| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 
 | /*
 * Copyright 2012-2014 Ecole Normale Superieure
 * Copyright 2014      INRIA Rocquencourt
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege,
 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
 * B.P. 105 - 78153 Le Chesnay, France
 */
#include <isl/id.h>
#include <isl/space.h>
#include <isl/constraint.h>
#include <isl/ilp.h>
#include <isl/val.h>
#include <isl_ast_build_expr.h>
#include <isl_ast_private.h>
#include <isl_ast_build_private.h>
#include <isl_sort.h>
/* Compute the "opposite" of the (numerator of the) argument of a div
 * with denominator "d".
 *
 * In particular, compute
 *
 *	-aff + (d - 1)
 */
static __isl_give isl_aff *oppose_div_arg(__isl_take isl_aff *aff,
	__isl_take isl_val *d)
{
	aff = isl_aff_neg(aff);
	aff = isl_aff_add_constant_val(aff, d);
	aff = isl_aff_add_constant_si(aff, -1);
	return aff;
}
/* Internal data structure used inside isl_ast_expr_add_term.
 * The domain of "build" is used to simplify the expressions.
 * "build" needs to be set by the caller of isl_ast_expr_add_term.
 * "cst" is the constant term of the expression in which the added term
 * appears.  It may be modified by isl_ast_expr_add_term.
 *
 * "v" is the coefficient of the term that is being constructed and
 * is set internally by isl_ast_expr_add_term.
 */
struct isl_ast_add_term_data {
	isl_ast_build *build;
	isl_val *cst;
	isl_val *v;
};
/* Given the numerator "aff" of the argument of an integer division
 * with denominator "d", check if it can be made non-negative over
 * data->build->domain by stealing part of the constant term of
 * the expression in which the integer division appears.
 *
 * In particular, the outer expression is of the form
 *
 *	v * floor(aff/d) + cst
 *
 * We already know that "aff" itself may attain negative values.
 * Here we check if aff + d*floor(cst/v) is non-negative, such
 * that we could rewrite the expression to
 *
 *	v * floor((aff + d*floor(cst/v))/d) + cst - v*floor(cst/v)
 *
 * Note that aff + d*floor(cst/v) can only possibly be non-negative
 * if data->cst and data->v have the same sign.
 * Similarly, if floor(cst/v) is zero, then there is no point in
 * checking again.
 */
static int is_non_neg_after_stealing(__isl_keep isl_aff *aff,
	__isl_keep isl_val *d, struct isl_ast_add_term_data *data)
{
	isl_aff *shifted;
	isl_val *shift;
	int is_zero;
	int non_neg;
	if (isl_val_sgn(data->cst) != isl_val_sgn(data->v))
		return 0;
	shift = isl_val_div(isl_val_copy(data->cst), isl_val_copy(data->v));
	shift = isl_val_floor(shift);
	is_zero = isl_val_is_zero(shift);
	if (is_zero < 0 || is_zero) {
		isl_val_free(shift);
		return is_zero < 0 ? -1 : 0;
	}
	shift = isl_val_mul(shift, isl_val_copy(d));
	shifted = isl_aff_copy(aff);
	shifted = isl_aff_add_constant_val(shifted, shift);
	non_neg = isl_ast_build_aff_is_nonneg(data->build, shifted);
	isl_aff_free(shifted);
	return non_neg;
}
/* Given the numerator "aff' of the argument of an integer division
 * with denominator "d", steal part of the constant term of
 * the expression in which the integer division appears to make it
 * non-negative over data->build->domain.
 *
 * In particular, the outer expression is of the form
 *
 *	v * floor(aff/d) + cst
 *
 * We know that "aff" itself may attain negative values,
 * but that aff + d*floor(cst/v) is non-negative.
 * Find the minimal positive value that we need to add to "aff"
 * to make it positive and adjust data->cst accordingly.
 * That is, compute the minimal value "m" of "aff" over
 * data->build->domain and take
 *
 *	s = ceil(m/d)
 *
 * such that
 *
 *	aff + d * s >= 0
 *
 * and rewrite the expression to
 *
 *	v * floor((aff + s*d)/d) + (cst - v*s)
 */
static __isl_give isl_aff *steal_from_cst(__isl_take isl_aff *aff,
	__isl_keep isl_val *d, struct isl_ast_add_term_data *data)
{
	isl_set *domain;
	isl_val *shift, *t;
	domain = isl_ast_build_get_domain(data->build);
	shift = isl_set_min_val(domain, aff);
	isl_set_free(domain);
	shift = isl_val_neg(shift);
	shift = isl_val_div(shift, isl_val_copy(d));
	shift = isl_val_ceil(shift);
	t = isl_val_copy(shift);
	t = isl_val_mul(t, isl_val_copy(data->v));
	data->cst = isl_val_sub(data->cst, t);
	shift = isl_val_mul(shift, isl_val_copy(d));
	return isl_aff_add_constant_val(aff, shift);
}
/* Create an isl_ast_expr evaluating the div at position "pos" in "ls".
 * The result is simplified in terms of data->build->domain.
 * This function may change (the sign of) data->v.
 *
 * "ls" is known to be non-NULL.
 *
 * Let the div be of the form floor(e/d).
 * If the ast_build_prefer_pdiv option is set then we check if "e"
 * is non-negative, so that we can generate
 *
 *	(pdiv_q, expr(e), expr(d))
 *
 * instead of
 *
 *	(fdiv_q, expr(e), expr(d))
 *
 * If the ast_build_prefer_pdiv option is set and
 * if "e" is not non-negative, then we check if "-e + d - 1" is non-negative.
 * If so, we can rewrite
 *
 *	floor(e/d) = -ceil(-e/d) = -floor((-e + d - 1)/d)
 *
 * and still use pdiv_q, while changing the sign of data->v.
 *
 * Otherwise, we check if
 *
 *	e + d*floor(cst/v)
 *
 * is non-negative and if so, replace floor(e/d) by
 *
 *	floor((e + s*d)/d) - s
 *
 * with s the minimal shift that makes the argument non-negative.
 */
static __isl_give isl_ast_expr *var_div(struct isl_ast_add_term_data *data,
	__isl_keep isl_local_space *ls, int pos)
{
	isl_ctx *ctx = isl_local_space_get_ctx(ls);
	isl_aff *aff;
	isl_ast_expr *num, *den;
	isl_val *d;
	enum isl_ast_expr_op_type type;
	aff = isl_local_space_get_div(ls, pos);
	d = isl_aff_get_denominator_val(aff);
	aff = isl_aff_scale_val(aff, isl_val_copy(d));
	den = isl_ast_expr_from_val(isl_val_copy(d));
	type = isl_ast_expr_op_fdiv_q;
	if (isl_options_get_ast_build_prefer_pdiv(ctx)) {
		int non_neg = isl_ast_build_aff_is_nonneg(data->build, aff);
		if (non_neg >= 0 && !non_neg) {
			isl_aff *opp = oppose_div_arg(isl_aff_copy(aff),
							isl_val_copy(d));
			non_neg = isl_ast_build_aff_is_nonneg(data->build, opp);
			if (non_neg >= 0 && non_neg) {
				data->v = isl_val_neg(data->v);
				isl_aff_free(aff);
				aff = opp;
			} else
				isl_aff_free(opp);
		}
		if (non_neg >= 0 && !non_neg) {
			non_neg = is_non_neg_after_stealing(aff, d, data);
			if (non_neg >= 0 && non_neg)
				aff = steal_from_cst(aff, d, data);
		}
		if (non_neg < 0)
			aff = isl_aff_free(aff);
		else if (non_neg)
			type = isl_ast_expr_op_pdiv_q;
	}
	isl_val_free(d);
	num = isl_ast_expr_from_aff(aff, data->build);
	return isl_ast_expr_alloc_binary(type, num, den);
}
/* Create an isl_ast_expr evaluating the specified dimension of "ls".
 * The result is simplified in terms of data->build->domain.
 * This function may change (the sign of) data->v.
 *
 * The isl_ast_expr is constructed based on the type of the dimension.
 * - divs are constructed by var_div
 * - set variables are constructed from the iterator isl_ids in data->build
 * - parameters are constructed from the isl_ids in "ls"
 */
static __isl_give isl_ast_expr *var(struct isl_ast_add_term_data *data,
	__isl_keep isl_local_space *ls, enum isl_dim_type type, int pos)
{
	isl_ctx *ctx = isl_local_space_get_ctx(ls);
	isl_id *id;
	if (type == isl_dim_div)
		return var_div(data, ls, pos);
	if (type == isl_dim_set) {
		id = isl_ast_build_get_iterator_id(data->build, pos);
		return isl_ast_expr_from_id(id);
	}
	if (!isl_local_space_has_dim_id(ls, type, pos))
		isl_die(ctx, isl_error_internal, "unnamed dimension",
			return NULL);
	id = isl_local_space_get_dim_id(ls, type, pos);
	return isl_ast_expr_from_id(id);
}
/* Does "expr" represent the zero integer?
 */
static int ast_expr_is_zero(__isl_keep isl_ast_expr *expr)
{
	if (!expr)
		return -1;
	if (expr->type != isl_ast_expr_int)
		return 0;
	return isl_val_is_zero(expr->u.v);
}
/* Create an expression representing the sum of "expr1" and "expr2",
 * provided neither of the two expressions is identically zero.
 */
static __isl_give isl_ast_expr *ast_expr_add(__isl_take isl_ast_expr *expr1,
	__isl_take isl_ast_expr *expr2)
{
	if (!expr1 || !expr2)
		goto error;
	if (ast_expr_is_zero(expr1)) {
		isl_ast_expr_free(expr1);
		return expr2;
	}
	if (ast_expr_is_zero(expr2)) {
		isl_ast_expr_free(expr2);
		return expr1;
	}
	return isl_ast_expr_add(expr1, expr2);
error:
	isl_ast_expr_free(expr1);
	isl_ast_expr_free(expr2);
	return NULL;
}
/* Subtract expr2 from expr1.
 *
 * If expr2 is zero, we simply return expr1.
 * If expr1 is zero, we return
 *
 *	(isl_ast_expr_op_minus, expr2)
 *
 * Otherwise, we return
 *
 *	(isl_ast_expr_op_sub, expr1, expr2)
 */
static __isl_give isl_ast_expr *ast_expr_sub(__isl_take isl_ast_expr *expr1,
	__isl_take isl_ast_expr *expr2)
{
	if (!expr1 || !expr2)
		goto error;
	if (ast_expr_is_zero(expr2)) {
		isl_ast_expr_free(expr2);
		return expr1;
	}
	if (ast_expr_is_zero(expr1)) {
		isl_ast_expr_free(expr1);
		return isl_ast_expr_neg(expr2);
	}
	return isl_ast_expr_sub(expr1, expr2);
error:
	isl_ast_expr_free(expr1);
	isl_ast_expr_free(expr2);
	return NULL;
}
/* Return an isl_ast_expr that represents
 *
 *	v * (aff mod d)
 *
 * v is assumed to be non-negative.
