>("reward", {1});
  Logger L(Features, Rewards, true);
  const float F00[]{0.0, 0.1, 0.2, 0.3, 0.4, 0.5};
  const int32_t F01[]{2, 3};

  L.logFloatValue(0, F00);
  L.logInt32Value(1, F01);
  L.logInt32Reward(3);
  const float F10[]{0.0, 1.0, 2.0, 3.0, 4.0, 5.0};
  const int32_t F11[]{-2, -3};
  L.logFloatValue(0, F10);
  L.logInt32Value(1, F11);
  L.logInt32Reward(-3);
  std::string Result;
  raw_string_ostream OS(Result);
  L.flush(OS);

  tensorflow::SequenceExample Expected;
  ASSERT_TRUE(Expected.ParseFromString(Result));
  PROTO_CHECKER("the_float", float_list, 0, F00);
  PROTO_CHECKER("the_float", float_list, 1, F10);
  PROTO_CHECKER("alternate_name", int64_list, 0, F01);
  PROTO_CHECKER("alternate_name", int64_list, 1, F11);
  int32_t R0[]{3};
  int32_t R1[]{-3};
  PROTO_CHECKER("reward", int64_list, 0, R0);
  PROTO_CHECKER("reward", int64_list, 1, R1);
}

TEST(TFUtilsTest, LoggerNoReward) {
  std::vector<LoggedFeatureSpec> Features;
  Features.push_back(
      {TensorSpec::createSpec<float>("the_float", {2, 3}), None});
  Features.push_back({TensorSpec::createSpec<int64_t>("the_int", {2}),
                      std::string("alternate_name")});

  auto Rewards = TensorSpec::createSpec<float>("reward", {1});
  Logger L(Features, Rewards, false);
  const float F00[]{0.0, 0.1, 0.2, 0.3, 0.4, 0.5};
  const int64_t F01[]{2, 3};

  L.logFloatValue(0, F00);
  L.logInt64Value(1, F01);
  const float F10[]{0.0, 1.0, 2.0, 3.0, 4.0, 5.0};
  const int64_t F11[]{-2, -3};
  L.logFloatValue(0, F10);
  L.logInt64Value(1, F11);

  std::string Result;
  raw_string_ostream OS(Result);
  L.flush(OS);
  tensorflow::SequenceExample Expected;
  ASSERT_TRUE(Expected.ParseFromString(Result));
  PROTO_CHECKER("the_float", float_list, 0, F00);
  PROTO_CHECKER("the_float", float_list, 1, F10);
  PROTO_CHECKER("alternate_name", int64_list, 0, F01);
  PROTO_CHECKER("alternate_name", int64_list, 1, F11);
}

TEST(TFUtilsTest, LoggerFinalReward) {
  std::vector<LoggedFeatureSpec> Features;
  Features.push_back({TensorSpec::createSpec<float>("the_float", {1}), None});
  Features.push_back({TensorSpec::createSpec<int64_t>("the_int", {1}), None});

  auto Rewards = TensorSpec::createSpec<float>("reward", {1});
  Logger L(Features, Rewards, true);
  for (int64_t I = 0; I < 3; ++I) {
    float F = static_cast<float>(I);
    L.logFloatValue(0, &F);
    L.logInt64Value(1, &I);
  }
  L.logFloatFinalReward(3.14);
  std::string Result;
  raw_string_ostream OS(Result);
  L.flush(OS);
  const float Zero[]{0.0};
  const float R[]{3.14};
  tensorflow::SequenceExample Expected;
  ASSERT_TRUE(Expected.ParseFromString(Result));
  PROTO_CHECKER("reward", float_list, 0, Zero);
  PROTO_CHECKER("reward", float_list, 1, Zero);
  PROTO_CHECKER("reward", float_list, 2, R);
}

TEST(TFUtilsTest, LoggerGroup) {
  std::vector<LoggedFeatureSpec> Features;
  Features.push_back({TensorSpec::createSpec<float>("the_float", {1}), None});
  Features.push_back({TensorSpec::createSpec<int64_t>("the_int", {1}), None});

  auto Rewards = TensorSpec::createSpec<float>("reward", {1});
  StringMap<std::unique_ptr<Logger>> Loggers;
  std::vector<std::string> Names{"a", "b"};
  size_t Bump = 0;
  for (auto Name : Names) {
    auto L = std::make_unique<Logger>(Features, Rewards, true);
    for (int64_t I = 0; I < 3; ++I) {
      float F = static_cast<float>(I) + Bump;
      L->logFloatValue(0, &F);
      L->logInt64Value(1, &I);
    }
    L->logFloatFinalReward(3.14 + Bump);
    Loggers.insert(std::make_pair(Name, std::move(L)));
  }
  std::string Result;
  raw_string_ostream OS(Result);
  Logger::flushLogs(OS, Loggers);
  google::protobuf::Struct Expected;
  ASSERT_TRUE(Expected.ParseFromString(Result));
  EXPECT_EQ(Expected.fields_size(), 2);
  EXPECT_TRUE(Expected.fields().contains("a"));
  EXPECT_TRUE(Expected.fields().contains("b"));
}