| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 
 | /*
 * Copyright 2008-2009 Katholieke Universiteit Leuven
 * Copyright 2012-2013 Ecole Normale Superieure
 * Copyright 2014-2015 INRIA Rocquencourt
 * Copyright 2016      Sven Verdoolaege
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege, K.U.Leuven, Departement
 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
 * B.P. 105 - 78153 Le Chesnay, France
 */
#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include "isl_equalities.h"
#include <isl/map.h>
#include <isl_seq.h>
#include "isl_tab.h"
#include <isl_space_private.h>
#include <isl_mat_private.h>
#include <isl_vec_private.h>
#include <bset_to_bmap.c>
#include <bset_from_bmap.c>
#include <set_to_map.c>
#include <set_from_map.c>
static void swap_equality(__isl_keep isl_basic_map *bmap, int a, int b)
{
	isl_int *t = bmap->eq[a];
	bmap->eq[a] = bmap->eq[b];
	bmap->eq[b] = t;
}
static void swap_inequality(__isl_keep isl_basic_map *bmap, int a, int b)
{
	if (a != b) {
		isl_int *t = bmap->ineq[a];
		bmap->ineq[a] = bmap->ineq[b];
		bmap->ineq[b] = t;
	}
}
__isl_give isl_basic_map *isl_basic_map_normalize_constraints(
	__isl_take isl_basic_map *bmap)
{
	int i;
	isl_int gcd;
	isl_size total = isl_basic_map_dim(bmap, isl_dim_all);
	if (total < 0)
		return isl_basic_map_free(bmap);
	isl_int_init(gcd);
	for (i = bmap->n_eq - 1; i >= 0; --i) {
		isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
		if (isl_int_is_zero(gcd)) {
			if (!isl_int_is_zero(bmap->eq[i][0])) {
				bmap = isl_basic_map_set_to_empty(bmap);
				break;
			}
			if (isl_basic_map_drop_equality(bmap, i) < 0)
				goto error;
			continue;
		}
		if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
			isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
		if (isl_int_is_one(gcd))
			continue;
		if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
			bmap = isl_basic_map_set_to_empty(bmap);
			break;
		}
		isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
	}
	for (i = bmap->n_ineq - 1; i >= 0; --i) {
		isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
		if (isl_int_is_zero(gcd)) {
			if (isl_int_is_neg(bmap->ineq[i][0])) {
				bmap = isl_basic_map_set_to_empty(bmap);
				break;
			}
			if (isl_basic_map_drop_inequality(bmap, i) < 0)
				goto error;
			continue;
		}
		if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
			isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
		if (isl_int_is_one(gcd))
			continue;
		isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
		isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
	}
	isl_int_clear(gcd);
	return bmap;
error:
	isl_int_clear(gcd);
	isl_basic_map_free(bmap);
	return NULL;
}
__isl_give isl_basic_set *isl_basic_set_normalize_constraints(
	__isl_take isl_basic_set *bset)
{
	isl_basic_map *bmap = bset_to_bmap(bset);
	return bset_from_bmap(isl_basic_map_normalize_constraints(bmap));
}
/* Reduce the coefficient of the variable at position "pos"
 * in integer division "div", such that it lies in the half-open
 * interval (1/2,1/2], extracting any excess value from this integer division.
 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
 * corresponds to the constant term.
 *
 * That is, the integer division is of the form
 *
 *	floor((... + (c * d + r) * x_pos + ...)/d)
 *
 * with -d < 2 * r <= d.
 * Replace it by
 *
 *	floor((... + r * x_pos + ...)/d) + c * x_pos
 *
 * If 2 * ((c * d + r) % d) <= d, then c = floor((c * d + r)/d).
 * Otherwise, c = floor((c * d + r)/d) + 1.
 *
 * This is the same normalization that is performed by isl_aff_floor.
 */
static __isl_give isl_basic_map *reduce_coefficient_in_div(
	__isl_take isl_basic_map *bmap, int div, int pos)
{
	isl_int shift;
	int add_one;
	isl_int_init(shift);
	isl_int_fdiv_r(shift, bmap->div[div][1 + pos], bmap->div[div][0]);
	isl_int_mul_ui(shift, shift, 2);
	add_one = isl_int_gt(shift, bmap->div[div][0]);
	isl_int_fdiv_q(shift, bmap->div[div][1 + pos], bmap->div[div][0]);
	if (add_one)
		isl_int_add_ui(shift, shift, 1);
	isl_int_neg(shift, shift);
	bmap = isl_basic_map_shift_div(bmap, div, pos, shift);
	isl_int_clear(shift);
	return bmap;
}
/* Does the coefficient of the variable at position "pos"
 * in integer division "div" need to be reduced?
 * That is, does it lie outside the half-open interval (1/2,1/2]?
 * The coefficient c/d lies outside this interval if abs(2 * c) >= d and
 * 2 * c != d.
 */
static isl_bool needs_reduction(__isl_keep isl_basic_map *bmap, int div,
	int pos)
{
	isl_bool r;
	if (isl_int_is_zero(bmap->div[div][1 + pos]))
		return isl_bool_false;
	isl_int_mul_ui(bmap->div[div][1 + pos], bmap->div[div][1 + pos], 2);
	r = isl_int_abs_ge(bmap->div[div][1 + pos], bmap->div[div][0]) &&
	    !isl_int_eq(bmap->div[div][1 + pos], bmap->div[div][0]);
	isl_int_divexact_ui(bmap->div[div][1 + pos],
			    bmap->div[div][1 + pos], 2);
	return r;
}
/* Reduce the coefficients (including the constant term) of
 * integer division "div", if needed.
 * In particular, make sure all coefficients lie in
 * the half-open interval (1/2,1/2].
 */
static __isl_give isl_basic_map *reduce_div_coefficients_of_div(
	__isl_take isl_basic_map *bmap, int div)
{
	int i;
	isl_size total;
	total = isl_basic_map_dim(bmap, isl_dim_all);
	if (total < 0)
		return isl_basic_map_free(bmap);
	for (i = 0; i < 1 + total; ++i) {
		isl_bool reduce;
		reduce = needs_reduction(bmap, div, i);
		if (reduce < 0)
			return isl_basic_map_free(bmap);
		if (!reduce)
			continue;
		bmap = reduce_coefficient_in_div(bmap, div, i);
		if (!bmap)
			break;
	}
	return bmap;
}
/* Reduce the coefficients (including the constant term) of
 * the known integer divisions, if needed
 * In particular, make sure all coefficients lie in
 * the half-open interval (1/2,1/2].
 */
static __isl_give isl_basic_map *reduce_div_coefficients(
	__isl_take isl_basic_map *bmap)
{
	int i;
	if (!bmap)
		return NULL;
	if (bmap->n_div == 0)
		return bmap;
	for (i = 0; i < bmap->n_div; ++i) {
		if (isl_int_is_zero(bmap->div[i][0]))
			continue;
		bmap = reduce_div_coefficients_of_div(bmap, i);
		if (!bmap)
			break;
	}
	return bmap;
}
/* Remove any common factor in numerator and denominator of the div expression,
 * not taking into account the constant term.
 * That is, if the div is of the form
 *
 *	floor((a + m f(x))/(m d))
 *
 * then replace it by
 *
 *	floor((floor(a/m) + f(x))/d)
 *
 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
 * and can therefore not influence the result of the floor.
 */
static __isl_give isl_basic_map *normalize_div_expression(
	__isl_take isl_basic_map *bmap, int div)
{
	isl_size total = isl_basic_map_dim(bmap, isl_dim_all);
	isl_ctx *ctx = bmap->ctx;
	if (total < 0)
		return isl_basic_map_free(bmap);
	if (isl_int_is_zero(bmap->div[div][0]))
		return bmap;
	isl_seq_gcd(bmap->div[div] + 2, total, &ctx->normalize_gcd);
	isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]);
	if (isl_int_is_one(ctx->normalize_gcd))
		return bmap;
	isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1],
			ctx->normalize_gcd);
	isl_int_divexact(bmap->div[div][0], bmap->div[div][0],
			ctx->normalize_gcd);
	isl_seq_scale_down(bmap->div[div] + 2, bmap->div[div] + 2,
			ctx->normalize_gcd, total);
	return bmap;
}
/* Remove any common factor in numerator and denominator of a div expression,
 * not taking into account the constant term.
 * That is, look for any div of the form
 *
 *	floor((a + m f(x))/(m d))
 *
 * and replace it by
 *
 *	floor((floor(a/m) + f(x))/d)
 *
 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
 * and can therefore not influence the result of the floor.
 */
static __isl_give isl_basic_map *normalize_div_expressions(
	__isl_take isl_basic_map *bmap)
{
	int i;
	if (!bmap)
		return NULL;
	if (bmap->n_div == 0)
		return bmap;
	for (i = 0; i < bmap->n_div; ++i)
		bmap = normalize_div_expression(bmap, i);
	return bmap;
}
/* Assumes divs have been ordered if keep_divs is set.
 */
static __isl_give isl_basic_map *eliminate_var_using_equality(
	__isl_take isl_basic_map *bmap,
	unsigned pos, isl_int *eq, int keep_divs, int *progress)
{
	isl_size total;
	isl_size v_div;
	int k;
	int last_div;
	total = isl_basic_map_dim(bmap, isl_dim_all);
	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
	if (total < 0 || v_div < 0)
		return isl_basic_map_free(bmap);
	last_div = isl_seq_last_non_zero(eq + 1 + v_div, bmap->n_div);
	for (k = 0; k < bmap->n_eq; ++k) {
		if (bmap->eq[k] == eq)
			continue;
		if (isl_int_is_zero(bmap->eq[k][1+pos]))
			continue;
		if (progress)
			*progress = 1;
		isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
		isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total);
	}
	for (k = 0; k < bmap->n_ineq; ++k) {
		if (isl_int_is_zero(bmap->ineq[k][1+pos]))
			continue;
		if (progress)
			*progress = 1;
		isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
		isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total);
		ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
		ISL_F_CLR(bmap, ISL_BASIC_MAP_SORTED);
	}
	for (k = 0; k < bmap->n_div; ++k) {
		if (isl_int_is_zero(bmap->div[k][0]))
			continue;
		if (isl_int_is_zero(bmap->div[k][1+1+pos]))
			continue;
		if (progress)
			*progress = 1;
		/* We need to be careful about circular definitions,
		 * so for now we just remove the definition of div k
		 * if the equality contains any divs.
		 * If keep_divs is set, then the divs have been ordered
		 * and we can keep the definition as long as the result
		 * is still ordered.
		 */
		if (last_div == -1 || (keep_divs && last_div < k)) {
			isl_seq_elim(bmap->div[k]+1, eq,
					1+pos, 1+total, &bmap->div[k][0]);
			bmap = normalize_div_expression(bmap, k);
			if (!bmap)
				return NULL;
		} else
			isl_seq_clr(bmap->div[k], 1 + total);
	}
	return bmap;
}
/* Assumes divs have been ordered if keep_divs is set.