 * The result is simplified in terms of build->domain.
 */
static __isl_give isl_ast_expr *isl_ast_expr_mod(__isl_keep isl_val *v,
	__isl_keep isl_aff *aff, __isl_keep isl_val *d,
	__isl_keep isl_ast_build *build)
{
	isl_ast_expr *expr;
	isl_ast_expr *c;
	if (!aff)
		return NULL;
	expr = isl_ast_expr_from_aff(isl_aff_copy(aff), build);
	c = isl_ast_expr_from_val(isl_val_copy(d));
	expr = isl_ast_expr_alloc_binary(isl_ast_expr_op_pdiv_r, expr, c);
	if (!isl_val_is_one(v)) {
		c = isl_ast_expr_from_val(isl_val_copy(v));
		expr = isl_ast_expr_mul(c, expr);
	}
	return expr;
}
/* Create an isl_ast_expr that scales "expr" by "v".
 *
 * If v is 1, we simply return expr.
 * If v is -1, we return
 *
 *	(isl_ast_expr_op_minus, expr)
 *
 * Otherwise, we return
 *
 *	(isl_ast_expr_op_mul, expr(v), expr)
 */
static __isl_give isl_ast_expr *scale(__isl_take isl_ast_expr *expr,
	__isl_take isl_val *v)
{
	isl_ast_expr *c;
	if (!expr || !v)
		goto error;
	if (isl_val_is_one(v)) {
		isl_val_free(v);
		return expr;
	}
	if (isl_val_is_negone(v)) {
		isl_val_free(v);
		expr = isl_ast_expr_neg(expr);
	} else {
		c = isl_ast_expr_from_val(v);
		expr = isl_ast_expr_mul(c, expr);
	}
	return expr;
error:
	isl_val_free(v);
	isl_ast_expr_free(expr);
	return NULL;
}
/* Add an expression for "*v" times the specified dimension of "ls"
 * to expr.
 * If the dimension is an integer division, then this function
 * may modify data->cst in order to make the numerator non-negative.
 * The result is simplified in terms of data->build->domain.
 *
 * Let e be the expression for the specified dimension,
 * multiplied by the absolute value of "*v".
 * If "*v" is negative, we create
 *
 *	(isl_ast_expr_op_sub, expr, e)
 *
 * except when expr is trivially zero, in which case we create
 *
 *	(isl_ast_expr_op_minus, e)
 *
 * instead.
 *
 * If "*v" is positive, we simply create
 *
 *	(isl_ast_expr_op_add, expr, e)
 *
 */
static __isl_give isl_ast_expr *isl_ast_expr_add_term(
	__isl_take isl_ast_expr *expr,
	__isl_keep isl_local_space *ls, enum isl_dim_type type, int pos,
	__isl_take isl_val *v, struct isl_ast_add_term_data *data)
{
	isl_ast_expr *term;
	if (!expr)
		return NULL;
	data->v = v;
	term = var(data, ls, type, pos);
	v = data->v;
	if (isl_val_is_neg(v) && !ast_expr_is_zero(expr)) {
		v = isl_val_neg(v);
		term = scale(term, v);
		return ast_expr_sub(expr, term);
	} else {
		term = scale(term, v);
		return ast_expr_add(expr, term);
	}
}
/* Add an expression for "v" to expr.
 */
static __isl_give isl_ast_expr *isl_ast_expr_add_int(
	__isl_take isl_ast_expr *expr, __isl_take isl_val *v)
{
	isl_ast_expr *expr_int;
	if (!expr || !v)
		goto error;
	if (isl_val_is_zero(v)) {
		isl_val_free(v);
		return expr;
	}
	if (isl_val_is_neg(v) && !ast_expr_is_zero(expr)) {
		v = isl_val_neg(v);
		expr_int = isl_ast_expr_from_val(v);
		return ast_expr_sub(expr, expr_int);
	} else {
		expr_int = isl_ast_expr_from_val(v);
		return ast_expr_add(expr, expr_int);
	}
error:
	isl_ast_expr_free(expr);
	isl_val_free(v);
	return NULL;
}
/* Internal data structure used inside extract_modulos.
 *
 * If any modulo expressions are detected in "aff", then the
 * expression is removed from "aff" and added to either "pos" or "neg"
 * depending on the sign of the coefficient of the modulo expression
 * inside "aff".
 *
 * "add" is an expression that needs to be added to "aff" at the end of
 * the computation.  It is NULL as long as no modulos have been extracted.
 *
 * "i" is the position in "aff" of the div under investigation
 * "v" is the coefficient in "aff" of the div
 * "div" is the argument of the div, with the denominator removed
 * "d" is the original denominator of the argument of the div
 *
 * "nonneg" is an affine expression that is non-negative over "build"
 * and that can be used to extract a modulo expression from "div".
 * In particular, if "sign" is 1, then the coefficients of "nonneg"
 * are equal to those of "div" modulo "d".  If "sign" is -1, then
 * the coefficients of "nonneg" are opposite to those of "div" modulo "d".
 * If "sign" is 0, then no such affine expression has been found (yet).
 */
struct isl_extract_mod_data {
	isl_ast_build *build;
	isl_aff *aff;
	isl_ast_expr *pos;
	isl_ast_expr *neg;
	isl_aff *add;
	int i;
	isl_val *v;
	isl_val *d;
	isl_aff *div;
	isl_aff *nonneg;
	int sign;
};
/* Does
 *
 *	arg mod data->d
 *
 * represent (a special case of) a test for some linear expression
 * being even?
 *
 * In particular, is it of the form
 *
 *	(lin - 1) mod 2
 *
 * ?
 */
static isl_bool is_even_test(struct isl_extract_mod_data *data,
	__isl_keep isl_aff *arg)
{
	isl_bool res;
	isl_val *cst;
	res = isl_val_eq_si(data->d, 2);
	if (res < 0 || !res)
		return res;
	cst = isl_aff_get_constant_val(arg);
	res = isl_val_eq_si(cst, -1);
	isl_val_free(cst);
	return res;
}
/* Given that data->v * div_i in data->aff is equal to
 *
 *	f * (term - (arg mod d))
 *
 * with data->d * f = data->v and "arg" non-negative on data->build, add
 *
 *	f * term
 *
 * to data->add and
 *
 *	abs(f) * (arg mod d)
 *
 * to data->neg or data->pos depending on the sign of -f.
 *
 * In the special case that "arg mod d" is of the form "(lin - 1) mod 2",
 * with "lin" some linear expression, first replace
 *
 *	f * (term - ((lin - 1) mod 2))
 *
 * by
 *
 *	-f * (1 - term - (lin mod 2))
 *
 * These two are equal because
 *
 *	((lin - 1) mod 2) + (lin mod 2) = 1
 *
 * Also, if "lin - 1" is non-negative, then "lin" is non-negative too.
 */
static int extract_term_and_mod(struct isl_extract_mod_data *data,
	__isl_take isl_aff *term, __isl_take isl_aff *arg)
{
	isl_bool even;
	isl_ast_expr *expr;
	int s;
	even = is_even_test(data, arg);
	if (even < 0) {
		arg = isl_aff_free(arg);
	} else if (even) {
		term = oppose_div_arg(term, isl_val_copy(data->d));
		data->v = isl_val_neg(data->v);
		arg = isl_aff_set_constant_si(arg, 0);
	}
	data->v = isl_val_div(data->v, isl_val_copy(data->d));
	s = isl_val_sgn(data->v);
	data->v = isl_val_abs(data->v);
	expr = isl_ast_expr_mod(data->v, arg, data->d, data->build);
	isl_aff_free(arg);
	if (s > 0)
		data->neg = ast_expr_add(data->neg, expr);
	else
		data->pos = ast_expr_add(data->pos, expr);
	data->aff = isl_aff_set_coefficient_si(data->aff,
						isl_dim_div, data->i, 0);
	if (s < 0)
		data->v = isl_val_neg(data->v);
	term = isl_aff_scale_val(term, isl_val_copy(data->v));
	if (!data->add)
		data->add = term;
	else
		data->add = isl_aff_add(data->add, term);
	if (!data->add)
		return -1;
	return 0;
}
/* Given that data->v * div_i in data->aff is of the form
 *
 *	f * d * floor(div/d)
 *
 * with div nonnegative on data->build, rewrite it as
 *
 *	f * (div - (div mod d)) = f * div - f * (div mod d)
 *
 * and add
 *
 *	f * div
 *
 * to data->add and
 *
 *	abs(f) * (div mod d)
 *
 * to data->neg or data->pos depending on the sign of -f.
 */
static int extract_mod(struct isl_extract_mod_data *data)
{
	return extract_term_and_mod(data, isl_aff_copy(data->div),
			isl_aff_copy(data->div));
}
/* Given that data->v * div_i in data->aff is of the form
 *
 *	f * d * floor(div/d)					(1)
 *
 * check if div is non-negative on data->build and, if so,
 * extract the corresponding modulo from data->aff.
 * If not, then check if
 *
 *	-div + d - 1
 *
 * is non-negative on data->build.  If so, replace (1) by
 *
 *	-f * d * floor((-div + d - 1)/d)
 *
 * and extract the corresponding modulo from data->aff.
 *
 * This function may modify data->div.
 */
static int extract_nonneg_mod(struct isl_extract_mod_data *data)
{
	int mod;
	mod = isl_ast_build_aff_is_nonneg(data->build, data->div);
	if (mod < 0)
		goto error;
	if (mod)
		return extract_mod(data);
	data->div = oppose_div_arg(data->div, isl_val_copy(data->d));
	mod = isl_ast_build_aff_is_nonneg(data->build, data->div);
	if (mod < 0)
		goto error;
	if (mod) {
		data->v = isl_val_neg(data->v);
		return extract_mod(data);
	}
	return 0;
error:
	data->aff = isl_aff_free(data->aff);
	return -1;
}
/* Is the affine expression of constraint "c" "simpler" than data->nonneg
 * for use in extracting a modulo expression?
 *
 * We currently only consider the constant term of the affine expression.
 * In particular, we prefer the affine expression with the smallest constant
 * term.
 * This means that if there are two constraints, say x >= 0 and -x + 10 >= 0,
 * then we would pick x >= 0
 *
 * More detailed heuristics could be used if it turns out that there is a need.
 */
static int mod_constraint_is_simpler(struct isl_extract_mod_data *data,
	__isl_keep isl_constraint *c)
{
	isl_val *v1, *v2;
	int simpler;
	if (!data->nonneg)
		return 1;
	v1 = isl_val_abs(isl_constraint_get_constant_val(c));
	v2 = isl_val_abs(isl_aff_get_constant_val(data->nonneg));
	simpler = isl_val_lt(v1, v2);
	isl_val_free(v1);
	isl_val_free(v2);
	return simpler;
}
/* Check if the coefficients of "c" are either equal or opposite to those
 * of data->div modulo data->d.  If so, and if "c" is "simpler" than
 * data->nonneg, then replace data->nonneg by the affine expression of "c"
 * and set data->sign accordingly.