 */
static __isl_give isl_basic_map *eliminate_div(__isl_take isl_basic_map *bmap,
	isl_int *eq, unsigned div, int keep_divs)
{
	isl_size v_div;
	unsigned pos;
	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
	if (v_div < 0)
		return isl_basic_map_free(bmap);
	pos = v_div + div;
	bmap = eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
	bmap = isl_basic_map_drop_div(bmap, div);
	return bmap;
}
/* Check if elimination of div "div" using equality "eq" would not
 * result in a div depending on a later div.
 */
static isl_bool ok_to_eliminate_div(__isl_keep isl_basic_map *bmap, isl_int *eq,
	unsigned div)
{
	int k;
	int last_div;
	isl_size v_div;
	unsigned pos;
	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
	if (v_div < 0)
		return isl_bool_error;
	pos = v_div + div;
	last_div = isl_seq_last_non_zero(eq + 1 + v_div, bmap->n_div);
	if (last_div < 0 || last_div <= div)
		return isl_bool_true;
	for (k = 0; k <= last_div; ++k) {
		if (isl_int_is_zero(bmap->div[k][0]))
			continue;
		if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
			return isl_bool_false;
	}
	return isl_bool_true;
}
/* Eliminate divs based on equalities
 */
static __isl_give isl_basic_map *eliminate_divs_eq(
	__isl_take isl_basic_map *bmap, int *progress)
{
	int d;
	int i;
	int modified = 0;
	unsigned off;
	bmap = isl_basic_map_order_divs(bmap);
	if (!bmap)
		return NULL;
	off = isl_basic_map_offset(bmap, isl_dim_div);
	for (d = bmap->n_div - 1; d >= 0 ; --d) {
		for (i = 0; i < bmap->n_eq; ++i) {
			isl_bool ok;
			if (!isl_int_is_one(bmap->eq[i][off + d]) &&
			    !isl_int_is_negone(bmap->eq[i][off + d]))
				continue;
			ok = ok_to_eliminate_div(bmap, bmap->eq[i], d);
			if (ok < 0)
				return isl_basic_map_free(bmap);
			if (!ok)
				continue;
			modified = 1;
			*progress = 1;
			bmap = eliminate_div(bmap, bmap->eq[i], d, 1);
			if (isl_basic_map_drop_equality(bmap, i) < 0)
				return isl_basic_map_free(bmap);
			break;
		}
	}
	if (modified)
		return eliminate_divs_eq(bmap, progress);
	return bmap;
}
/* Eliminate divs based on inequalities
 */
static __isl_give isl_basic_map *eliminate_divs_ineq(
	__isl_take isl_basic_map *bmap, int *progress)
{
	int d;
	int i;
	unsigned off;
	struct isl_ctx *ctx;
	if (!bmap)
		return NULL;
	ctx = bmap->ctx;
	off = isl_basic_map_offset(bmap, isl_dim_div);
	for (d = bmap->n_div - 1; d >= 0 ; --d) {
		for (i = 0; i < bmap->n_eq; ++i)
			if (!isl_int_is_zero(bmap->eq[i][off + d]))
				break;
		if (i < bmap->n_eq)
			continue;
		for (i = 0; i < bmap->n_ineq; ++i)
			if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
				break;
		if (i < bmap->n_ineq)
			continue;
		*progress = 1;
		bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
		if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
			break;
		bmap = isl_basic_map_drop_div(bmap, d);
		if (!bmap)
			break;
	}
	return bmap;
}
/* Does the equality constraint at position "eq" in "bmap" involve
 * any local variables in the range [first, first + n)
 * that are not marked as having an explicit representation?
 */
static isl_bool bmap_eq_involves_unknown_divs(__isl_keep isl_basic_map *bmap,
	int eq, unsigned first, unsigned n)
{
	unsigned o_div;
	int i;
	if (!bmap)
		return isl_bool_error;
	o_div = isl_basic_map_offset(bmap, isl_dim_div);
	for (i = 0; i < n; ++i) {
		isl_bool unknown;
		if (isl_int_is_zero(bmap->eq[eq][o_div + first + i]))
			continue;
		unknown = isl_basic_map_div_is_marked_unknown(bmap, first + i);
		if (unknown < 0)
			return isl_bool_error;
		if (unknown)
			return isl_bool_true;
	}
	return isl_bool_false;
}
/* The last local variable involved in the equality constraint
 * at position "eq" in "bmap" is the local variable at position "div".
 * It can therefore be used to extract an explicit representation
 * for that variable.
 * Do so unless the local variable already has an explicit representation or
 * the explicit representation would involve any other local variables
 * that in turn do not have an explicit representation.
 * An equality constraint involving local variables without an explicit
 * representation can be used in isl_basic_map_drop_redundant_divs
 * to separate out an independent local variable.  Introducing
 * an explicit representation here would block this transformation,
 * while the partial explicit representation in itself is not very useful.
 * Set *progress if anything is changed.
 *
 * The equality constraint is of the form
 *
 *	f(x) + n e >= 0
 *
 * with n a positive number.  The explicit representation derived from
 * this constraint is
 *
 *	floor((-f(x))/n)
 */
static __isl_give isl_basic_map *set_div_from_eq(__isl_take isl_basic_map *bmap,
	int div, int eq, int *progress)
{
	isl_size total;
	unsigned o_div;
	isl_bool involves;
	if (!bmap)
		return NULL;
	if (!isl_int_is_zero(bmap->div[div][0]))
		return bmap;
	involves = bmap_eq_involves_unknown_divs(bmap, eq, 0, div);
	if (involves < 0)
		return isl_basic_map_free(bmap);
	if (involves)
		return bmap;
	total = isl_basic_map_dim(bmap, isl_dim_all);
	if (total < 0)
		return isl_basic_map_free(bmap);
	o_div = isl_basic_map_offset(bmap, isl_dim_div);
	isl_seq_neg(bmap->div[div] + 1, bmap->eq[eq], 1 + total);
	isl_int_set_si(bmap->div[div][1 + o_div + div], 0);
	isl_int_set(bmap->div[div][0], bmap->eq[eq][o_div + div]);
	if (progress)
		*progress = 1;
	return bmap;
}
/* Perform fangcheng (Gaussian elimination) on the equality
 * constraints of "bmap".
 * That is, put them into row-echelon form, starting from the last column
 * backward and use them to eliminate the corresponding coefficients
 * from all constraints.
 *
 * If "progress" is not NULL, then it gets set if the elimination
 * results in any changes.
 * The elimination process may result in some equality constraints
 * getting interchanged or removed.
 * If "swap" or "drop" are not NULL, then they get called when
 * two equality constraints get interchanged or
 * when a number of final equality constraints get removed.
 * As a special case, if the input turns out to be empty,
 * then drop gets called with the number of removed equality
 * constraints set to the total number of equality constraints.
 * If "swap" or "drop" are not NULL, then the local variables (if any)
 * are assumed to be in a valid order.
 */
__isl_give isl_basic_map *isl_basic_map_gauss5(__isl_take isl_basic_map *bmap,
	int *progress,
	isl_stat (*swap)(unsigned a, unsigned b, void *user),
	isl_stat (*drop)(unsigned n, void *user), void *user)
{
	int k;
	int done;
	int last_var;
	unsigned total_var;
	isl_size total;
	unsigned n_drop;
	if (!swap && !drop)
		bmap = isl_basic_map_order_divs(bmap);
	total = isl_basic_map_dim(bmap, isl_dim_all);
	if (total < 0)
		return isl_basic_map_free(bmap);
	total_var = total - bmap->n_div;
	last_var = total - 1;
	for (done = 0; done < bmap->n_eq; ++done) {
		for (; last_var >= 0; --last_var) {
			for (k = done; k < bmap->n_eq; ++k)
				if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
					break;
			if (k < bmap->n_eq)
				break;
		}
		if (last_var < 0)
			break;
		if (k != done) {
			swap_equality(bmap, k, done);
			if (swap && swap(k, done, user) < 0)
				return isl_basic_map_free(bmap);
		}
		if (isl_int_is_neg(bmap->eq[done][1+last_var]))
			isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
		bmap = eliminate_var_using_equality(bmap, last_var,
						bmap->eq[done], 1, progress);
		if (last_var >= total_var)
			bmap = set_div_from_eq(bmap, last_var - total_var,
						done, progress);
		if (!bmap)
			return NULL;
	}
	if (done == bmap->n_eq)
		return bmap;
	for (k = done; k < bmap->n_eq; ++k) {
		if (isl_int_is_zero(bmap->eq[k][0]))
			continue;
		if (drop && drop(bmap->n_eq, user) < 0)
			return isl_basic_map_free(bmap);
		return isl_basic_map_set_to_empty(bmap);
	}
	n_drop = bmap->n_eq - done;
	bmap = isl_basic_map_free_equality(bmap, n_drop);
	if (drop && drop(n_drop, user) < 0)
		return isl_basic_map_free(bmap);
	return bmap;
}
__isl_give isl_basic_map *isl_basic_map_gauss(__isl_take isl_basic_map *bmap,
	int *progress)
{
	return isl_basic_map_gauss5(bmap, progress, NULL, NULL, NULL);
}
__isl_give isl_basic_set *isl_basic_set_gauss(
	__isl_take isl_basic_set *bset, int *progress)
{
	return bset_from_bmap(isl_basic_map_gauss(bset_to_bmap(bset),
							progress));
}
static unsigned int round_up(unsigned int v)
{
	int old_v = v;
	while (v) {
		old_v = v;
		v ^= v & -v;
	}
	return old_v << 1;
}
/* Hash table of inequalities in a basic map.
 * "index" is an array of addresses of inequalities in the basic map, some
 * of which are NULL.  The inequalities are hashed on the coefficients
 * except the constant term.
 * "size" is the number of elements in the array and is always a power of two
 * "bits" is the number of bits need to represent an index into the array.
 * "total" is the total dimension of the basic map.
 */
struct isl_constraint_index {
	unsigned int size;
	int bits;
	isl_int ***index;
	isl_size total;
};
/* Fill in the "ci" data structure for holding the inequalities of "bmap".
 */
static isl_stat create_constraint_index(struct isl_constraint_index *ci,
	__isl_keep isl_basic_map *bmap)
{
	isl_ctx *ctx;
	ci->index = NULL;
	if (!bmap)
		return isl_stat_error;
	ci->total = isl_basic_map_dim(bmap, isl_dim_all);
	if (ci->total < 0)
		return isl_stat_error;
	if (bmap->n_ineq == 0)
		return isl_stat_ok;
	ci->size = round_up(4 * (bmap->n_ineq + 1) / 3 - 1);
	ci->bits = ffs(ci->size) - 1;
	ctx = isl_basic_map_get_ctx(bmap);
	ci->index = isl_calloc_array(ctx, isl_int **, ci->size);
	if (!ci->index)
		return isl_stat_error;
	return isl_stat_ok;
}
/* Free the memory allocated by create_constraint_index.
 */
static void constraint_index_free(struct isl_constraint_index *ci)
{
	free(ci->index);
}
/* Return the position in ci->index that contains the address of
 * an inequality that is equal to *ineq up to the constant term,
 * provided this address is not identical to "ineq".
 * If there is no such inequality, then return the position where
 * such an inequality should be inserted.