 *
 * Both "c" and data->div are assumed not to involve any integer divisions.
 *
 * Before we start the actual comparison, we first quickly check if
 * "c" and data->div have the same non-zero coefficients.
 * If not, then we assume that "c" is not of the desired form.
 * Note that while the coefficients of data->div can be reasonably expected
 * not to involve any coefficients that are multiples of d, "c" may
 * very well involve such coefficients.  This means that we may actually
 * miss some cases.
 *
 * If the constant term is "too large", then the constraint is rejected,
 * where "too large" is fairly arbitrarily set to 1 << 15.
 * We do this to avoid picking up constraints that bound a variable
 * by a very large number, say the largest or smallest possible
 * variable in the representation of some integer type.
 */
static isl_stat check_parallel_or_opposite(__isl_take isl_constraint *c,
	void *user)
{
	struct isl_extract_mod_data *data = user;
	enum isl_dim_type c_type[2] = { isl_dim_param, isl_dim_set };
	enum isl_dim_type a_type[2] = { isl_dim_param, isl_dim_in };
	int i, t;
	isl_size n[2];
	int parallel = 1, opposite = 1;
	for (t = 0; t < 2; ++t) {
		n[t] = isl_constraint_dim(c, c_type[t]);
		if (n[t] < 0)
			return isl_stat_error;
		for (i = 0; i < n[t]; ++i) {
			int a, b;
			a = isl_constraint_involves_dims(c, c_type[t], i, 1);
			b = isl_aff_involves_dims(data->div, a_type[t], i, 1);
			if (a != b)
				parallel = opposite = 0;
		}
	}
	if (parallel || opposite) {
		isl_val *v;
		v = isl_val_abs(isl_constraint_get_constant_val(c));
		if (isl_val_cmp_si(v, 1 << 15) > 0)
			parallel = opposite = 0;
		isl_val_free(v);
	}
	for (t = 0; t < 2; ++t) {
		for (i = 0; i < n[t]; ++i) {
			isl_val *v1, *v2;
			if (!parallel && !opposite)
				break;
			v1 = isl_constraint_get_coefficient_val(c,
								c_type[t], i);
			v2 = isl_aff_get_coefficient_val(data->div,
								a_type[t], i);
			if (parallel) {
				v1 = isl_val_sub(v1, isl_val_copy(v2));
				parallel = isl_val_is_divisible_by(v1, data->d);
				v1 = isl_val_add(v1, isl_val_copy(v2));
			}
			if (opposite) {
				v1 = isl_val_add(v1, isl_val_copy(v2));
				opposite = isl_val_is_divisible_by(v1, data->d);
			}
			isl_val_free(v1);
			isl_val_free(v2);
		}
	}
	if ((parallel || opposite) && mod_constraint_is_simpler(data, c)) {
		isl_aff_free(data->nonneg);
		data->nonneg = isl_constraint_get_aff(c);
		data->sign = parallel ? 1 : -1;
	}
	isl_constraint_free(c);
	if (data->sign != 0 && data->nonneg == NULL)
		return isl_stat_error;
	return isl_stat_ok;
}
/* Given that data->v * div_i in data->aff is of the form
 *
 *	f * d * floor(div/d)					(1)
 *
 * see if we can find an expression div' that is non-negative over data->build
 * and that is related to div through
 *
 *	div' = div + d * e
 *
 * or
 *
 *	div' = -div + d - 1 + d * e
 *
 * with e some affine expression.
 * If so, we write (1) as
 *
 *	f * div + f * (div' mod d)
 *
 * or
 *
 *	-f * (-div + d - 1) - f * (div' mod d)
 *
 * exploiting (in the second case) the fact that
 *
 *	f * d * floor(div/d) =	-f * d * floor((-div + d - 1)/d)
 *
 *
 * We first try to find an appropriate expression for div'
 * from the constraints of data->build->domain (which is therefore
 * guaranteed to be non-negative on data->build), where we remove
 * any integer divisions from the constraints and skip this step
 * if "div" itself involves any integer divisions.
 * If we cannot find an appropriate expression this way, then
 * we pass control to extract_nonneg_mod where check
 * if div or "-div + d -1" themselves happen to be
 * non-negative on data->build.
 *
 * While looking for an appropriate constraint in data->build->domain,
 * we ignore the constant term, so after finding such a constraint,
 * we still need to fix up the constant term.
 * In particular, if a is the constant term of "div"
 * (or d - 1 - the constant term of "div" if data->sign < 0)
 * and b is the constant term of the constraint, then we need to find
 * a non-negative constant c such that
 *
 *	b + c \equiv a	mod d
 *
 * We therefore take
 *
 *	c = (a - b) mod d
 *
 * and add it to b to obtain the constant term of div'.
 * If this constant term is "too negative", then we add an appropriate
 * multiple of d to make it positive.
 *
 *
 * Note that the above is a only a very simple heuristic for finding an
 * appropriate expression.  We could try a bit harder by also considering
 * sums of constraints that involve disjoint sets of variables or
 * we could consider arbitrary linear combinations of constraints,
 * although that could potentially be much more expensive as it involves
 * the solution of an LP problem.
 *
 * In particular, if v_i is a column vector representing constraint i,
 * w represents div and e_i is the i-th unit vector, then we are looking
 * for a solution of the constraints
 *
 *	\sum_i lambda_i v_i = w + \sum_i alpha_i d e_i
 *
 * with \lambda_i >= 0 and alpha_i of unrestricted sign.
 * If we are not just interested in a non-negative expression, but
 * also in one with a minimal range, then we don't just want
 * c = \sum_i lambda_i v_i to be non-negative over the domain,
 * but also beta - c = \sum_i mu_i v_i, where beta is a scalar
 * that we want to minimize and we now also have to take into account
 * the constant terms of the constraints.
 * Alternatively, we could first compute the dual of the domain
 * and plug in the constraints on the coefficients.
 */
static int try_extract_mod(struct isl_extract_mod_data *data)
{
	isl_basic_set *hull;
	isl_val *v1, *v2;
	isl_stat r;
	isl_size n;
	if (!data->build)
		goto error;
	n = isl_aff_dim(data->div, isl_dim_div);
	if (n < 0)
		goto error;
	if (isl_aff_involves_dims(data->div, isl_dim_div, 0, n))
		return extract_nonneg_mod(data);
	hull = isl_set_simple_hull(isl_set_copy(data->build->domain));
	hull = isl_basic_set_remove_divs(hull);
	data->sign = 0;
	data->nonneg = NULL;
	r = isl_basic_set_foreach_constraint(hull, &check_parallel_or_opposite,
					data);
	isl_basic_set_free(hull);
	if (!data->sign || r < 0) {
		isl_aff_free(data->nonneg);
		if (r < 0)
			goto error;
		return extract_nonneg_mod(data);
	}
	v1 = isl_aff_get_constant_val(data->div);
	v2 = isl_aff_get_constant_val(data->nonneg);
	if (data->sign < 0) {
		v1 = isl_val_neg(v1);
		v1 = isl_val_add(v1, isl_val_copy(data->d));
		v1 = isl_val_sub_ui(v1, 1);
	}
	v1 = isl_val_sub(v1, isl_val_copy(v2));
	v1 = isl_val_mod(v1, isl_val_copy(data->d));
	v1 = isl_val_add(v1, v2);
	v2 = isl_val_div(isl_val_copy(v1), isl_val_copy(data->d));
	v2 = isl_val_ceil(v2);
	if (isl_val_is_neg(v2)) {
		v2 = isl_val_mul(v2, isl_val_copy(data->d));
		v1 = isl_val_sub(v1, isl_val_copy(v2));
	}
	data->nonneg = isl_aff_set_constant_val(data->nonneg, v1);
	isl_val_free(v2);
	if (data->sign < 0) {
		data->div = oppose_div_arg(data->div, isl_val_copy(data->d));
		data->v = isl_val_neg(data->v);
	}
	return extract_term_and_mod(data,
				    isl_aff_copy(data->div), data->nonneg);
error:
	data->aff = isl_aff_free(data->aff);
	return -1;
}
/* Check if "data->aff" involves any (implicit) modulo computations based
 * on div "data->i".
 * If so, remove them from aff and add expressions corresponding
 * to those modulo computations to data->pos and/or data->neg.
 *
 * "aff" is assumed to be an integer affine expression.
 *
 * In particular, check if (v * div_j) is of the form
 *
 *	f * m * floor(a / m)
 *
 * and, if so, rewrite it as
 *
 *	f * (a - (a mod m)) = f * a - f * (a mod m)
 *
 * and extract out -f * (a mod m).
 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
 * If f < 0, we add ((-f) * (a mod m)) to *pos.
 *
 * Note that in order to represent "a mod m" as
 *
 *	(isl_ast_expr_op_pdiv_r, a, m)
 *
 * we need to make sure that a is non-negative.
 * If not, we check if "-a + m - 1" is non-negative.
 * If so, we can rewrite
 *
 *	floor(a/m) = -ceil(-a/m) = -floor((-a + m - 1)/m)
 *
 * and still extract a modulo.
 */
static int extract_modulo(struct isl_extract_mod_data *data)
{
	data->div = isl_aff_get_div(data->aff, data->i);
	data->d = isl_aff_get_denominator_val(data->div);
	if (isl_val_is_divisible_by(data->v, data->d)) {
		data->div = isl_aff_scale_val(data->div, isl_val_copy(data->d));
		if (try_extract_mod(data) < 0)
			data->aff = isl_aff_free(data->aff);
	}
	isl_aff_free(data->div);
	isl_val_free(data->d);
	return 0;
}
/* Check if "aff" involves any (implicit) modulo computations.
 * If so, remove them from aff and add expressions corresponding
 * to those modulo computations to *pos and/or *neg.
 * We only do this if the option ast_build_prefer_pdiv is set.
 *
 * "aff" is assumed to be an integer affine expression.
 *
 * A modulo expression is of the form
 *
 *	a mod m = a - m * floor(a / m)
 *
 * To detect them in aff, we look for terms of the form
 *
 *	f * m * floor(a / m)
 *
 * rewrite them as
 *
 *	f * (a - (a mod m)) = f * a - f * (a mod m)
 *
 * and extract out -f * (a mod m).
 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
 * If f < 0, we add ((-f) * (a mod m)) to *pos.
 */
static __isl_give isl_aff *extract_modulos(__isl_take isl_aff *aff,
	__isl_keep isl_ast_expr **pos, __isl_keep isl_ast_expr **neg,
	__isl_keep isl_ast_build *build)
{
	struct isl_extract_mod_data data = { build, aff, *pos, *neg };
	isl_ctx *ctx;
	isl_size n;
	if (!aff)
		return NULL;
	ctx = isl_aff_get_ctx(aff);
	if (!isl_options_get_ast_build_prefer_pdiv(ctx))
		return aff;
	n = isl_aff_dim(data.aff, isl_dim_div);
	if (n < 0)
		return isl_aff_free(aff);
	for (data.i = 0; data.i < n; ++data.i) {
		data.v = isl_aff_get_coefficient_val(data.aff,
							isl_dim_div, data.i);
		if (!data.v)
			return isl_aff_free(aff);
		if (isl_val_is_zero(data.v) ||
		    isl_val_is_one(data.v) || isl_val_is_negone(data.v)) {
			isl_val_free(data.v);
			continue;
		}
		if (extract_modulo(&data) < 0)
			data.aff = isl_aff_free(data.aff);
		isl_val_free(data.v);
		if (!data.aff)
			break;
	}
	if (data.add)
		data.aff = isl_aff_add(data.aff, data.add);
	*pos = data.pos;
	*neg = data.neg;
	return data.aff;
}
/* Check if aff involves any non-integer coefficients.
 * If so, split aff into
 *
 *	aff = aff1 + (aff2 / d)
 *
 * with both aff1 and aff2 having only integer coefficients.
 * Return aff1 and add (aff2 / d) to *expr.
 */
static __isl_give isl_aff *extract_rational(__isl_take isl_aff *aff,
	__isl_keep isl_ast_expr **expr, __isl_keep isl_ast_build *build)
{
	int i, j;
	isl_size n;
	isl_aff *rat = NULL;
	isl_local_space *ls = NULL;
	isl_ast_expr *rat_expr;
	isl_val *v, *d;
	enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
	enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
	if (!aff)
		return NULL;
	d = isl_aff_get_denominator_val(aff);
	if (!d)
		goto error;
	if (isl_val_is_one(d)) {
		isl_val_free(d);
		return aff;
	}
	aff = isl_aff_scale_val(aff, isl_val_copy(d));
	ls = isl_aff_get_domain_local_space(aff);
	rat = isl_aff_zero_on_domain(isl_local_space_copy(ls));
	for (i = 0; i < 3; ++i) {
		n = isl_aff_dim(aff, t[i]);
		if (n < 0)
			goto error;
		for (j = 0; j < n; ++j) {
			isl_aff *rat_j;
			v = isl_aff_get_coefficient_val(aff, t[i], j);
			if (!v)
				goto error;
			if (isl_val_is_divisible_by(v, d)) {
				isl_val_free(v);
				continue;
			}
			rat_j = isl_aff_var_on_domain(isl_local_space_copy(ls),
							l[i], j);
			rat_j = isl_aff_scale_val(rat_j, v);
			rat = isl_aff_add(rat, rat_j);
		}
	}
	v = isl_aff_get_constant_val(aff);
	if (isl_val_is_divisible_by(v, d)) {
		isl_val_free(v);
	} else {
		isl_aff *rat_0;
		rat_0 = isl_aff_val_on_domain(isl_local_space_copy(ls), v);
		rat = isl_aff_add(rat, rat_0);
	}
	isl_local_space_free(ls);
	aff = isl_aff_sub(aff, isl_aff_copy(rat));
	aff = isl_aff_scale_down_val(aff, isl_val_copy(d));
	rat_expr = isl_ast_expr_from_aff(rat, build);
	rat_expr = isl_ast_expr_div(rat_expr, isl_ast_expr_from_val(d));
	*expr = ast_expr_add(*expr, rat_expr);
	return aff;
error:
	isl_aff_free(rat);
	isl_local_space_free(ls);
	isl_aff_free(aff);
	isl_val_free(d);
	return NULL;
}
/* Construct an isl_ast_expr that evaluates the affine expression "aff",
 * The result is simplified in terms of build->domain.
 *
 * We first extract hidden modulo computations from the affine expression
 * and then add terms for each variable with a non-zero coefficient.
 * Finally, if the affine expression has a non-trivial denominator,
 * we divide the resulting isl_ast_expr by this denominator.
 */
__isl_give isl_ast_expr *isl_ast_expr_from_aff(__isl_take isl_aff *aff,
	__isl_keep isl_ast_build *build)
{
	int i, j;
	isl_size n;
	isl_val *v;
	isl_ctx *ctx = isl_aff_get_ctx(aff);
	isl_ast_expr *expr, *expr_neg;
	enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
	enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
	isl_local_space *ls;
	struct isl_ast_add_term_data data;
	if (!aff)
		return NULL;
	expr = isl_ast_expr_alloc_int_si(ctx, 0);
	expr_neg = isl_ast_expr_alloc_int_si(ctx, 0);
	aff = extract_rational(aff, &expr, build);
	aff = extract_modulos(aff, &expr, &expr_neg, build);
	expr = ast_expr_sub(expr, expr_neg);
	ls = isl_aff_get_domain_local_space(aff);
	data.build = build;
	data.cst = isl_aff_get_constant_val(aff);
	for (i = 0; i < 3; ++i) {
		n = isl_aff_dim(aff, t[i]);
		if (n < 0)
			expr = isl_ast_expr_free(expr);
		for (j = 0; j < n; ++j) {
			v = isl_aff_get_coefficient_val(aff, t[i], j);
			if (!v)
				expr = isl_ast_expr_free(expr);
			if (isl_val_is_zero(v)) {
				isl_val_free(v);
				continue;
			}
			expr = isl_ast_expr_add_term(expr,
							ls, l[i], j, v, &data);
		}
	}
	expr = isl_ast_expr_add_int(expr, data.cst);
	isl_local_space_free(ls);
	isl_aff_free(aff);
	return expr;
}
/* Add terms to "expr" for each variable in "aff" with a coefficient
 * with sign equal to "sign".
 * The result is simplified in terms of data->build->domain.
 */
static __isl_give isl_ast_expr *add_signed_terms(__isl_take isl_ast_expr *expr,
	__isl_keep isl_aff *aff, int sign, struct isl_ast_add_term_data *data)
{
	int i, j;
	isl_val *v;
	enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
	enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
	isl_local_space *ls;
	ls = isl_aff_get_domain_local_space(aff);
	for (i = 0; i < 3; ++i) {
		isl_size n = isl_aff_dim(aff, t[i]);
		if (n < 0)
			expr = isl_ast_expr_free(expr);
		for (j = 0; j < n; ++j) {
			v = isl_aff_get_coefficient_val(aff, t[i], j);
			if (sign * isl_val_sgn(v) <= 0) {
				isl_val_free(v);
				continue;
			}
			v = isl_val_abs(v);
			expr = isl_ast_expr_add_term(expr,
						ls, l[i], j, v, data);
		}
	}
	isl_local_space_free(ls);
	return expr;
}
/* Should the constant term "v" be considered positive?
 *
 * A positive constant will be added to "pos" by the caller,
 * while a negative constant will be added to "neg".
 * If either "pos" or "neg" is exactly zero, then we prefer
 * to add the constant "v" to that side, irrespective of the sign of "v".
 * This results in slightly shorter expressions and may reduce the risk
 * of overflows.
 */
static int constant_is_considered_positive(__isl_keep isl_val *v,
	__isl_keep isl_ast_expr *pos, __isl_keep isl_ast_expr *neg)
{
	if (ast_expr_is_zero(pos))
		return 1;
	if (ast_expr_is_zero(neg))
		return 0;
	return isl_val_is_pos(v);
}
/* Check if the equality
 *
 *	aff = 0
 *
 * represents a stride constraint on the integer division "pos".
 *
 * In particular, if the integer division "pos" is equal to
 *
 *	floor(e/d)
 *
 * then check if aff is equal to
 *
 *	e - d floor(e/d)
 *
 * or its opposite.
 *
 * If so, the equality is exactly
 *
 *	e mod d = 0
 *
 * Note that in principle we could also accept
 *
 *	e - d floor(e'/d)
 *
 * where e and e' differ by a constant.
 */
static int is_stride_constraint(__isl_keep isl_aff *aff, int pos)
{
	isl_aff *div;
	isl_val *c, *d;
	int eq;
	div = isl_aff_get_div(aff, pos);
	c = isl_aff_get_coefficient_val(aff, isl_dim_div, pos);
	d = isl_aff_get_denominator_val(div);
	eq = isl_val_abs_eq(c, d);
	if (eq >= 0 && eq) {
		aff = isl_aff_copy(aff);
		aff = isl_aff_set_coefficient_si(aff, isl_dim_div, pos, 0);
		div = isl_aff_scale_val(div, d);
		if (isl_val_is_pos(c))
			div = isl_aff_neg(div);
		eq = isl_aff_plain_is_equal(div, aff);
		isl_aff_free(aff);
	} else
		isl_val_free(d);
	isl_val_free(c);
	isl_aff_free(div);
	return eq;
}
/* Are all coefficients of "aff" (zero or) negative?
 */
static isl_bool all_negative_coefficients(__isl_keep isl_aff *aff)
{
	int i;
	isl_size n;
	n = isl_aff_dim(aff, isl_dim_param);
	if (n < 0)
		return isl_bool_error;
	for (i = 0; i < n; ++i)
		if (isl_aff_coefficient_sgn(aff, isl_dim_param, i) > 0)
			return isl_bool_false;
	n = isl_aff_dim(aff, isl_dim_in);
	if (n < 0)
		return isl_bool_error;
	for (i = 0; i < n; ++i)
		if (isl_aff_coefficient_sgn(aff, isl_dim_in, i) > 0)
			return isl_bool_false;
	return isl_bool_true;
}
/* Give an equality of the form
 *
 *	aff = e - d floor(e/d) = 0
 *
 * or
 *
 *	aff = -e + d floor(e/d) = 0
 *
 * with the integer division "pos" equal to floor(e/d),
 * construct the AST expression
 *
 *	(isl_ast_expr_op_eq,
 *		(isl_ast_expr_op_zdiv_r, expr(e), expr(d)), expr(0))
 *
 * If e only has negative coefficients, then construct
 *
 *	(isl_ast_expr_op_eq,
 *		(isl_ast_expr_op_zdiv_r, expr(-e), expr(d)), expr(0))
 *
 * instead.
 */
static __isl_give isl_ast_expr *extract_stride_constraint(
	__isl_take isl_aff *aff, int pos, __isl_keep isl_ast_build *build)
{
	isl_bool all_neg;
	isl_ctx *ctx;
	isl_val *c;
	isl_ast_expr *expr, *cst;
	if (!aff)
		return NULL;
	ctx = isl_aff_get_ctx(aff);
	c = isl_aff_get_coefficient_val(aff, isl_dim_div, pos);
	aff = isl_aff_set_coefficient_si(aff, isl_dim_div, pos, 0);
	all_neg = all_negative_coefficients(aff);
	if (all_neg < 0)
		aff = isl_aff_free(aff);
	else if (all_neg)
		aff = isl_aff_neg(aff);
	cst = isl_ast_expr_from_val(isl_val_abs(c));
	expr = isl_ast_expr_from_aff(aff, build);
	expr = isl_ast_expr_alloc_binary(isl_ast_expr_op_zdiv_r, expr, cst);
	cst = isl_ast_expr_alloc_int_si(ctx, 0);
	expr = isl_ast_expr_alloc_binary(isl_ast_expr_op_eq, expr, cst);
	return expr;
}
/* Construct an isl_ast_expr that evaluates the condition "constraint",
 * The result is simplified in terms of build->domain.