 */
static int hash_index_ineq(struct isl_constraint_index *ci, isl_int **ineq)
{
	int h;
	uint32_t hash = isl_seq_get_hash_bits((*ineq) + 1, ci->total, ci->bits);
	for (h = hash; ci->index[h]; h = (h+1) % ci->size)
		if (ineq != ci->index[h] &&
		    isl_seq_eq((*ineq) + 1, ci->index[h][0]+1, ci->total))
			break;
	return h;
}
/* Return the position in ci->index that contains the address of
 * an inequality that is equal to the k'th inequality of "bmap"
 * up to the constant term, provided it does not point to the very
 * same inequality.
 * If there is no such inequality, then return the position where
 * such an inequality should be inserted.
 */
static int hash_index(struct isl_constraint_index *ci,
	__isl_keep isl_basic_map *bmap, int k)
{
	return hash_index_ineq(ci, &bmap->ineq[k]);
}
static int set_hash_index(struct isl_constraint_index *ci,
	__isl_keep isl_basic_set *bset, int k)
{
	return hash_index(ci, bset, k);
}
/* Fill in the "ci" data structure with the inequalities of "bset".
 */
static isl_stat setup_constraint_index(struct isl_constraint_index *ci,
	__isl_keep isl_basic_set *bset)
{
	int k, h;
	if (create_constraint_index(ci, bset) < 0)
		return isl_stat_error;
	for (k = 0; k < bset->n_ineq; ++k) {
		h = set_hash_index(ci, bset, k);
		ci->index[h] = &bset->ineq[k];
	}
	return isl_stat_ok;
}
/* Is the inequality ineq (obviously) redundant with respect
 * to the constraints in "ci"?
 *
 * Look for an inequality in "ci" with the same coefficients and then
 * check if the contant term of "ineq" is greater than or equal
 * to the constant term of that inequality.  If so, "ineq" is clearly
 * redundant.
 *
 * Note that hash_index_ineq ignores a stored constraint if it has
 * the same address as the passed inequality.  It is ok to pass
 * the address of a local variable here since it will never be
 * the same as the address of a constraint in "ci".
 */
static isl_bool constraint_index_is_redundant(struct isl_constraint_index *ci,
	isl_int *ineq)
{
	int h;
	h = hash_index_ineq(ci, &ineq);
	if (!ci->index[h])
		return isl_bool_false;
	return isl_int_ge(ineq[0], (*ci->index[h])[0]);
}
/* If we can eliminate more than one div, then we need to make
 * sure we do it from last div to first div, in order not to
 * change the position of the other divs that still need to
 * be removed.
 */
static __isl_give isl_basic_map *remove_duplicate_divs(
	__isl_take isl_basic_map *bmap, int *progress)
{
	unsigned int size;
	int *index;
	int *elim_for;
	int k, l, h;
	int bits;
	struct isl_blk eq;
	isl_size v_div;
	unsigned total;
	struct isl_ctx *ctx;
	bmap = isl_basic_map_order_divs(bmap);
	if (!bmap || bmap->n_div <= 1)
		return bmap;
	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
	if (v_div < 0)
		return isl_basic_map_free(bmap);
	total = v_div + bmap->n_div;
	ctx = bmap->ctx;
	for (k = bmap->n_div - 1; k >= 0; --k)
		if (!isl_int_is_zero(bmap->div[k][0]))
			break;
	if (k <= 0)
		return bmap;
	size = round_up(4 * bmap->n_div / 3 - 1);
	if (size == 0)
		return bmap;
	elim_for = isl_calloc_array(ctx, int, bmap->n_div);
	bits = ffs(size) - 1;
	index = isl_calloc_array(ctx, int, size);
	if (!elim_for || !index)
		goto out;
	eq = isl_blk_alloc(ctx, 1+total);
	if (isl_blk_is_error(eq))
		goto out;
	isl_seq_clr(eq.data, 1+total);
	index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
	for (--k; k >= 0; --k) {
		uint32_t hash;
		if (isl_int_is_zero(bmap->div[k][0]))
			continue;
		hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
		for (h = hash; index[h]; h = (h+1) % size)
			if (isl_seq_eq(bmap->div[k],
				       bmap->div[index[h]-1], 2+total))
				break;
		if (index[h]) {
			*progress = 1;
			l = index[h] - 1;
			elim_for[l] = k + 1;
		}
		index[h] = k+1;
	}
	for (l = bmap->n_div - 1; l >= 0; --l) {
		if (!elim_for[l])
			continue;
		k = elim_for[l] - 1;
		isl_int_set_si(eq.data[1 + v_div + k], -1);
		isl_int_set_si(eq.data[1 + v_div + l], 1);
		bmap = eliminate_div(bmap, eq.data, l, 1);
		if (!bmap)
			break;
		isl_int_set_si(eq.data[1 + v_div + k], 0);
		isl_int_set_si(eq.data[1 + v_div + l], 0);
	}
	isl_blk_free(ctx, eq);
out:
	free(index);
	free(elim_for);
	return bmap;
}
static int n_pure_div_eq(__isl_keep isl_basic_map *bmap)
{
	int i, j;
	isl_size v_div;
	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
	if (v_div < 0)
		return -1;
	for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
		while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + v_div + j]))
			--j;
		if (j < 0)
			break;
		if (isl_seq_first_non_zero(bmap->eq[i] + 1 + v_div, j) != -1)
			return 0;
	}
	return i;
}
/* Normalize divs that appear in equalities.
 *
 * In particular, we assume that bmap contains some equalities
 * of the form
 *
 *	a x = m * e_i
 *
 * and we want to replace the set of e_i by a minimal set and
 * such that the new e_i have a canonical representation in terms
 * of the vector x.
 * If any of the equalities involves more than one divs, then
 * we currently simply bail out.
 *
 * Let us first additionally assume that all equalities involve
 * a div.  The equalities then express modulo constraints on the
 * remaining variables and we can use "parameter compression"
 * to find a minimal set of constraints.  The result is a transformation
 *
 *	x = T(x') = x_0 + G x'
 *
 * with G a lower-triangular matrix with all elements below the diagonal
 * non-negative and smaller than the diagonal element on the same row.
 * We first normalize x_0 by making the same property hold in the affine
 * T matrix.
 * The rows i of G with a 1 on the diagonal do not impose any modulo
 * constraint and simply express x_i = x'_i.
 * For each of the remaining rows i, we introduce a div and a corresponding
 * equality.  In particular
 *
 *	g_ii e_j = x_i - g_i(x')
 *
 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
 * corresponding div (if g_kk != 1).
 *
 * If there are any equalities not involving any div, then we
 * first apply a variable compression on the variables x:
 *
 *	x = C x''	x'' = C_2 x
 *
 * and perform the above parameter compression on A C instead of on A.
 * The resulting compression is then of the form
 *
 *	x'' = T(x') = x_0 + G x'
 *
 * and in constructing the new divs and the corresponding equalities,
 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
 * by the corresponding row from C_2.
 */
static __isl_give isl_basic_map *normalize_divs(__isl_take isl_basic_map *bmap,
	int *progress)
{
	int i, j, k;
	isl_size v_div;
	int div_eq;
	struct isl_mat *B;
	struct isl_vec *d;
	struct isl_mat *T = NULL;
	struct isl_mat *C = NULL;
	struct isl_mat *C2 = NULL;
	isl_int v;
	int *pos = NULL;
	int dropped, needed;
	if (!bmap)
		return NULL;
	if (bmap->n_div == 0)
		return bmap;
	if (bmap->n_eq == 0)
		return bmap;
	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
		return bmap;
	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
	div_eq = n_pure_div_eq(bmap);
	if (v_div < 0 || div_eq < 0)
		return isl_basic_map_free(bmap);
	if (div_eq == 0)
		return bmap;
	if (div_eq < bmap->n_eq) {
		B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq,
					bmap->n_eq - div_eq, 0, 1 + v_div);
		C = isl_mat_variable_compression(B, &C2);
		if (!C || !C2)
			goto error;
		if (C->n_col == 0) {
			bmap = isl_basic_map_set_to_empty(bmap);
			isl_mat_free(C);
			isl_mat_free(C2);
			goto done;
		}
	}
	d = isl_vec_alloc(bmap->ctx, div_eq);
	if (!d)
		goto error;
	for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
		while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + v_div + j]))
			--j;
		isl_int_set(d->block.data[i], bmap->eq[i][1 + v_div + j]);
	}
	B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + v_div);
	if (C) {
		B = isl_mat_product(B, C);
		C = NULL;
	}
	T = isl_mat_parameter_compression(B, d);
	if (!T)
		goto error;
	if (T->n_col == 0) {
		bmap = isl_basic_map_set_to_empty(bmap);
		isl_mat_free(C2);
		isl_mat_free(T);
		goto done;
	}
	isl_int_init(v);
	for (i = 0; i < T->n_row - 1; ++i) {
		isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
		if (isl_int_is_zero(v))
			continue;
		isl_mat_col_submul(T, 0, v, 1 + i);
	}
	isl_int_clear(v);
	pos = isl_alloc_array(bmap->ctx, int, T->n_row);
	if (!pos)
		goto error;
	/* We have to be careful because dropping equalities may reorder them */
	dropped = 0;
	for (j = bmap->n_div - 1; j >= 0; --j) {
		for (i = 0; i < bmap->n_eq; ++i)
			if (!isl_int_is_zero(bmap->eq[i][1 + v_div + j]))
				break;
		if (i < bmap->n_eq) {
			bmap = isl_basic_map_drop_div(bmap, j);
			if (isl_basic_map_drop_equality(bmap, i) < 0)
				goto error;
			++dropped;
		}
	}
	pos[0] = 0;
	needed = 0;
	for (i = 1; i < T->n_row; ++i) {
		if (isl_int_is_one(T->row[i][i]))
			pos[i] = i;
		else
			needed++;
	}
	if (needed > dropped) {
		bmap = isl_basic_map_extend(bmap, needed, needed, 0);
		if (!bmap)
			goto error;
	}
	for (i = 1; i < T->n_row; ++i) {
		if (isl_int_is_one(T->row[i][i]))
			continue;
		k = isl_basic_map_alloc_div(bmap);
		pos[i] = 1 + v_div + k;
		isl_seq_clr(bmap->div[k] + 1, 1 + v_div + bmap->n_div);
		isl_int_set(bmap->div[k][0], T->row[i][i]);
		if (C2)
			isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + v_div);
		else
			isl_int_set_si(bmap->div[k][1 + i], 1);
		for (j = 0; j < i; ++j) {
			if (isl_int_is_zero(T->row[i][j]))
				continue;
			if (pos[j] < T->n_row && C2)
				isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
						C2->row[pos[j]], 1 + v_div);
			else
				isl_int_neg(bmap->div[k][1 + pos[j]],
								T->row[i][j]);
		}
		j = isl_basic_map_alloc_equality(bmap);
		isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+v_div+bmap->n_div);
		isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
	}
	free(pos);
	isl_mat_free(C2);
	isl_mat_free(T);
	if (progress)
		*progress = 1;
done:
	ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
	return bmap;
error:
	free(pos);
	isl_mat_free(C);
	isl_mat_free(C2);
	isl_mat_free(T);
	isl_basic_map_free(bmap);
	return NULL;
}
static __isl_give isl_basic_map *set_div_from_lower_bound(
	__isl_take isl_basic_map *bmap, int div, int ineq)
{
	unsigned total = isl_basic_map_offset(bmap, isl_dim_div);
	isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
	isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
	isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
	isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
	isl_int_set_si(bmap->div[div][1 + total + div], 0);
	return bmap;
}
/* Check whether it is ok to define a div based on an inequality.