 *
 * We first check if the constraint is an equality of the form
 *
 *	e - d floor(e/d) = 0
 *
 * i.e.,
 *
 *	e mod d = 0
 *
 * If so, we convert it to
 *
 *	(isl_ast_expr_op_eq,
 *		(isl_ast_expr_op_zdiv_r, expr(e), expr(d)), expr(0))
 *
 * Otherwise, let the constraint by either "a >= 0" or "a == 0".
 * We first extract hidden modulo computations from "a"
 * and then collect all the terms with a positive coefficient in cons_pos
 * and the terms with a negative coefficient in cons_neg.
 *
 * The result is then of the form
 *
 *	(isl_ast_expr_op_ge, expr(pos), expr(-neg)))
 *
 * or
 *
 *	(isl_ast_expr_op_eq, expr(pos), expr(-neg)))
 *
 * However, if the first expression is an integer constant (and the second
 * is not), then we swap the two expressions.  This ensures that we construct,
 * e.g., "i <= 5" rather than "5 >= i".
 *
 * Furthermore, is there are no terms with positive coefficients (or no terms
 * with negative coefficients), then the constant term is added to "pos"
 * (or "neg"), ignoring the sign of the constant term.
 */
static __isl_give isl_ast_expr *isl_ast_expr_from_constraint(
	__isl_take isl_constraint *constraint, __isl_keep isl_ast_build *build)
{
	int i;
	isl_size n;
	isl_ctx *ctx;
	isl_ast_expr *expr_pos;
	isl_ast_expr *expr_neg;
	isl_ast_expr *expr;
	isl_aff *aff;
	int eq;
	enum isl_ast_expr_op_type type;
	struct isl_ast_add_term_data data;
	if (!constraint)
		return NULL;
	aff = isl_constraint_get_aff(constraint);
	eq = isl_constraint_is_equality(constraint);
	isl_constraint_free(constraint);
	n = isl_aff_dim(aff, isl_dim_div);
	if (n < 0)
		aff = isl_aff_free(aff);
	if (eq && n > 0)
		for (i = 0; i < n; ++i) {
			int is_stride;
			is_stride = is_stride_constraint(aff, i);
			if (is_stride < 0)
				goto error;
			if (is_stride)
				return extract_stride_constraint(aff, i, build);
		}
	ctx = isl_aff_get_ctx(aff);
	expr_pos = isl_ast_expr_alloc_int_si(ctx, 0);
	expr_neg = isl_ast_expr_alloc_int_si(ctx, 0);
	aff = extract_modulos(aff, &expr_pos, &expr_neg, build);
	data.build = build;
	data.cst = isl_aff_get_constant_val(aff);
	expr_pos = add_signed_terms(expr_pos, aff, 1, &data);
	data.cst = isl_val_neg(data.cst);
	expr_neg = add_signed_terms(expr_neg, aff, -1, &data);
	data.cst = isl_val_neg(data.cst);
	if (constant_is_considered_positive(data.cst, expr_pos, expr_neg)) {
		expr_pos = isl_ast_expr_add_int(expr_pos, data.cst);
	} else {
		data.cst = isl_val_neg(data.cst);
		expr_neg = isl_ast_expr_add_int(expr_neg, data.cst);
	}
	if (isl_ast_expr_get_type(expr_pos) == isl_ast_expr_int &&
	    isl_ast_expr_get_type(expr_neg) != isl_ast_expr_int) {
		type = eq ? isl_ast_expr_op_eq : isl_ast_expr_op_le;
		expr = isl_ast_expr_alloc_binary(type, expr_neg, expr_pos);
	} else {
		type = eq ? isl_ast_expr_op_eq : isl_ast_expr_op_ge;
		expr = isl_ast_expr_alloc_binary(type, expr_pos, expr_neg);
	}
	isl_aff_free(aff);
	return expr;
error:
	isl_aff_free(aff);
	return NULL;
}
/* Wrapper around isl_constraint_cmp_last_non_zero for use
 * as a callback to isl_constraint_list_sort.
 * If isl_constraint_cmp_last_non_zero cannot tell the constraints
 * apart, then use isl_constraint_plain_cmp instead.
 */
static int cmp_constraint(__isl_keep isl_constraint *a,
	__isl_keep isl_constraint *b, void *user)
{
	int cmp;
	cmp = isl_constraint_cmp_last_non_zero(a, b);
	if (cmp != 0)
		return cmp;
	return isl_constraint_plain_cmp(a, b);
}
/* Construct an isl_ast_expr that evaluates the conditions defining "bset".
 * The result is simplified in terms of build->domain.
 *
 * If "bset" is not bounded by any constraint, then we construct
 * the expression "1", i.e., "true".
 *
 * Otherwise, we sort the constraints, putting constraints that involve
 * integer divisions after those that do not, and construct an "and"
 * of the ast expressions of the individual constraints.
 *
 * Each constraint is added to the generated constraints of the build
 * after it has been converted to an AST expression so that it can be used
 * to simplify the following constraints.  This may change the truth value
 * of subsequent constraints that do not satisfy the earlier constraints,
 * but this does not affect the outcome of the conjunction as it is
 * only true if all the conjuncts are true (no matter in what order
 * they are evaluated).  In particular, the constraints that do not
 * involve integer divisions may serve to simplify some constraints
 * that do involve integer divisions.
 */
__isl_give isl_ast_expr *isl_ast_build_expr_from_basic_set(
	 __isl_keep isl_ast_build *build, __isl_take isl_basic_set *bset)
{
	int i;
	isl_size n;
	isl_constraint *c;
	isl_constraint_list *list;
	isl_ast_expr *res;
	isl_set *set;
	list = isl_basic_set_get_constraint_list(bset);
	isl_basic_set_free(bset);
	list = isl_constraint_list_sort(list, &cmp_constraint, NULL);
	n = isl_constraint_list_n_constraint(list);
	if (n < 0)
		build = NULL;
	if (n == 0) {
		isl_ctx *ctx = isl_constraint_list_get_ctx(list);
		isl_constraint_list_free(list);
		return isl_ast_expr_alloc_int_si(ctx, 1);
	}
	build = isl_ast_build_copy(build);
	c = isl_constraint_list_get_constraint(list, 0);
	bset = isl_basic_set_from_constraint(isl_constraint_copy(c));
	set = isl_set_from_basic_set(bset);
	res = isl_ast_expr_from_constraint(c, build);
	build = isl_ast_build_restrict_generated(build, set);
	for (i = 1; i < n; ++i) {
		isl_ast_expr *expr;
		c = isl_constraint_list_get_constraint(list, i);
		bset = isl_basic_set_from_constraint(isl_constraint_copy(c));
		set = isl_set_from_basic_set(bset);
		expr = isl_ast_expr_from_constraint(c, build);
		build = isl_ast_build_restrict_generated(build, set);
		res = isl_ast_expr_and(res, expr);
	}
	isl_constraint_list_free(list);
	isl_ast_build_free(build);
	return res;
}
/* Construct an isl_ast_expr that evaluates the conditions defining "set".
 * The result is simplified in terms of build->domain.
 *
 * If "set" is an (obviously) empty set, then return the expression "0".
 *
 * If there are multiple disjuncts in the description of the set,
 * then subsequent disjuncts are simplified in a context where
 * the previous disjuncts have been removed from build->domain.
 * In particular, constraints that ensure that there is no overlap
 * with these previous disjuncts, can be removed.
 * This is mostly useful for disjuncts that are only defined by
 * a single constraint (relative to the build domain) as the opposite
 * of that single constraint can then be removed from the other disjuncts.
 * In order not to increase the number of disjuncts in the build domain
 * after subtracting the previous disjuncts of "set", the simple hull
 * is computed after taking the difference with each of these disjuncts.
 * This means that constraints that prevent overlap with a union
 * of multiple previous disjuncts are not removed.
 *
 * "set" lives in the internal schedule space.
 */
__isl_give isl_ast_expr *isl_ast_build_expr_from_set_internal(
	__isl_keep isl_ast_build *build, __isl_take isl_set *set)
{
	int i;
	isl_size n;
	isl_basic_set *bset;
	isl_basic_set_list *list;
	isl_set *domain;
	isl_ast_expr *res;
	list = isl_set_get_basic_set_list(set);
	isl_set_free(set);
	n = isl_basic_set_list_n_basic_set(list);
	if (n < 0)
		build = NULL;
	if (n == 0) {
		isl_ctx *ctx = isl_ast_build_get_ctx(build);
		isl_basic_set_list_free(list);
		return isl_ast_expr_from_val(isl_val_zero(ctx));
	}
	domain = isl_ast_build_get_domain(build);
	bset = isl_basic_set_list_get_basic_set(list, 0);
	set = isl_set_from_basic_set(isl_basic_set_copy(bset));
	res = isl_ast_build_expr_from_basic_set(build, bset);
	for (i = 1; i < n; ++i) {
		isl_ast_expr *expr;
		isl_set *rest;
		rest = isl_set_subtract(isl_set_copy(domain), set);
		rest = isl_set_from_basic_set(isl_set_simple_hull(rest));
		domain = isl_set_intersect(domain, rest);
		bset = isl_basic_set_list_get_basic_set(list, i);
		set = isl_set_from_basic_set(isl_basic_set_copy(bset));
		bset = isl_basic_set_gist(bset,
				isl_set_simple_hull(isl_set_copy(domain)));
		expr = isl_ast_build_expr_from_basic_set(build, bset);
		res = isl_ast_expr_or(res, expr);
	}
	isl_set_free(domain);
	isl_set_free(set);
	isl_basic_set_list_free(list);
	return res;
}
/* Construct an isl_ast_expr that evaluates the conditions defining "set".
 * The result is simplified in terms of build->domain.
 *
 * If "set" is an (obviously) empty set, then return the expression "0".
 *
 * "set" lives in the external schedule space.
 *
 * The internal AST expression generation assumes that there are
 * no unknown divs, so make sure an explicit representation is available.
 * Since the set comes from the outside, it may have constraints that
 * are redundant with respect to the build domain.  Remove them first.
 */
__isl_give isl_ast_expr *isl_ast_build_expr_from_set(
	__isl_keep isl_ast_build *build, __isl_take isl_set *set)
{
	isl_bool needs_map;
	needs_map = isl_ast_build_need_schedule_map(build);
	if (needs_map < 0) {
		set = isl_set_free(set);
	} else if (needs_map) {
		isl_multi_aff *ma;
		ma = isl_ast_build_get_schedule_map_multi_aff(build);
		set = isl_set_preimage_multi_aff(set, ma);
	}
	set = isl_set_compute_divs(set);
	set = isl_ast_build_compute_gist(build, set);
	return isl_ast_build_expr_from_set_internal(build, set);
}
/* State of data about previous pieces in
 * isl_ast_build_expr_from_pw_aff_internal.
 *
 * isl_state_none: no data about previous pieces
 * isl_state_single: data about a single previous piece
 * isl_state_min: data represents minimum of several pieces
 * isl_state_max: data represents maximum of several pieces
 */
enum isl_from_pw_aff_state {
	isl_state_none,
	isl_state_single,
	isl_state_min,
	isl_state_max
};
/* Internal date structure representing a single piece in the input of
 * isl_ast_build_expr_from_pw_aff_internal.
 *
 * If "state" is isl_state_none, then "set_list" and "aff_list" are not used.
 * If "state" is isl_state_single, then "set_list" and "aff_list" contain the
 * single previous subpiece.
 * If "state" is isl_state_min, then "set_list" and "aff_list" contain
 * a sequence of several previous subpieces that are equal to the minimum
 * of the entries in "aff_list" over the union of "set_list"
 * If "state" is isl_state_max, then "set_list" and "aff_list" contain
 * a sequence of several previous subpieces that are equal to the maximum
 * of the entries in "aff_list" over the union of "set_list"
 *
 * During the construction of the pieces, "set" is NULL.
 * After the construction, "set" is set to the union of the elements
 * in "set_list", at which point "set_list" is set to NULL.
 */
struct isl_from_pw_aff_piece {
	enum isl_from_pw_aff_state state;
	isl_set *set;
	isl_set_list *set_list;
	isl_aff_list *aff_list;
};
/* Internal data structure for isl_ast_build_expr_from_pw_aff_internal.
 *
 * "build" specifies the domain against which the result is simplified.
 * "dom" is the domain of the entire isl_pw_aff.
 *
 * "n" is the number of pieces constructed already.
 * In particular, during the construction of the pieces, "n" points to
 * the piece that is being constructed.  After the construction of the
 * pieces, "n" is set to the total number of pieces.
 * "max" is the total number of allocated entries.
 * "p" contains the individual pieces.
 */
struct isl_from_pw_aff_data {
	isl_ast_build *build;
	isl_set *dom;
	int n;
	int max;
	struct isl_from_pw_aff_piece *p;
};
/* Initialize "data" based on "build" and "pa".
 */
static isl_stat isl_from_pw_aff_data_init(struct isl_from_pw_aff_data *data,
	__isl_keep isl_ast_build *build, __isl_keep isl_pw_aff *pa)
{
	isl_size n;
	isl_ctx *ctx;
	ctx = isl_pw_aff_get_ctx(pa);
	n = isl_pw_aff_n_piece(pa);
	if (n < 0)
		return isl_stat_error;
	if (n == 0)
		isl_die(ctx, isl_error_invalid,
			"cannot handle void expression", return isl_stat_error);
	data->max = n;
	data->p = isl_calloc_array(ctx, struct isl_from_pw_aff_piece, n);
	if (!data->p)
		return isl_stat_error;
	data->build = build;
	data->dom = isl_pw_aff_domain(isl_pw_aff_copy(pa));
	data->n = 0;
	return isl_stat_ok;
}
/* Free all memory allocated for "data".
 */
static void isl_from_pw_aff_data_clear(struct isl_from_pw_aff_data *data)
{
	int i;
	isl_set_free(data->dom);
	if (!data->p)
		return;
	for (i = 0; i < data->max; ++i) {
		isl_set_free(data->p[i].set);
		isl_set_list_free(data->p[i].set_list);
		isl_aff_list_free(data->p[i].aff_list);
	}
	free(data->p);
}
/* Initialize the current entry of "data" to an unused piece.
 */
static void set_none(struct isl_from_pw_aff_data *data)
{
	data->p[data->n].state = isl_state_none;
	data->p[data->n].set_list = NULL;
	data->p[data->n].aff_list = NULL;
}
/* Store "set" and "aff" in the current entry of "data" as a single subpiece.
 */
static void set_single(struct isl_from_pw_aff_data *data,
	__isl_take isl_set *set, __isl_take isl_aff *aff)
{
	data->p[data->n].state = isl_state_single;
	data->p[data->n].set_list = isl_set_list_from_set(set);
	data->p[data->n].aff_list = isl_aff_list_from_aff(aff);
}
/* Extend the current entry of "data" with "set" and "aff"
 * as a minimum expression.
 */
static isl_stat extend_min(struct isl_from_pw_aff_data *data,
	__isl_take isl_set *set, __isl_take isl_aff *aff)
{
	int n = data->n;
	data->p[n].state = isl_state_min;
	data->p[n].set_list = isl_set_list_add(data->p[n].set_list, set);
	data->p[n].aff_list = isl_aff_list_add(data->p[n].aff_list, aff);
	if (!data->p[n].set_list || !data->p[n].aff_list)
		return isl_stat_error;
	return isl_stat_ok;
}
/* Extend the current entry of "data" with "set" and "aff"
 * as a maximum expression.
 */
static isl_stat extend_max(struct isl_from_pw_aff_data *data,
	__isl_take isl_set *set, __isl_take isl_aff *aff)
{
	int n = data->n;
	data->p[n].state = isl_state_max;
	data->p[n].set_list = isl_set_list_add(data->p[n].set_list, set);
	data->p[n].aff_list = isl_aff_list_add(data->p[n].aff_list, aff);
	if (!data->p[n].set_list || !data->p[n].aff_list)
		return isl_stat_error;
	return isl_stat_ok;
}
/* Extend the domain of the current entry of "data", which is assumed
 * to contain a single subpiece, with "set".  If "replace" is set,
 * then also replace the affine function by "aff".  Otherwise,
 * simply free "aff".
 */
static isl_stat extend_domain(struct isl_from_pw_aff_data *data,
	__isl_take isl_set *set, __isl_take isl_aff *aff, int replace)
{
	int n = data->n;
	isl_set *set_n;
	set_n = isl_set_list_get_set(data->p[n].set_list, 0);
	set_n = isl_set_union(set_n, set);
	data->p[n].set_list =
		isl_set_list_set_set(data->p[n].set_list, 0, set_n);
	if (replace)
		data->p[n].aff_list =
			isl_aff_list_set_aff(data->p[n].aff_list, 0, aff);
	else
		isl_aff_free(aff);
	if (!data->p[n].set_list || !data->p[n].aff_list)
		return isl_stat_error;
	return isl_stat_ok;
}
/* Construct an isl_ast_expr from "list" within "build".
 * If "state" is isl_state_single, then "list" contains a single entry and
 * an isl_ast_expr is constructed for that entry.
 * Otherwise a min or max expression is constructed from "list"
 * depending on "state".
 */
static __isl_give isl_ast_expr *ast_expr_from_aff_list(
	__isl_take isl_aff_list *list, enum isl_from_pw_aff_state state,
	__isl_keep isl_ast_build *build)
{
	int i;
	isl_size n;
	isl_aff *aff;
	isl_ast_expr *expr = NULL;
	enum isl_ast_expr_op_type op_type;
	if (state == isl_state_single) {
		aff = isl_aff_list_get_aff(list, 0);
		isl_aff_list_free(list);
		return isl_ast_expr_from_aff(aff, build);
	}
	n = isl_aff_list_n_aff(list);
	if (n < 0)
		goto error;
	op_type = state == isl_state_min ? isl_ast_expr_op_min
					 : isl_ast_expr_op_max;
	expr = isl_ast_expr_alloc_op(isl_ast_build_get_ctx(build), op_type, n);
	if (!expr)
		goto error;
	for (i = 0; i < n; ++i) {
		isl_ast_expr *expr_i;
		aff = isl_aff_list_get_aff(list, i);
		expr_i = isl_ast_expr_from_aff(aff, build);
		if (!expr_i)
			goto error;
		expr->u.op.args[i] = expr_i;
	}
	isl_aff_list_free(list);
	return expr;
error:
	isl_aff_list_free(list);
	isl_ast_expr_free(expr);
	return NULL;
}
/* Extend the expression in "next" to take into account
 * the piece at position "pos" in "data", allowing for a further extension
 * for the next piece(s).
 * In particular, "next" is set to a select operation that selects
 * an isl_ast_expr corresponding to data->aff_list on data->set and
 * to an expression that will be filled in by later calls.
 * Return a pointer to this location.
 * Afterwards, the state of "data" is set to isl_state_none.
 *
 * The constraints of data->set are added to the generated
 * constraints of the build such that they can be exploited to simplify
 * the AST expression constructed from data->aff_list.
 */
static isl_ast_expr **add_intermediate_piece(struct isl_from_pw_aff_data *data,
	int pos, isl_ast_expr **next)
{
	isl_ctx *ctx;
	isl_ast_build *build;
	isl_ast_expr *ternary, *arg;
	isl_set *set, *gist;
	set = data->p[pos].set;
	data->p[pos].set = NULL;
	ctx = isl_ast_build_get_ctx(data->build);
	ternary = isl_ast_expr_alloc_op(ctx, isl_ast_expr_op_select, 3);
	gist = isl_set_gist(isl_set_copy(set), isl_set_copy(data->dom));
	arg = isl_ast_build_expr_from_set_internal(data->build, gist);
	ternary = isl_ast_expr_set_op_arg(ternary, 0, arg);
	build = isl_ast_build_copy(data->build);
	build = isl_ast_build_restrict_generated(build, set);
	arg = ast_expr_from_aff_list(data->p[pos].aff_list,
					data->p[pos].state, build);
	data->p[pos].aff_list = NULL;
	isl_ast_build_free(build);
	ternary = isl_ast_expr_set_op_arg(ternary, 1, arg);
	data->p[pos].state = isl_state_none;
	if (!ternary)
		return NULL;
	*next = ternary;
	return &ternary->u.op.args[2];
}
/* Extend the expression in "next" to take into account
 * the final piece, located at position "pos" in "data".
 * In particular, "next" is set to evaluate data->aff_list
 * and the domain is ignored.
 * Return isl_stat_ok on success and isl_stat_error on failure.
 *
 * The constraints of data->set are however added to the generated
 * constraints of the build such that they can be exploited to simplify
 * the AST expression constructed from data->aff_list.
 */
static isl_stat add_last_piece(struct isl_from_pw_aff_data *data,
	int pos, isl_ast_expr **next)
{
	isl_ast_build *build;
	if (data->p[pos].state == isl_state_none)
		isl_die(isl_ast_build_get_ctx(data->build), isl_error_invalid,
			"cannot handle void expression", return isl_stat_error);
	build = isl_ast_build_copy(data->build);
	build = isl_ast_build_restrict_generated(build, data->p[pos].set);
	data->p[pos].set = NULL;
	*next = ast_expr_from_aff_list(data->p[pos].aff_list,
						data->p[pos].state, build);
	data->p[pos].aff_list = NULL;
	isl_ast_build_free(build);
	data->p[pos].state = isl_state_none;
	if (!*next)
		return isl_stat_error;
	return isl_stat_ok;
}
/* Return -1 if the piece "p1" should be sorted before "p2"
 * and 1 if it should be sorted after "p2".