 * To avoid the introduction of circular definitions of divs, we
 * do not allow such a definition if the resulting expression would refer to
 * any other undefined divs or if any known div is defined in
 * terms of the unknown div.
 */
static isl_bool ok_to_set_div_from_bound(__isl_keep isl_basic_map *bmap,
	int div, int ineq)
{
	int j;
	unsigned total = isl_basic_map_offset(bmap, isl_dim_div);
	/* Not defined in terms of unknown divs */
	for (j = 0; j < bmap->n_div; ++j) {
		if (div == j)
			continue;
		if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
			continue;
		if (isl_int_is_zero(bmap->div[j][0]))
			return isl_bool_false;
	}
	/* No other div defined in terms of this one => avoid loops */
	for (j = 0; j < bmap->n_div; ++j) {
		if (div == j)
			continue;
		if (isl_int_is_zero(bmap->div[j][0]))
			continue;
		if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
			return isl_bool_false;
	}
	return isl_bool_true;
}
/* Would an expression for div "div" based on inequality "ineq" of "bmap"
 * be a better expression than the current one?
 *
 * If we do not have any expression yet, then any expression would be better.
 * Otherwise we check if the last variable involved in the inequality
 * (disregarding the div that it would define) is in an earlier position
 * than the last variable involved in the current div expression.
 */
static isl_bool better_div_constraint(__isl_keep isl_basic_map *bmap,
	int div, int ineq)
{
	unsigned total = isl_basic_map_offset(bmap, isl_dim_div);
	int last_div;
	int last_ineq;
	if (isl_int_is_zero(bmap->div[div][0]))
		return isl_bool_true;
	if (isl_seq_last_non_zero(bmap->ineq[ineq] + total + div + 1,
				  bmap->n_div - (div + 1)) >= 0)
		return isl_bool_false;
	last_ineq = isl_seq_last_non_zero(bmap->ineq[ineq], total + div);
	last_div = isl_seq_last_non_zero(bmap->div[div] + 1,
					 total + bmap->n_div);
	return last_ineq < last_div;
}
/* Given two constraints "k" and "l" that are opposite to each other,
 * except for the constant term, check if we can use them
 * to obtain an expression for one of the hitherto unknown divs or
 * a "better" expression for a div for which we already have an expression.
 * "sum" is the sum of the constant terms of the constraints.
 * If this sum is strictly smaller than the coefficient of one
 * of the divs, then this pair can be used define the div.
 * To avoid the introduction of circular definitions of divs, we
 * do not use the pair if the resulting expression would refer to
 * any other undefined divs or if any known div is defined in
 * terms of the unknown div.
 */
static __isl_give isl_basic_map *check_for_div_constraints(
	__isl_take isl_basic_map *bmap, int k, int l, isl_int sum,
	int *progress)
{
	int i;
	unsigned total = isl_basic_map_offset(bmap, isl_dim_div);
	for (i = 0; i < bmap->n_div; ++i) {
		isl_bool set_div;
		if (isl_int_is_zero(bmap->ineq[k][total + i]))
			continue;
		if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
			continue;
		set_div = better_div_constraint(bmap, i, k);
		if (set_div >= 0 && set_div)
			set_div = ok_to_set_div_from_bound(bmap, i, k);
		if (set_div < 0)
			return isl_basic_map_free(bmap);
		if (!set_div)
			break;
		if (isl_int_is_pos(bmap->ineq[k][total + i]))
			bmap = set_div_from_lower_bound(bmap, i, k);
		else
			bmap = set_div_from_lower_bound(bmap, i, l);
		if (progress)
			*progress = 1;
		break;
	}
	return bmap;
}
__isl_give isl_basic_map *isl_basic_map_remove_duplicate_constraints(
	__isl_take isl_basic_map *bmap, int *progress, int detect_divs)
{
	struct isl_constraint_index ci;
	int k, l, h;
	isl_size total = isl_basic_map_dim(bmap, isl_dim_all);
	isl_int sum;
	if (total < 0 || bmap->n_ineq <= 1)
		return bmap;
	if (create_constraint_index(&ci, bmap) < 0)
		return bmap;
	h = isl_seq_get_hash_bits(bmap->ineq[0] + 1, total, ci.bits);
	ci.index[h] = &bmap->ineq[0];
	for (k = 1; k < bmap->n_ineq; ++k) {
		h = hash_index(&ci, bmap, k);
		if (!ci.index[h]) {
			ci.index[h] = &bmap->ineq[k];
			continue;
		}
		if (progress)
			*progress = 1;
		l = ci.index[h] - &bmap->ineq[0];
		if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
			swap_inequality(bmap, k, l);
		isl_basic_map_drop_inequality(bmap, k);
		--k;
	}
	isl_int_init(sum);
	for (k = 0; bmap && k < bmap->n_ineq-1; ++k) {
		isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
		h = hash_index(&ci, bmap, k);
		isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
		if (!ci.index[h])
			continue;
		l = ci.index[h] - &bmap->ineq[0];
		isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
		if (isl_int_is_pos(sum)) {
			if (detect_divs)
				bmap = check_for_div_constraints(bmap, k, l,
								 sum, progress);
			continue;
		}
		if (isl_int_is_zero(sum)) {
			/* We need to break out of the loop after these
			 * changes since the contents of the hash
			 * will no longer be valid.
			 * Plus, we probably we want to regauss first.
			 */
			if (progress)
				*progress = 1;
			isl_basic_map_drop_inequality(bmap, l);
			isl_basic_map_inequality_to_equality(bmap, k);
		} else
			bmap = isl_basic_map_set_to_empty(bmap);
		break;
	}
	isl_int_clear(sum);
	constraint_index_free(&ci);
	return bmap;
}
/* Detect all pairs of inequalities that form an equality.
 *
 * isl_basic_map_remove_duplicate_constraints detects at most one such pair.
 * Call it repeatedly while it is making progress.
 */
__isl_give isl_basic_map *isl_basic_map_detect_inequality_pairs(
	__isl_take isl_basic_map *bmap, int *progress)
{
	int duplicate;
	do {
		duplicate = 0;
		bmap = isl_basic_map_remove_duplicate_constraints(bmap,
								&duplicate, 0);
		if (progress && duplicate)
			*progress = 1;
	} while (duplicate);
	return bmap;
}
/* Given a known integer division "div" that is not integral
 * (with denominator 1), eliminate it from the constraints in "bmap"
 * where it appears with a (positive or negative) unit coefficient.
 * If "progress" is not NULL, then it gets set if the elimination
 * results in any changes.
 *
 * That is, replace
 *
 *	floor(e/m) + f >= 0
 *
 * by
 *
 *	e + m f >= 0
 *
 * and
 *
 *	-floor(e/m) + f >= 0
 *
 * by
 *
 *	-e + m f + m - 1 >= 0
 *
 * The first conversion is valid because floor(e/m) >= -f is equivalent
 * to e/m >= -f because -f is an integral expression.
 * The second conversion follows from the fact that
 *
 *	-floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
 *
 *
 * Note that one of the div constraints may have been eliminated
 * due to being redundant with respect to the constraint that is
 * being modified by this function.  The modified constraint may
 * no longer imply this div constraint, so we add it back to make
 * sure we do not lose any information.
 */
static __isl_give isl_basic_map *eliminate_unit_div(
	__isl_take isl_basic_map *bmap, int div, int *progress)
{
	int j;
	isl_size v_div, dim;
	isl_ctx *ctx;
	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
	dim = isl_basic_map_dim(bmap, isl_dim_all);
	if (v_div < 0 || dim < 0)
		return isl_basic_map_free(bmap);
	ctx = isl_basic_map_get_ctx(bmap);
	for (j = 0; j < bmap->n_ineq; ++j) {
		int s;
		if (!isl_int_is_one(bmap->ineq[j][1 + v_div + div]) &&
		    !isl_int_is_negone(bmap->ineq[j][1 + v_div + div]))
			continue;
		if (progress)
			*progress = 1;
		s = isl_int_sgn(bmap->ineq[j][1 + v_div + div]);
		isl_int_set_si(bmap->ineq[j][1 + v_div + div], 0);
		if (s < 0)
			isl_seq_combine(bmap->ineq[j],
				ctx->negone, bmap->div[div] + 1,
				bmap->div[div][0], bmap->ineq[j], 1 + dim);
		else
			isl_seq_combine(bmap->ineq[j],
				ctx->one, bmap->div[div] + 1,
				bmap->div[div][0], bmap->ineq[j], 1 + dim);
		if (s < 0) {
			isl_int_add(bmap->ineq[j][0],
				bmap->ineq[j][0], bmap->div[div][0]);
			isl_int_sub_ui(bmap->ineq[j][0],
				bmap->ineq[j][0], 1);
		}
		bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
		bmap = isl_basic_map_add_div_constraint(bmap, div, s);
		if (!bmap)
			return NULL;
	}
	return bmap;
}
/* Eliminate selected known divs from constraints where they appear with
 * a (positive or negative) unit coefficient.
 * In particular, only handle those for which "select" returns isl_bool_true.
 * If "progress" is not NULL, then it gets set if the elimination
 * results in any changes.
 *
 * We skip integral divs, i.e., those with denominator 1, as we would
 * risk eliminating the div from the div constraints.  We do not need
 * to handle those divs here anyway since the div constraints will turn
 * out to form an equality and this equality can then be used to eliminate
 * the div from all constraints.
 */
static __isl_give isl_basic_map *eliminate_selected_unit_divs(
	__isl_take isl_basic_map *bmap,
	isl_bool (*select)(__isl_keep isl_basic_map *bmap, int div),
	int *progress)
{
	int i;
	if (!bmap)
		return NULL;
	for (i = 0; i < bmap->n_div; ++i) {
		isl_bool selected;
		if (isl_int_is_zero(bmap->div[i][0]))
			continue;
		if (isl_int_is_one(bmap->div[i][0]))
			continue;
		selected = select(bmap, i);
		if (selected < 0)
			return isl_basic_map_free(bmap);
		if (!selected)
			continue;
		bmap = eliminate_unit_div(bmap, i, progress);
		if (!bmap)
			return NULL;
	}
	return bmap;
}
/* eliminate_selected_unit_divs callback that selects every
 * integer division.
 */
static isl_bool is_any_div(__isl_keep isl_basic_map *bmap, int div)
{
	return isl_bool_true;
}
/* Eliminate known divs from constraints where they appear with
 * a (positive or negative) unit coefficient.
 * If "progress" is not NULL, then it gets set if the elimination
 * results in any changes.
 */
static __isl_give isl_basic_map *eliminate_unit_divs(
	__isl_take isl_basic_map *bmap, int *progress)
{
	return eliminate_selected_unit_divs(bmap, &is_any_div, progress);
}
/* eliminate_selected_unit_divs callback that selects
 * integer divisions that only appear with
 * a (positive or negative) unit coefficient
 * (outside their div constraints).