 * Return 0 if they do not need to be sorted in a specific order.
 *
 * Pieces are sorted according to the number of disjuncts
 * in their domains.
 */
static int sort_pieces_cmp(const void *p1, const void *p2, void *arg)
{
	const struct isl_from_pw_aff_piece *piece1 = p1;
	const struct isl_from_pw_aff_piece *piece2 = p2;
	isl_size n1, n2;
	n1 = isl_set_n_basic_set(piece1->set);
	n2 = isl_set_n_basic_set(piece2->set);
	return n1 - n2;
}
/* Construct an isl_ast_expr from the pieces in "data".
 * Return the result or NULL on failure.
 *
 * When this function is called, data->n points to the current piece.
 * If this is an effective piece, then first increment data->n such
 * that data->n contains the number of pieces.
 * The "set_list" fields are subsequently replaced by the corresponding
 * "set" fields, after which the pieces are sorted according to
 * the number of disjuncts in these "set" fields.
 *
 * Construct intermediate AST expressions for the initial pieces and
 * finish off with the final pieces.
 */
static isl_ast_expr *build_pieces(struct isl_from_pw_aff_data *data)
{
	int i;
	isl_ast_expr *res = NULL;
	isl_ast_expr **next = &res;
	if (data->p[data->n].state != isl_state_none)
		data->n++;
	if (data->n == 0)
		isl_die(isl_ast_build_get_ctx(data->build), isl_error_invalid,
			"cannot handle void expression", return NULL);
	for (i = 0; i < data->n; ++i) {
		data->p[i].set = isl_set_list_union(data->p[i].set_list);
		if (data->p[i].state != isl_state_single)
			data->p[i].set = isl_set_coalesce(data->p[i].set);
		data->p[i].set_list = NULL;
	}
	if (isl_sort(data->p, data->n, sizeof(data->p[0]),
			&sort_pieces_cmp, NULL) < 0)
		return isl_ast_expr_free(res);
	for (i = 0; i + 1 < data->n; ++i) {
		next = add_intermediate_piece(data, i, next);
		if (!next)
			return isl_ast_expr_free(res);
	}
	if (add_last_piece(data, data->n - 1, next) < 0)
		return isl_ast_expr_free(res);
	return res;
}
/* Is the domain of the current entry of "data", which is assumed
 * to contain a single subpiece, a subset of "set"?
 */
static isl_bool single_is_subset(struct isl_from_pw_aff_data *data,
	__isl_keep isl_set *set)
{
	isl_bool subset;
	isl_set *set_n;
	set_n = isl_set_list_get_set(data->p[data->n].set_list, 0);
	subset = isl_set_is_subset(set_n, set);
	isl_set_free(set_n);
	return subset;
}
/* Is "aff" a rational expression, i.e., does it have a denominator
 * different from one?
 */
static isl_bool aff_is_rational(__isl_keep isl_aff *aff)
{
	isl_bool rational;
	isl_val *den;
	den = isl_aff_get_denominator_val(aff);
	rational = isl_bool_not(isl_val_is_one(den));
	isl_val_free(den);
	return rational;
}
/* Does "list" consist of a single rational affine expression?
 */
static isl_bool is_single_rational_aff(__isl_keep isl_aff_list *list)
{
	isl_size n;
	isl_bool rational;
	isl_aff *aff;
	n = isl_aff_list_n_aff(list);
	if (n < 0)
		return isl_bool_error;
	if (n != 1)
		return isl_bool_false;
	aff = isl_aff_list_get_aff(list, 0);
	rational = aff_is_rational(aff);
	isl_aff_free(aff);
	return rational;
}
/* Can the list of subpieces in the last piece of "data" be extended with
 * "set" and "aff" based on "test"?
 * In particular, is it the case for each entry (set_i, aff_i) that
 *
 *	test(aff, aff_i) holds on set_i, and
 *	test(aff_i, aff) holds on set?
 *
 * "test" returns the set of elements where the tests holds, meaning
 * that test(aff_i, aff) holds on set if set is a subset of test(aff_i, aff).
 *
 * This function is used to detect min/max expressions.
 * If the ast_build_detect_min_max option is turned off, then
 * do not even try and perform any detection and return false instead.
 *
 * Rational affine expressions are not considered for min/max expressions
 * since the combined expression will be defined on the union of the domains,
 * while a rational expression may only yield integer values
 * on its own definition domain.
 */
static isl_bool extends(struct isl_from_pw_aff_data *data,
	__isl_keep isl_set *set, __isl_keep isl_aff *aff,
	__isl_give isl_basic_set *(*test)(__isl_take isl_aff *aff1,
		__isl_take isl_aff *aff2))
{
	int i;
	isl_size n;
	isl_bool is_rational;
	isl_ctx *ctx;
	isl_set *dom;
	is_rational = aff_is_rational(aff);
	if (is_rational >= 0 && !is_rational)
		is_rational = is_single_rational_aff(data->p[data->n].aff_list);
	if (is_rational < 0 || is_rational)
		return isl_bool_not(is_rational);
	ctx = isl_ast_build_get_ctx(data->build);
	if (!isl_options_get_ast_build_detect_min_max(ctx))
		return isl_bool_false;
	n = isl_set_list_n_set(data->p[data->n].set_list);
	if (n < 0)
		return isl_bool_error;
	dom = isl_ast_build_get_domain(data->build);
	set = isl_set_intersect(dom, isl_set_copy(set));
	for (i = 0; i < n ; ++i) {
		isl_aff *aff_i;
		isl_set *valid;
		isl_set *dom, *required;
		isl_bool is_valid;
		aff_i = isl_aff_list_get_aff(data->p[data->n].aff_list, i);
		valid = isl_set_from_basic_set(test(isl_aff_copy(aff), aff_i));
		required = isl_set_list_get_set(data->p[data->n].set_list, i);
		dom = isl_ast_build_get_domain(data->build);
		required = isl_set_intersect(dom, required);
		is_valid = isl_set_is_subset(required, valid);
		isl_set_free(required);
		isl_set_free(valid);
		if (is_valid < 0 || !is_valid) {
			isl_set_free(set);
			return is_valid;
		}
		aff_i = isl_aff_list_get_aff(data->p[data->n].aff_list, i);
		valid = isl_set_from_basic_set(test(aff_i, isl_aff_copy(aff)));
		is_valid = isl_set_is_subset(set, valid);
		isl_set_free(valid);
		if (is_valid < 0 || !is_valid) {
			isl_set_free(set);
			return is_valid;
		}
	}
	isl_set_free(set);
	return isl_bool_true;
}
/* Can the list of pieces in "data" be extended with "set" and "aff"
 * to form/preserve a minimum expression?
 * In particular, is it the case for each entry (set_i, aff_i) that
 *
 *	aff >= aff_i on set_i, and
 *	aff_i >= aff on set?
 */
static isl_bool extends_min(struct isl_from_pw_aff_data *data,
	__isl_keep isl_set *set,  __isl_keep isl_aff *aff)
{
	return extends(data, set, aff, &isl_aff_ge_basic_set);
}
/* Can the list of pieces in "data" be extended with "set" and "aff"
 * to form/preserve a maximum expression?
 * In particular, is it the case for each entry (set_i, aff_i) that
 *
 *	aff <= aff_i on set_i, and
 *	aff_i <= aff on set?
 */
static isl_bool extends_max(struct isl_from_pw_aff_data *data,
	__isl_keep isl_set *set,  __isl_keep isl_aff *aff)
{
	return extends(data, set, aff, &isl_aff_le_basic_set);
}
/* This function is called during the construction of an isl_ast_expr
 * that evaluates an isl_pw_aff.
 * If the last piece of "data" contains a single subpiece and
 * if its affine function is equal to "aff" on a part of the domain
 * that includes either "set" or the domain of that single subpiece,
 * then extend the domain of that single subpiece with "set".
 * If it was the original domain of the single subpiece where
 * the two affine functions are equal, then also replace
 * the affine function of the single subpiece by "aff".
 * If the last piece of "data" contains either a single subpiece
 * or a minimum, then check if this minimum expression can be extended
 * with (set, aff).
 * If so, extend the sequence and return.
 * Perform the same operation for maximum expressions.
 * If no such extension can be performed, then move to the next piece
 * in "data" (if the current piece contains any data), and then store
 * the current subpiece in the current piece of "data" for later handling.
 */
static isl_stat ast_expr_from_pw_aff(__isl_take isl_set *set,
	__isl_take isl_aff *aff, void *user)
{
	struct isl_from_pw_aff_data *data = user;
	isl_bool test;
	enum isl_from_pw_aff_state state;
	state = data->p[data->n].state;
	if (state == isl_state_single) {
		isl_aff *aff0;
		isl_set *eq;
		isl_bool subset1, subset2 = isl_bool_false;
		aff0 = isl_aff_list_get_aff(data->p[data->n].aff_list, 0);
		eq = isl_aff_eq_set(isl_aff_copy(aff), aff0);
		subset1 = isl_set_is_subset(set, eq);
		if (subset1 >= 0 && !subset1)
			subset2 = single_is_subset(data, eq);
		isl_set_free(eq);
		if (subset1 < 0 || subset2 < 0)
			goto error;
		if (subset1)
			return extend_domain(data, set, aff, 0);
		if (subset2)
			return extend_domain(data, set, aff, 1);
	}
	if (state == isl_state_single || state == isl_state_min) {
		test = extends_min(data, set, aff);
		if (test < 0)
			goto error;
		if (test)
			return extend_min(data, set, aff);
	}
	if (state == isl_state_single || state == isl_state_max) {
		test = extends_max(data, set, aff);
		if (test < 0)
			goto error;
		if (test)
			return extend_max(data, set, aff);
	}
	if (state != isl_state_none)
		data->n++;
	set_single(data, set, aff);
	return isl_stat_ok;
error:
	isl_set_free(set);
	isl_aff_free(aff);
	return isl_stat_error;
}
/* Construct an isl_ast_expr that evaluates "pa".
 * The result is simplified in terms of build->domain.
 *
 * The domain of "pa" lives in the internal schedule space.
 */
__isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff_internal(
	__isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa)
{
	struct isl_from_pw_aff_data data = { NULL };
	isl_ast_expr *res = NULL;
	pa = isl_ast_build_compute_gist_pw_aff(build, pa);
	pa = isl_pw_aff_coalesce(pa);
	if (!pa)
		return NULL;
	if (isl_from_pw_aff_data_init(&data, build, pa) < 0)
		goto error;
	set_none(&data);
	if (isl_pw_aff_foreach_piece(pa, &ast_expr_from_pw_aff, &data) >= 0)
		res = build_pieces(&data);
	isl_pw_aff_free(pa);
	isl_from_pw_aff_data_clear(&data);
	return res;
error:
	isl_pw_aff_free(pa);
	isl_from_pw_aff_data_clear(&data);
	return NULL;
}
/* Construct an isl_ast_expr that evaluates "pa".