 */
static isl_bool is_pure_unit_div(__isl_keep isl_basic_map *bmap, int div)
{
	int i;
	isl_size v_div, n_ineq;
	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
	n_ineq = isl_basic_map_n_inequality(bmap);
	if (v_div < 0 || n_ineq < 0)
		return isl_bool_error;
	for (i = 0; i < n_ineq; ++i) {
		isl_bool skip;
		if (isl_int_is_zero(bmap->ineq[i][1 + v_div + div]))
			continue;
		skip = isl_basic_map_is_div_constraint(bmap,
							bmap->ineq[i], div);
		if (skip < 0)
			return isl_bool_error;
		if (skip)
			continue;
		if (!isl_int_is_one(bmap->ineq[i][1 + v_div + div]) &&
		    !isl_int_is_negone(bmap->ineq[i][1 + v_div + div]))
			return isl_bool_false;
	}
	return isl_bool_true;
}
/* Eliminate known divs from constraints where they appear with
 * a (positive or negative) unit coefficient,
 * but only if they do not appear in any other constraints
 * (other than the div constraints).
 */
__isl_give isl_basic_map *isl_basic_map_eliminate_pure_unit_divs(
	__isl_take isl_basic_map *bmap)
{
	return eliminate_selected_unit_divs(bmap, &is_pure_unit_div, NULL);
}
__isl_give isl_basic_map *isl_basic_map_simplify(__isl_take isl_basic_map *bmap)
{
	int progress = 1;
	if (!bmap)
		return NULL;
	while (progress) {
		isl_bool empty;
		progress = 0;
		empty = isl_basic_map_plain_is_empty(bmap);
		if (empty < 0)
			return isl_basic_map_free(bmap);
		if (empty)
			break;
		bmap = isl_basic_map_normalize_constraints(bmap);
		bmap = reduce_div_coefficients(bmap);
		bmap = normalize_div_expressions(bmap);
		bmap = remove_duplicate_divs(bmap, &progress);
		bmap = eliminate_unit_divs(bmap, &progress);
		bmap = eliminate_divs_eq(bmap, &progress);
		bmap = eliminate_divs_ineq(bmap, &progress);
		bmap = isl_basic_map_gauss(bmap, &progress);
		/* requires equalities in normal form */
		bmap = normalize_divs(bmap, &progress);
		bmap = isl_basic_map_remove_duplicate_constraints(bmap,
								&progress, 1);
		if (bmap && progress)
			ISL_F_CLR(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
	}
	return bmap;
}
__isl_give isl_basic_set *isl_basic_set_simplify(
	__isl_take isl_basic_set *bset)
{
	return bset_from_bmap(isl_basic_map_simplify(bset_to_bmap(bset)));
}
isl_bool isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
	isl_int *constraint, unsigned div)
{
	unsigned pos;
	if (!bmap)
		return isl_bool_error;
	pos = isl_basic_map_offset(bmap, isl_dim_div) + div;
	if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
		int neg;
		isl_int_sub(bmap->div[div][1],
				bmap->div[div][1], bmap->div[div][0]);
		isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
		neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
		isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
		isl_int_add(bmap->div[div][1],
				bmap->div[div][1], bmap->div[div][0]);
		if (!neg)
			return isl_bool_false;
		if (isl_seq_first_non_zero(constraint+pos+1,
					    bmap->n_div-div-1) != -1)
			return isl_bool_false;
	} else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
		if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
			return isl_bool_false;
		if (isl_seq_first_non_zero(constraint+pos+1,
					    bmap->n_div-div-1) != -1)
			return isl_bool_false;
	} else
		return isl_bool_false;
	return isl_bool_true;
}
/* If the only constraints a div d=floor(f/m)
 * appears in are its two defining constraints
 *
 *	f - m d >=0
 *	-(f - (m - 1)) + m d >= 0
 *
 * then it can safely be removed.
 */
static isl_bool div_is_redundant(__isl_keep isl_basic_map *bmap, int div)
{
	int i;
	isl_size v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
	unsigned pos = 1 + v_div + div;
	if (v_div < 0)
		return isl_bool_error;
	for (i = 0; i < bmap->n_eq; ++i)
		if (!isl_int_is_zero(bmap->eq[i][pos]))
			return isl_bool_false;
	for (i = 0; i < bmap->n_ineq; ++i) {
		isl_bool red;
		if (isl_int_is_zero(bmap->ineq[i][pos]))
			continue;
		red = isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div);
		if (red < 0 || !red)
			return red;
	}
	for (i = 0; i < bmap->n_div; ++i) {
		if (isl_int_is_zero(bmap->div[i][0]))
			continue;
		if (!isl_int_is_zero(bmap->div[i][1+pos]))
			return isl_bool_false;
	}
	return isl_bool_true;
}
/*
 * Remove divs that don't occur in any of the constraints or other divs.
 * These can arise when dropping constraints from a basic map or
 * when the divs of a basic map have been temporarily aligned
 * with the divs of another basic map.
 */
static __isl_give isl_basic_map *remove_redundant_divs(
	__isl_take isl_basic_map *bmap)
{
	int i;
	isl_size v_div;
	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
	if (v_div < 0)
		return isl_basic_map_free(bmap);
	for (i = bmap->n_div-1; i >= 0; --i) {
		isl_bool redundant;
		redundant = div_is_redundant(bmap, i);
		if (redundant < 0)
			return isl_basic_map_free(bmap);
		if (!redundant)
			continue;
		bmap = isl_basic_map_drop_constraints_involving(bmap,
								v_div + i, 1);
		bmap = isl_basic_map_drop_div(bmap, i);
	}
	return bmap;
}
/* Mark "bmap" as final, without checking for obviously redundant
 * integer divisions.  This function should be used when "bmap"
 * is known not to involve any such integer divisions.
 */
__isl_give isl_basic_map *isl_basic_map_mark_final(
	__isl_take isl_basic_map *bmap)
{
	if (!bmap)
		return NULL;
	ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
	return bmap;
}
/* Mark "bmap" as final, after removing obviously redundant integer divisions.
 */
__isl_give isl_basic_map *isl_basic_map_finalize(__isl_take isl_basic_map *bmap)
{
	bmap = remove_redundant_divs(bmap);
	bmap = isl_basic_map_mark_final(bmap);
	return bmap;
}
__isl_give isl_basic_set *isl_basic_set_finalize(
	__isl_take isl_basic_set *bset)
{
	return bset_from_bmap(isl_basic_map_finalize(bset_to_bmap(bset)));
}
/* Remove definition of any div that is defined in terms of the given variable.
 * The div itself is not removed.  Functions such as
 * eliminate_divs_ineq depend on the other divs remaining in place.
 */
static __isl_give isl_basic_map *remove_dependent_vars(
	__isl_take isl_basic_map *bmap, int pos)
{
	int i;
	if (!bmap)
		return NULL;
	for (i = 0; i < bmap->n_div; ++i) {
		if (isl_int_is_zero(bmap->div[i][0]))
			continue;
		if (isl_int_is_zero(bmap->div[i][1+1+pos]))
			continue;
		bmap = isl_basic_map_mark_div_unknown(bmap, i);
		if (!bmap)
			return NULL;
	}
	return bmap;
}
/* Eliminate the specified variables from the constraints using
 * Fourier-Motzkin.  The variables themselves are not removed.
 */
__isl_give isl_basic_map *isl_basic_map_eliminate_vars(
	__isl_take isl_basic_map *bmap, unsigned pos, unsigned n)
{
	int d;
	int i, j, k;
	isl_size total;
	int need_gauss = 0;
	if (n == 0)
		return bmap;
	total = isl_basic_map_dim(bmap, isl_dim_all);
	if (total < 0)
		return isl_basic_map_free(bmap);
	bmap = isl_basic_map_cow(bmap);
	for (d = pos + n - 1; d >= 0 && d >= pos; --d)
		bmap = remove_dependent_vars(bmap, d);
	if (!bmap)
		return NULL;
	for (d = pos + n - 1;
	     d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
		isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
	for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
		int n_lower, n_upper;
		if (!bmap)
			return NULL;
		for (i = 0; i < bmap->n_eq; ++i) {
			if (isl_int_is_zero(bmap->eq[i][1+d]))
				continue;
			bmap = eliminate_var_using_equality(bmap, d,
							bmap->eq[i], 0, NULL);
			if (isl_basic_map_drop_equality(bmap, i) < 0)
				return isl_basic_map_free(bmap);
			need_gauss = 1;
			break;
		}
		if (i < bmap->n_eq)
			continue;
		n_lower = 0;
		n_upper = 0;
		for (i = 0; i < bmap->n_ineq; ++i) {
			if (isl_int_is_pos(bmap->ineq[i][1+d]))
				n_lower++;
			else if (isl_int_is_neg(bmap->ineq[i][1+d]))
				n_upper++;
		}
		bmap = isl_basic_map_extend_constraints(bmap,
				0, n_lower * n_upper);
		if (!bmap)
			goto error;
		for (i = bmap->n_ineq - 1; i >= 0; --i) {
			int last;
			if (isl_int_is_zero(bmap->ineq[i][1+d]))
				continue;
			last = -1;
			for (j = 0; j < i; ++j) {
				if (isl_int_is_zero(bmap->ineq[j][1+d]))
					continue;
				last = j;
				if (isl_int_sgn(bmap->ineq[i][1+d]) ==
				    isl_int_sgn(bmap->ineq[j][1+d]))
					continue;
				k = isl_basic_map_alloc_inequality(bmap);
				if (k < 0)
					goto error;
				isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
						1+total);
				isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
						1+d, 1+total, NULL);
			}
			isl_basic_map_drop_inequality(bmap, i);
			i = last + 1;
		}
		if (n_lower > 0 && n_upper > 0) {
			bmap = isl_basic_map_normalize_constraints(bmap);
			bmap = isl_basic_map_remove_duplicate_constraints(bmap,
								    NULL, 0);
			bmap = isl_basic_map_gauss(bmap, NULL);
			bmap = isl_basic_map_remove_redundancies(bmap);
			need_gauss = 0;
			if (!bmap)
				goto error;
			if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
				break;
		}
	}
	if (need_gauss)
		bmap = isl_basic_map_gauss(bmap, NULL);
	return bmap;
error:
	isl_basic_map_free(bmap);
	return NULL;
}
__isl_give isl_basic_set *isl_basic_set_eliminate_vars(
	__isl_take isl_basic_set *bset, unsigned pos, unsigned n)
{
	return bset_from_bmap(isl_basic_map_eliminate_vars(bset_to_bmap(bset),
								pos, n));
}
/* Eliminate the specified n dimensions starting at first from the
 * constraints, without removing the dimensions from the space.
 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
 * Otherwise, they are projected out and the original space is restored.
 */
__isl_give isl_basic_map *isl_basic_map_eliminate(
	__isl_take isl_basic_map *bmap,
	enum isl_dim_type type, unsigned first, unsigned n)
{
	isl_space *space;
	if (!bmap)
		return NULL;
	if (n == 0)
		return bmap;
	if (isl_basic_map_check_range(bmap, type, first, n) < 0)
		return isl_basic_map_free(bmap);
	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) {
		first += isl_basic_map_offset(bmap, type) - 1;
		bmap = isl_basic_map_eliminate_vars(bmap, first, n);
		return isl_basic_map_finalize(bmap);
	}
	space = isl_basic_map_get_space(bmap);
	bmap = isl_basic_map_project_out(bmap, type, first, n);
	bmap = isl_basic_map_insert_dims(bmap, type, first, n);
	bmap = isl_basic_map_reset_space(bmap, space);
	return bmap;
}
__isl_give isl_basic_set *isl_basic_set_eliminate(
	__isl_take isl_basic_set *bset,
	enum isl_dim_type type, unsigned first, unsigned n)
{
	return isl_basic_map_eliminate(bset, type, first, n);
}
/* Remove all constraints from "bmap" that reference any unknown local
 * variables (directly or indirectly).
 *
 * Dropping all constraints on a local variable will make it redundant,
 * so it will get removed implicitly by
 * isl_basic_map_drop_constraints_involving_dims.  Some other local
 * variables may also end up becoming redundant if they only appear
 * in constraints together with the unknown local variable.
 * Therefore, start over after calling
 * isl_basic_map_drop_constraints_involving_dims.
 */
__isl_give isl_basic_map *isl_basic_map_drop_constraints_involving_unknown_divs(
	__isl_take isl_basic_map *bmap)
{
	isl_bool known;
	isl_size n_div;
	int i, o_div;
	known = isl_basic_map_divs_known(bmap);
	if (known < 0)
		return isl_basic_map_free(bmap);
	if (known)
		return bmap;
	n_div = isl_basic_map_dim(bmap, isl_dim_div);
	if (n_div < 0)
		return isl_basic_map_free(bmap);
	o_div = isl_basic_map_offset(bmap, isl_dim_div) - 1;
	for (i = 0; i < n_div; ++i) {
		known = isl_basic_map_div_is_known(bmap, i);
		if (known < 0)
			return isl_basic_map_free(bmap);
		if (known)
			continue;
		bmap = remove_dependent_vars(bmap, o_div + i);
		bmap = isl_basic_map_drop_constraints_involving_dims(bmap,
							    isl_dim_div, i, 1);
		n_div = isl_basic_map_dim(bmap, isl_dim_div);
		if (n_div < 0)
			return isl_basic_map_free(bmap);
		i = -1;
	}
	return bmap;
}
/* Remove all constraints from "bset" that reference any unknown local
 * variables (directly or indirectly).
 */
__isl_give isl_basic_set *isl_basic_set_drop_constraints_involving_unknown_divs(
	__isl_take isl_basic_set *bset)
{
	isl_basic_map *bmap;
	bmap = bset_to_bmap(bset);
	bmap = isl_basic_map_drop_constraints_involving_unknown_divs(bmap);
	return bset_from_bmap(bmap);
}
/* Remove all constraints from "map" that reference any unknown local
 * variables (directly or indirectly).
 *
 * Since constraints may get dropped from the basic maps,
 * they may no longer be disjoint from each other.
 */
__isl_give isl_map *isl_map_drop_constraints_involving_unknown_divs(
	__isl_take isl_map *map)
{
	int i;
	isl_bool known;
	known = isl_map_divs_known(map);
	if (known < 0)
		return isl_map_free(map);
	if (known)
		return map;
	map = isl_map_cow(map);
	if (!map)
		return NULL;
	for (i = 0; i < map->n; ++i) {
		map->p[i] =
		    isl_basic_map_drop_constraints_involving_unknown_divs(
								    map->p[i]);
		if (!map->p[i])
			return isl_map_free(map);
	}
	if (map->n > 1)
		ISL_F_CLR(map, ISL_MAP_DISJOINT);
	return map;
}
/* Don't assume equalities are in order, because align_divs
 * may have changed the order of the divs.
 */
static void compute_elimination_index(__isl_keep isl_basic_map *bmap, int *elim,
	unsigned len)
{
	int d, i;
	for (d = 0; d < len; ++d)
		elim[d] = -1;
	for (i = 0; i < bmap->n_eq; ++i) {
		for (d = len - 1; d >= 0; --d) {
			if (isl_int_is_zero(bmap->eq[i][1+d]))
				continue;
			elim[d] = i;
			break;
		}
	}
}
static void set_compute_elimination_index(__isl_keep isl_basic_set *bset,
	int *elim, unsigned len)
{
	compute_elimination_index(bset_to_bmap(bset), elim, len);
}
static int reduced_using_equalities(isl_int *dst, isl_int *src,
	__isl_keep isl_basic_map *bmap, int *elim, unsigned total)
{
	int d;
	int copied = 0;
	for (d = total - 1; d >= 0; --d) {
		if (isl_int_is_zero(src[1+d]))
			continue;
		if (elim[d] == -1)
			continue;
		if (!copied) {
			isl_seq_cpy(dst, src, 1 + total);
			copied = 1;
		}
		isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
	}
	return copied;
}
static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
	__isl_keep isl_basic_set *bset, int *elim, unsigned total)
{
	return reduced_using_equalities(dst, src,
					bset_to_bmap(bset), elim, total);
}
static __isl_give isl_basic_set *isl_basic_set_reduce_using_equalities(
	__isl_take isl_basic_set *bset, __isl_take isl_basic_set *context)
{
	int i;
	int *elim;
	isl_size dim;
	if (!bset || !context)
		goto error;
	if (context->n_eq == 0) {
		isl_basic_set_free(context);
		return bset;
	}
	bset = isl_basic_set_cow(bset);
	dim = isl_basic_set_dim(bset, isl_dim_set);
	if (dim < 0)
		goto error;
	elim = isl_alloc_array(bset->ctx, int, dim);
	if (!elim)
		goto error;
	set_compute_elimination_index(context, elim, dim);
	for (i = 0; i < bset->n_eq; ++i)
		set_reduced_using_equalities(bset->eq[i], bset->eq[i],
							context, elim, dim);
	for (i = 0; i < bset->n_ineq; ++i)
		set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
							context, elim, dim);
	isl_basic_set_free(context);
	free(elim);
	bset = isl_basic_set_simplify(bset);
	bset = isl_basic_set_finalize(bset);
	return bset;
error:
	isl_basic_set_free(bset);
	isl_basic_set_free(context);
	return NULL;
}
/* For each inequality in "ineq" that is a shifted (more relaxed)
 * copy of an inequality in "context", mark the corresponding entry
 * in "row" with -1.
 * If an inequality only has a non-negative constant term, then
 * mark it as well.
 */
static isl_stat mark_shifted_constraints(__isl_keep isl_mat *ineq,
	__isl_keep isl_basic_set *context, int *row)
{
	struct isl_constraint_index ci;
	isl_size n_ineq, cols;
	unsigned total;
	int k;
	if (!ineq || !context)
		return isl_stat_error;
	if (context->n_ineq == 0)
		return isl_stat_ok;
	if (setup_constraint_index(&ci, context) < 0)
		return isl_stat_error;
	n_ineq = isl_mat_rows(ineq);
	cols = isl_mat_cols(ineq);
	if (n_ineq < 0 || cols < 0)
		return isl_stat_error;
	total = cols - 1;
	for (k = 0; k < n_ineq; ++k) {
		int l;
		isl_bool redundant;
		l = isl_seq_first_non_zero(ineq->row[k] + 1, total);
		if (l < 0 && isl_int_is_nonneg(ineq->row[k][0])) {
			row[k] = -1;
			continue;
		}
		redundant = constraint_index_is_redundant(&ci, ineq->row[k]);
		if (redundant < 0)
			goto error;
		if (!redundant)
			continue;
		row[k] = -1;
	}
	constraint_index_free(&ci);
	return isl_stat_ok;
error:
	constraint_index_free(&ci);
	return isl_stat_error;
}
static __isl_give isl_basic_set *remove_shifted_constraints(
	__isl_take isl_basic_set *bset, __isl_keep isl_basic_set *context)
{
	struct isl_constraint_index ci;
	int k;
	if (!bset || !context)
		return bset;
	if (context->n_ineq == 0)
		return bset;
	if (setup_constraint_index(&ci, context) < 0)
		return bset;
	for (k = 0; k < bset->n_ineq; ++k) {
		isl_bool redundant;
		redundant = constraint_index_is_redundant(&ci, bset->ineq[k]);
		if (redundant < 0)
			goto error;
		if (!redundant)
			continue;
		bset = isl_basic_set_cow(bset);
		if (!bset)
			goto error;
		isl_basic_set_drop_inequality(bset, k);
		--k;
	}
	constraint_index_free(&ci);
	return bset;
error:
	constraint_index_free(&ci);
	return bset;
}
/* Remove constraints from "bmap" that are identical to constraints
 * in "context" or that are more relaxed (greater constant term).
 *
 * We perform the test for shifted copies on the pure constraints
 * in remove_shifted_constraints.
 */
static __isl_give isl_basic_map *isl_basic_map_remove_shifted_constraints(
	__isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context)
{
	isl_basic_set *bset, *bset_context;
	if (!bmap || !context)
		goto error;
	if (bmap->n_ineq == 0 || context->n_ineq == 0) {
		isl_basic_map_free(context);
		return bmap;
	}
	bmap = isl_basic_map_order_divs(bmap);
	context = isl_basic_map_align_divs(context, bmap);
	bmap = isl_basic_map_align_divs(bmap, context);
	bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
	bset_context = isl_basic_map_underlying_set(context);
	bset = remove_shifted_constraints(bset, bset_context);
	isl_basic_set_free(bset_context);
	bmap = isl_basic_map_overlying_set(bset, bmap);
	return bmap;
error:
	isl_basic_map_free(bmap);
	isl_basic_map_free(context);
	return NULL;
}
/* Does the (linear part of a) constraint "c" involve any of the "len"
 * "relevant" dimensions?
 */
static int is_related(isl_int *c, int len, int *relevant)
{
	int i;
	for (i = 0; i < len; ++i) {
		if (!relevant[i])
			continue;
		if (!isl_int_is_zero(c[i]))
			return 1;
	}
	return 0;
}
/* Drop constraints from "bmap" that do not involve any of
 * the dimensions marked "relevant".
 */
static __isl_give isl_basic_map *drop_unrelated_constraints(
	__isl_take isl_basic_map *bmap, int *relevant)
{
	int i;
	isl_size dim;
	dim = isl_basic_map_dim(bmap, isl_dim_all);
	if (dim < 0)
		return isl_basic_map_free(bmap);
	for (i = 0; i < dim; ++i)
		if (!relevant[i])
			break;
	if (i >= dim)
		return bmap;
	for (i = bmap->n_eq - 1; i >= 0; --i)
		if (!is_related(bmap->eq[i] + 1, dim, relevant)) {
			bmap = isl_basic_map_cow(bmap);
			if (isl_basic_map_drop_equality(bmap, i) < 0)
				return isl_basic_map_free(bmap);
		}
	for (i = bmap->n_ineq - 1; i >= 0; --i)
		if (!is_related(bmap->ineq[i] + 1, dim, relevant)) {
			bmap = isl_basic_map_cow(bmap);
			if (isl_basic_map_drop_inequality(bmap, i) < 0)
				return isl_basic_map_free(bmap);
		}
	return bmap;
}
/* Update the groups in "group" based on the (linear part of a) constraint "c".