 * The result is simplified in terms of build->domain.
 *
 * The domain of "pa" lives in the external schedule space.
 */
__isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff(
	__isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa)
{
	isl_ast_expr *expr;
	isl_bool needs_map;
	needs_map = isl_ast_build_need_schedule_map(build);
	if (needs_map < 0) {
		pa = isl_pw_aff_free(pa);
	} else if (needs_map) {
		isl_multi_aff *ma;
		ma = isl_ast_build_get_schedule_map_multi_aff(build);
		pa = isl_pw_aff_pullback_multi_aff(pa, ma);
	}
	expr = isl_ast_build_expr_from_pw_aff_internal(build, pa);
	return expr;
}
/* Set the ids of the input dimensions of "mpa" to the iterator ids
 * of "build".
 *
 * The domain of "mpa" is assumed to live in the internal schedule domain.
 */
static __isl_give isl_multi_pw_aff *set_iterator_names(
	__isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
{
	int i;
	isl_size n;
	n = isl_multi_pw_aff_dim(mpa, isl_dim_in);
	if (n < 0)
		return isl_multi_pw_aff_free(mpa);
	for (i = 0; i < n; ++i) {
		isl_id *id;
		id = isl_ast_build_get_iterator_id(build, i);
		mpa = isl_multi_pw_aff_set_dim_id(mpa, isl_dim_in, i, id);
	}
	return mpa;
}
/* Construct an isl_ast_expr of type "type" with as first argument "arg0" and
 * the remaining arguments derived from "mpa".
 * That is, construct a call or access expression that calls/accesses "arg0"
 * with arguments/indices specified by "mpa".
 */
static __isl_give isl_ast_expr *isl_ast_build_with_arguments(
	__isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
	__isl_take isl_ast_expr *arg0, __isl_take isl_multi_pw_aff *mpa)
{
	int i;
	isl_size n;
	isl_ctx *ctx;
	isl_ast_expr *expr;
	ctx = isl_ast_build_get_ctx(build);
	n = isl_multi_pw_aff_dim(mpa, isl_dim_out);
	expr = n >= 0 ? isl_ast_expr_alloc_op(ctx, type, 1 + n) : NULL;
	expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
	for (i = 0; i < n; ++i) {
		isl_pw_aff *pa;
		isl_ast_expr *arg;
		pa = isl_multi_pw_aff_get_pw_aff(mpa, i);
		arg = isl_ast_build_expr_from_pw_aff_internal(build, pa);
		expr = isl_ast_expr_set_op_arg(expr, 1 + i, arg);
	}
	isl_multi_pw_aff_free(mpa);
	return expr;
}
static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_internal(
	__isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
	__isl_take isl_multi_pw_aff *mpa);
/* Construct an isl_ast_expr that accesses the member specified by "mpa".
 * The range of "mpa" is assumed to be wrapped relation.
 * The domain of this wrapped relation specifies the structure being
 * accessed, while the range of this wrapped relation spacifies the
 * member of the structure being accessed.
 *
 * The domain of "mpa" is assumed to live in the internal schedule domain.
 */
static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_member(
	__isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
{
	isl_id *id;
	isl_multi_pw_aff *domain;
	isl_ast_expr *domain_expr, *expr;
	enum isl_ast_expr_op_type type = isl_ast_expr_op_access;
	domain = isl_multi_pw_aff_copy(mpa);
	domain = isl_multi_pw_aff_range_factor_domain(domain);
	domain_expr = isl_ast_build_from_multi_pw_aff_internal(build,
								type, domain);
	mpa = isl_multi_pw_aff_range_factor_range(mpa);
	if (!isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out))
		isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
			"missing field name", goto error);
	id = isl_multi_pw_aff_get_tuple_id(mpa, isl_dim_out);
	expr = isl_ast_expr_from_id(id);
	expr = isl_ast_expr_alloc_binary(isl_ast_expr_op_member,
					domain_expr, expr);
	return isl_ast_build_with_arguments(build, type, expr, mpa);
error:
	isl_multi_pw_aff_free(mpa);
	return NULL;
}
/* Construct an isl_ast_expr of type "type" that calls or accesses
 * the element specified by "mpa".
 * The first argument is obtained from the output tuple name.
 * The remaining arguments are given by the piecewise affine expressions.
 *
 * If the range of "mpa" is a mapped relation, then we assume it
 * represents an access to a member of a structure.
 *
 * The domain of "mpa" is assumed to live in the internal schedule domain.
 */
static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_internal(
	__isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
	__isl_take isl_multi_pw_aff *mpa)
{
	isl_ctx *ctx;
	isl_id *id;
	isl_ast_expr *expr;
	if (!mpa)
		goto error;
	if (type == isl_ast_expr_op_access &&
	    isl_multi_pw_aff_range_is_wrapping(mpa))
		return isl_ast_build_from_multi_pw_aff_member(build, mpa);
	mpa = set_iterator_names(build, mpa);
	if (!build || !mpa)
		goto error;
	ctx = isl_ast_build_get_ctx(build);
	if (isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out))
		id = isl_multi_pw_aff_get_tuple_id(mpa, isl_dim_out);
	else
		id = isl_id_alloc(ctx, "", NULL);
	expr = isl_ast_expr_from_id(id);
	return isl_ast_build_with_arguments(build, type, expr, mpa);
error:
	isl_multi_pw_aff_free(mpa);
	return NULL;
}
/* Construct an isl_ast_expr of type "type" that calls or accesses
 * the element specified by "pma".
 * The first argument is obtained from the output tuple name.
 * The remaining arguments are given by the piecewise affine expressions.
 *
 * The domain of "pma" is assumed to live in the internal schedule domain.
 */
static __isl_give isl_ast_expr *isl_ast_build_from_pw_multi_aff_internal(
	__isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
	__isl_take isl_pw_multi_aff *pma)
{
	isl_multi_pw_aff *mpa;
	mpa = isl_multi_pw_aff_from_pw_multi_aff(pma);
	return isl_ast_build_from_multi_pw_aff_internal(build, type, mpa);
}
/* Construct an isl_ast_expr of type "type" that calls or accesses
 * the element specified by "mpa".
 * The first argument is obtained from the output tuple name.
 * The remaining arguments are given by the piecewise affine expressions.
 *
 * The domain of "mpa" is assumed to live in the external schedule domain.
 */
static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff(
	__isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
	__isl_take isl_multi_pw_aff *mpa)
{
	isl_bool is_domain;
	isl_bool needs_map;
	isl_ast_expr *expr;
	isl_space *space_build, *space_mpa;
	space_build = isl_ast_build_get_space(build, 0);
	space_mpa = isl_multi_pw_aff_get_space(mpa);
	is_domain = isl_space_tuple_is_equal(space_build, isl_dim_set,
					space_mpa, isl_dim_in);
	isl_space_free(space_build);
	isl_space_free(space_mpa);
	if (is_domain < 0)
		goto error;
	if (!is_domain)
		isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
			"spaces don't match", goto error);
	needs_map = isl_ast_build_need_schedule_map(build);
	if (needs_map < 0)
		goto error;
	if (needs_map) {
		isl_multi_aff *ma;
		ma = isl_ast_build_get_schedule_map_multi_aff(build);
		mpa = isl_multi_pw_aff_pullback_multi_aff(mpa, ma);
	}
	expr = isl_ast_build_from_multi_pw_aff_internal(build, type, mpa);
	return expr;
error:
	isl_multi_pw_aff_free(mpa);
	return NULL;
}
/* Construct an isl_ast_expr that calls the domain element specified by "mpa".
 * The name of the function is obtained from the output tuple name.
 * The arguments are given by the piecewise affine expressions.
 *
 * The domain of "mpa" is assumed to live in the external schedule domain.
 */
__isl_give isl_ast_expr *isl_ast_build_call_from_multi_pw_aff(
	__isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
{
	return isl_ast_build_from_multi_pw_aff(build,
						isl_ast_expr_op_call, mpa);
}
/* Construct an isl_ast_expr that accesses the array element specified by "mpa".
 * The name of the array is obtained from the output tuple name.
 * The index expressions are given by the piecewise affine expressions.
 *
 * The domain of "mpa" is assumed to live in the external schedule domain.
 */
__isl_give isl_ast_expr *isl_ast_build_access_from_multi_pw_aff(
	__isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
{
	return isl_ast_build_from_multi_pw_aff(build,
						isl_ast_expr_op_access, mpa);
}
/* Construct an isl_ast_expr of type "type" that calls or accesses
 * the element specified by "pma".
 * The first argument is obtained from the output tuple name.
 * The remaining arguments are given by the piecewise affine expressions.
 *
 * The domain of "pma" is assumed to live in the external schedule domain.
 */
static __isl_give isl_ast_expr *isl_ast_build_from_pw_multi_aff(
	__isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
	__isl_take isl_pw_multi_aff *pma)
{
	isl_multi_pw_aff *mpa;
	mpa = isl_multi_pw_aff_from_pw_multi_aff(pma);
	return isl_ast_build_from_multi_pw_aff(build, type, mpa);
}
/* Construct an isl_ast_expr that calls the domain element specified by "pma".
 * The name of the function is obtained from the output tuple name.
 * The arguments are given by the piecewise affine expressions.
 *
 * The domain of "pma" is assumed to live in the external schedule domain.
 */
__isl_give isl_ast_expr *isl_ast_build_call_from_pw_multi_aff(
	__isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma)
{
	return isl_ast_build_from_pw_multi_aff(build,
						isl_ast_expr_op_call, pma);
}
/* Construct an isl_ast_expr that accesses the array element specified by "pma".
 * The name of the array is obtained from the output tuple name.
 * The index expressions are given by the piecewise affine expressions.
 *
 * The domain of "pma" is assumed to live in the external schedule domain.
 */
__isl_give isl_ast_expr *isl_ast_build_access_from_pw_multi_aff(
	__isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma)
{
	return isl_ast_build_from_pw_multi_aff(build,
						isl_ast_expr_op_access, pma);
}
/* Construct an isl_ast_expr that calls the domain element
 * specified by "executed".
 *
 * "executed" is assumed to be single-valued, with a domain that lives
 * in the internal schedule space.
 */
__isl_give isl_ast_node *isl_ast_build_call_from_executed(
	__isl_keep isl_ast_build *build, __isl_take isl_map *executed)
{
	isl_pw_multi_aff *iteration;
	isl_ast_expr *expr;
	iteration = isl_pw_multi_aff_from_map(executed);
	iteration = isl_ast_build_compute_gist_pw_multi_aff(build, iteration);
	iteration = isl_pw_multi_aff_intersect_domain(iteration,
					isl_ast_build_get_domain(build));
	expr = isl_ast_build_from_pw_multi_aff_internal(build,
					isl_ast_expr_op_call, iteration);
	return isl_ast_node_alloc_user(expr);
}
 |