 *
 * In particular, for any variable involved in the constraint,
 * find the actual group id from before and replace the group
 * of the corresponding variable by the minimal group of all
 * the variables involved in the constraint considered so far
 * (if this minimum is smaller) or replace the minimum by this group
 * (if the minimum is larger).
 *
 * At the end, all the variables in "c" will (indirectly) point
 * to the minimal of the groups that they referred to originally.
 */
static void update_groups(int dim, int *group, isl_int *c)
{
	int j;
	int min = dim;
	for (j = 0; j < dim; ++j) {
		if (isl_int_is_zero(c[j]))
			continue;
		while (group[j] >= 0 && group[group[j]] != group[j])
			group[j] = group[group[j]];
		if (group[j] == min)
			continue;
		if (group[j] < min) {
			if (min >= 0 && min < dim)
				group[min] = group[j];
			min = group[j];
		} else
			group[group[j]] = min;
	}
}
/* Allocate an array of groups of variables, one for each variable
 * in "context", initialized to zero.
 */
static int *alloc_groups(__isl_keep isl_basic_set *context)
{
	isl_ctx *ctx;
	isl_size dim;
	dim = isl_basic_set_dim(context, isl_dim_set);
	if (dim < 0)
		return NULL;
	ctx = isl_basic_set_get_ctx(context);
	return isl_calloc_array(ctx, int, dim);
}
/* Drop constraints from "bmap" that only involve variables that are
 * not related to any of the variables marked with a "-1" in "group".
 *
 * We construct groups of variables that collect variables that
 * (indirectly) appear in some common constraint of "bmap".
 * Each group is identified by the first variable in the group,
 * except for the special group of variables that was already identified
 * in the input as -1 (or are related to those variables).
 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
 * otherwise the group of i is the group of group[i].
 *
 * We first initialize groups for the remaining variables.
 * Then we iterate over the constraints of "bmap" and update the
 * group of the variables in the constraint by the smallest group.
 * Finally, we resolve indirect references to groups by running over
 * the variables.
 *
 * After computing the groups, we drop constraints that do not involve
 * any variables in the -1 group.
 */
__isl_give isl_basic_map *isl_basic_map_drop_unrelated_constraints(
	__isl_take isl_basic_map *bmap, __isl_take int *group)
{
	isl_size dim;
	int i;
	int last;
	dim = isl_basic_map_dim(bmap, isl_dim_all);
	if (dim < 0)
		return isl_basic_map_free(bmap);
	last = -1;
	for (i = 0; i < dim; ++i)
		if (group[i] >= 0)
			last = group[i] = i;
	if (last < 0) {
		free(group);
		return bmap;
	}
	for (i = 0; i < bmap->n_eq; ++i)
		update_groups(dim, group, bmap->eq[i] + 1);
	for (i = 0; i < bmap->n_ineq; ++i)
		update_groups(dim, group, bmap->ineq[i] + 1);
	for (i = 0; i < dim; ++i)
		if (group[i] >= 0)
			group[i] = group[group[i]];
	for (i = 0; i < dim; ++i)
		group[i] = group[i] == -1;
	bmap = drop_unrelated_constraints(bmap, group);
	free(group);
	return bmap;
}
/* Drop constraints from "context" that are irrelevant for computing
 * the gist of "bset".
 *
 * In particular, drop constraints in variables that are not related
 * to any of the variables involved in the constraints of "bset"
 * in the sense that there is no sequence of constraints that connects them.
 *
 * We first mark all variables that appear in "bset" as belonging
 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
 */
static __isl_give isl_basic_set *drop_irrelevant_constraints(
	__isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset)
{
	int *group;
	isl_size dim;
	int i, j;
	dim = isl_basic_set_dim(bset, isl_dim_set);
	if (!context || dim < 0)
		return isl_basic_set_free(context);
	group = alloc_groups(context);
	if (!group)
		return isl_basic_set_free(context);
	for (i = 0; i < dim; ++i) {
		for (j = 0; j < bset->n_eq; ++j)
			if (!isl_int_is_zero(bset->eq[j][1 + i]))
				break;
		if (j < bset->n_eq) {
			group[i] = -1;
			continue;
		}
		for (j = 0; j < bset->n_ineq; ++j)
			if (!isl_int_is_zero(bset->ineq[j][1 + i]))
				break;
		if (j < bset->n_ineq)
			group[i] = -1;
	}
	return isl_basic_map_drop_unrelated_constraints(context, group);
}
/* Drop constraints from "context" that are irrelevant for computing
 * the gist of the inequalities "ineq".
 * Inequalities in "ineq" for which the corresponding element of row
 * is set to -1 have already been marked for removal and should be ignored.
 *
 * In particular, drop constraints in variables that are not related
 * to any of the variables involved in "ineq"
 * in the sense that there is no sequence of constraints that connects them.
 *
 * We first mark all variables that appear in "bset" as belonging
 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
 */
static __isl_give isl_basic_set *drop_irrelevant_constraints_marked(
	__isl_take isl_basic_set *context, __isl_keep isl_mat *ineq, int *row)
{
	int *group;
	isl_size dim;
	int i, j;
	isl_size n;
	dim = isl_basic_set_dim(context, isl_dim_set);
	n = isl_mat_rows(ineq);
	if (dim < 0 || n < 0)
		return isl_basic_set_free(context);
	group = alloc_groups(context);
	if (!group)
		return isl_basic_set_free(context);
	for (i = 0; i < dim; ++i) {
		for (j = 0; j < n; ++j) {
			if (row[j] < 0)
				continue;
			if (!isl_int_is_zero(ineq->row[j][1 + i]))
				break;
		}
		if (j < n)
			group[i] = -1;
	}
	return isl_basic_map_drop_unrelated_constraints(context, group);
}
/* Do all "n" entries of "row" contain a negative value?
 */
static int all_neg(int *row, int n)
{
	int i;
	for (i = 0; i < n; ++i)
		if (row[i] >= 0)
			return 0;
	return 1;
}
/* Update the inequalities in "bset" based on the information in "row"
 * and "tab".
 *
 * In particular, the array "row" contains either -1, meaning that
 * the corresponding inequality of "bset" is redundant, or the index
 * of an inequality in "tab".
 *
 * If the row entry is -1, then drop the inequality.
 * Otherwise, if the constraint is marked redundant in the tableau,
 * then drop the inequality.  Similarly, if it is marked as an equality
 * in the tableau, then turn the inequality into an equality and
 * perform Gaussian elimination.
 */
static __isl_give isl_basic_set *update_ineq(__isl_take isl_basic_set *bset,
	__isl_keep int *row, struct isl_tab *tab)
{
	int i;
	unsigned n_ineq;
	unsigned n_eq;
	int found_equality = 0;
	if (!bset)
		return NULL;
	if (tab && tab->empty)
		return isl_basic_set_set_to_empty(bset);
	n_ineq = bset->n_ineq;
	for (i = n_ineq - 1; i >= 0; --i) {
		if (row[i] < 0) {
			if (isl_basic_set_drop_inequality(bset, i) < 0)
				return isl_basic_set_free(bset);
			continue;
		}
		if (!tab)
			continue;
		n_eq = tab->n_eq;
		if (isl_tab_is_equality(tab, n_eq + row[i])) {
			isl_basic_map_inequality_to_equality(bset, i);
			found_equality = 1;
		} else if (isl_tab_is_redundant(tab, n_eq + row[i])) {
			if (isl_basic_set_drop_inequality(bset, i) < 0)
				return isl_basic_set_free(bset);
		}
	}
	if (found_equality)
		bset = isl_basic_set_gauss(bset, NULL);
	bset = isl_basic_set_finalize(bset);
	return bset;
}
/* Update the inequalities in "bset" based on the information in "row"
 * and "tab" and free all arguments (other than "bset").
 */
static __isl_give isl_basic_set *update_ineq_free(
	__isl_take isl_basic_set *bset, __isl_take isl_mat *ineq,
	__isl_take isl_basic_set *context, __isl_take int *row,
	struct isl_tab *tab)
{
	isl_mat_free(ineq);
	isl_basic_set_free(context);
	bset = update_ineq(bset, row, tab);
	free(row);
	isl_tab_free(tab);
	return bset;
}
/* Remove all information from bset that is redundant in the context
 * of context.
 * "ineq" contains the (possibly transformed) inequalities of "bset",
 * in the same order.
 * The (explicit) equalities of "bset" are assumed to have been taken
 * into account by the transformation such that only the inequalities
 * are relevant.
 * "context" is assumed not to be empty.
 *
 * "row" keeps track of the constraint index of a "bset" inequality in "tab".
 * A value of -1 means that the inequality is obviously redundant and may
 * not even appear in  "tab".
 *
 * We first mark the inequalities of "bset"
 * that are obviously redundant with respect to some inequality in "context".
 * Then we remove those constraints from "context" that have become
 * irrelevant for computing the gist of "bset".
 * Note that this removal of constraints cannot be replaced by
 * a factorization because factors in "bset" may still be connected
 * to each other through constraints in "context".
 *
 * If there are any inequalities left, we construct a tableau for
 * the context and then add the inequalities of "bset".
 * Before adding these inequalities, we freeze all constraints such that
 * they won't be considered redundant in terms of the constraints of "bset".
 * Then we detect all redundant constraints (among the
 * constraints that weren't frozen), first by checking for redundancy in the
 * the tableau and then by checking if replacing a constraint by its negation
 * would lead to an empty set.  This last step is fairly expensive
 * and could be optimized by more reuse of the tableau.
 * Finally, we update bset according to the results.
 */
static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
	__isl_take isl_mat *ineq, __isl_take isl_basic_set *context)
{
	int i, r;
	int *row = NULL;
	isl_ctx *ctx;
	isl_basic_set *combined = NULL;
	struct isl_tab *tab = NULL;
	unsigned n_eq, context_ineq;
	if (!bset || !ineq || !context)
		goto error;
	if (bset->n_ineq == 0 || isl_basic_set_plain_is_universe(context)) {
		isl_basic_set_free(context);
		isl_mat_free(ineq);
		return bset;
	}
	ctx = isl_basic_set_get_ctx(context);
	row = isl_calloc_array(ctx, int, bset->n_ineq);
	if (!row)
		goto error;
	if (mark_shifted_constraints(ineq, context, row) < 0)
		goto error;
	if (all_neg(row, bset->n_ineq))
		return update_ineq_free(bset, ineq, context, row, NULL);
	context = drop_irrelevant_constraints_marked(context, ineq, row);
	if (!context)
		goto error;
	if (isl_basic_set_plain_is_universe(context))
		return update_ineq_free(bset, ineq, context, row, NULL);
	n_eq = context->n_eq;
	context_ineq = context->n_ineq;
	combined = isl_basic_set_cow(isl_basic_set_copy(context));
	combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
	tab = isl_tab_from_basic_set(combined, 0);
	for (i = 0; i < context_ineq; ++i)
		if (isl_tab_freeze_constraint(tab, n_eq + i) < 0)
			goto error;
	if (isl_tab_extend_cons(tab, bset->n_ineq) < 0)
		goto error;
	r = context_ineq;
	for (i = 0; i < bset->n_ineq; ++i) {
		if (row[i] < 0)
			continue;
		combined = isl_basic_set_add_ineq(combined, ineq->row[i]);
		if (isl_tab_add_ineq(tab, ineq->row[i]) < 0)
			goto error;
		row[i] = r++;
	}
	if (isl_tab_detect_implicit_equalities(tab) < 0)
		goto error;
	if (isl_tab_detect_redundant(tab) < 0)
		goto error;
	for (i = bset->n_ineq - 1; i >= 0; --i) {
		isl_basic_set *test;
		int is_empty;
		if (row[i] < 0)
			continue;
		r = row[i];
		if (tab->con[n_eq + r].is_redundant)
			continue;
		test = isl_basic_set_dup(combined);
		test = isl_inequality_negate(test, r);
		test = isl_basic_set_update_from_tab(test, tab);
		is_empty = isl_basic_set_is_empty(test);
		isl_basic_set_free(test);
		if (is_empty < 0)
			goto error;
		if (is_empty)
			tab->con[n_eq + r].is_redundant = 1;
	}
	bset = update_ineq_free(bset, ineq, context, row, tab);
	if (bset) {
		ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
		ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
	}
	isl_basic_set_free(combined);
	return bset;
error:
	free(row);
	isl_mat_free(ineq);
	isl_tab_free(tab);
	isl_basic_set_free(combined);
	isl_basic_set_free(context);
	isl_basic_set_free(bset);
	return NULL;
}
/* Extract the inequalities of "bset" as an isl_mat.
 */
static __isl_give isl_mat *extract_ineq(__isl_keep isl_basic_set *bset)
{
	isl_size total;
	isl_ctx *ctx;
	isl_mat *ineq;
	total = isl_basic_set_dim(bset, isl_dim_all);
	if (total < 0)
		return NULL;
	ctx = isl_basic_set_get_ctx(bset);
	ineq = isl_mat_sub_alloc6(ctx, bset->ineq, 0, bset->n_ineq,
				    0, 1 + total);
	return ineq;
}
/* Remove all information from "bset" that is redundant in the context
 * of "context", for the case where both "bset" and "context" are
 * full-dimensional.
 */
static __isl_give isl_basic_set *uset_gist_uncompressed(
	__isl_take isl_basic_set *bset, __isl_take isl_basic_set *context)
{
	isl_mat *ineq;
	ineq = extract_ineq(bset);
	return uset_gist_full(bset, ineq, context);
}
/* Replace "bset" by an empty basic set in the same space.
 */
static __isl_give isl_basic_set *replace_by_empty(
	__isl_take isl_basic_set *bset)
{
	isl_space *space;
	space = isl_basic_set_get_space(bset);
	isl_basic_set_free(bset);
	return isl_basic_set_empty(space);
}
/* Remove all information from "bset" that is redundant in the context
 * of "context", for the case where the combined equalities of
 * "bset" and "context" allow for a compression that can be obtained
 * by preapplication of "T".
 * If the compression of "context" is empty, meaning that "bset" and
 * "context" do not intersect, then return the empty set.
 *
 * "bset" itself is not transformed by "T".  Instead, the inequalities
 * are extracted from "bset" and those are transformed by "T".
 * uset_gist_full then determines which of the transformed inequalities
 * are redundant with respect to the transformed "context" and removes
 * the corresponding inequalities from "bset".
 *
 * After preapplying "T" to the inequalities, any common factor is
 * removed from the coefficients.  If this results in a tightening
 * of the constant term, then the same tightening is applied to
 * the corresponding untransformed inequality in "bset".
 * That is, if after plugging in T, a constraint f(x) >= 0 is of the form
 *
 *	g f'(x) + r >= 0
 *
 * with 0 <= r < g, then it is equivalent to
 *
 *	f'(x) >= 0
 *
 * This means that f(x) >= 0 is equivalent to f(x) - r >= 0 in the affine
 * subspace compressed by T since the latter would be transformed to
 *
 *	g f'(x) >= 0
 */
static __isl_give isl_basic_set *uset_gist_compressed(
	__isl_take isl_basic_set *bset, __isl_take isl_basic_set *context,
	__isl_take isl_mat *T)
{
	isl_ctx *ctx;
	isl_mat *ineq;
	int i;
	isl_size n_row, n_col;
	isl_int rem;
	ineq = extract_ineq(bset);
	ineq = isl_mat_product(ineq, isl_mat_copy(T));
	context = isl_basic_set_preimage(context, T);
	if (!ineq || !context)
		goto error;
	if (isl_basic_set_plain_is_empty(context)) {
		isl_mat_free(ineq);
		isl_basic_set_free(context);
		return replace_by_empty(bset);
	}
	ctx = isl_mat_get_ctx(ineq);
	n_row = isl_mat_rows(ineq);
	n_col = isl_mat_cols(ineq);
	if (n_row < 0 || n_col < 0)
		goto error;
	isl_int_init(rem);
	for (i = 0; i < n_row; ++i) {
		isl_seq_gcd(ineq->row[i] + 1, n_col - 1, &ctx->normalize_gcd);
		if (isl_int_is_zero(ctx->normalize_gcd))
			continue;
		if (isl_int_is_one(ctx->normalize_gcd))
			continue;
		isl_seq_scale_down(ineq->row[i] + 1, ineq->row[i] + 1,
				    ctx->normalize_gcd, n_col - 1);
		isl_int_fdiv_r(rem, ineq->row[i][0], ctx->normalize_gcd);
		isl_int_fdiv_q(ineq->row[i][0],
				ineq->row[i][0], ctx->normalize_gcd);
		if (isl_int_is_zero(rem))
			continue;
		bset = isl_basic_set_cow(bset);
		if (!bset)
			break;
		isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], rem);
	}
	isl_int_clear(rem);
	return uset_gist_full(bset, ineq, context);
error:
	isl_mat_free(ineq);
	isl_basic_set_free(context);
	isl_basic_set_free(bset);
	return NULL;
}
/* Project "bset" onto the variables that are involved in "template".
 */
static __isl_give isl_basic_set *project_onto_involved(
	__isl_take isl_basic_set *bset, __isl_keep isl_basic_set *template)
{
	int i;
	isl_size n;
	n = isl_basic_set_dim(template, isl_dim_set);
	if (n < 0 || !template)
		return isl_basic_set_free(bset);
	for (i = 0; i < n; ++i) {
		isl_bool involved;
		involved = isl_basic_set_involves_dims(template,
							isl_dim_set, i, 1);
		if (involved < 0)
			return isl_basic_set_free(bset);
		if (involved)
			continue;
		bset = isl_basic_set_eliminate_vars(bset, i, 1);
	}
	return bset;
}
/* Remove all information from bset that is redundant in the context
 * of context.  In particular, equalities that are linear combinations
 * of those in context are removed.  Then the inequalities that are
 * redundant in the context of the equalities and inequalities of
 * context are removed.
 *
 * First of all, we drop those constraints from "context"
 * that are irrelevant for computing the gist of "bset".
 * Alternatively, we could factorize the intersection of "context" and "bset".
 *
 * We first compute the intersection of the integer affine hulls
 * of "bset" and "context",
 * compute the gist inside this intersection and then reduce
 * the constraints with respect to the equalities of the context
 * that only involve variables already involved in the input.
 * If the intersection of the affine hulls turns out to be empty,
 * then return the empty set.
 *
 * If two constraints are mutually redundant, then uset_gist_full
 * will remove the second of those constraints.  We therefore first
 * sort the constraints so that constraints not involving existentially
 * quantified variables are given precedence over those that do.
 * We have to perform this sorting before the variable compression,
 * because that may effect the order of the variables.
 */
static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
	__isl_take isl_basic_set *context)
{
	isl_mat *eq;
	isl_mat *T;
	isl_basic_set *aff;
	isl_basic_set *aff_context;
	isl_size total;
	total = isl_basic_set_dim(bset, isl_dim_all);
	if (total < 0 || !context)
		goto error;
	context = drop_irrelevant_constraints(context, bset);
	bset = isl_basic_set_detect_equalities(bset);
	aff = isl_basic_set_copy(bset);
	aff = isl_basic_set_plain_affine_hull(aff);
	context = isl_basic_set_detect_equalities(context);
	aff_context = isl_basic_set_copy(context);
	aff_context = isl_basic_set_plain_affine_hull(aff_context);
	aff = isl_basic_set_intersect(aff, aff_context);
	if (!aff)
		goto error;
	if (isl_basic_set_plain_is_empty(aff)) {
		isl_basic_set_free(bset);
		isl_basic_set_free(context);
		return aff;
	}
	bset = isl_basic_set_sort_constraints(bset);
	if (aff->n_eq == 0) {
		isl_basic_set_free(aff);
		return uset_gist_uncompressed(bset, context);
	}
	eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
	eq = isl_mat_cow(eq);
	T = isl_mat_variable_compression(eq, NULL);
	isl_basic_set_free(aff);
	if (T && T->n_col == 0) {
		isl_mat_free(T);
		isl_basic_set_free(context);
		return replace_by_empty(bset);
	}
	aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
	aff_context = project_onto_involved(aff_context, bset);
	bset = uset_gist_compressed(bset, context, T);
	bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
	if (bset) {
		ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
		ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
	}
	return bset;
error:
	isl_basic_set_free(bset);
	isl_basic_set_free(context);
	return NULL;
}
/* Return the number of equality constraints in "bmap" that involve
 * local variables.  This function assumes that Gaussian elimination
 * has been applied to the equality constraints.
 */
static int n_div_eq(__isl_keep isl_basic_map *bmap)
{
	int i;
	isl_size total, n_div;
	if (!bmap)
		return -1;
	if (bmap->n_eq == 0)
		return 0;
	total = isl_basic_map_dim(bmap, isl_dim_all);
	n_div = isl_basic_map_dim(bmap, isl_dim_div);
	if (total < 0 || n_div < 0)
		return -1;
	total -= n_div;
	for (i = 0; i < bmap->n_eq; ++i)
		if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total,
					    n_div) == -1)
			return i;
	return bmap->n_eq;
}
/* Construct a basic map in "space" defined by the equality constraints in "eq".
 * The constraints are assumed not to involve any local variables.
 */
static __isl_give isl_basic_map *basic_map_from_equalities(
	__isl_take isl_space *space, __isl_take isl_mat *eq)
{
	int i, k;
	isl_size total;
	isl_basic_map *bmap = NULL;
	total = isl_space_dim(space, isl_dim_all);
	if (total < 0 || !eq)
		goto error;
	if (1 + total != eq->n_col)
		isl_die(isl_space_get_ctx(space), isl_error_internal,
			"unexpected number of columns", goto error);
	bmap = isl_basic_map_alloc_space(isl_space_copy(space),
					    0, eq->n_row, 0);
	for (i = 0; i < eq->n_row; ++i) {
		k = isl_basic_map_alloc_equality(bmap);
		if (k < 0)
			goto error;
		isl_seq_cpy(bmap->eq[k], eq->row[i], eq->n_col);
	}
	isl_space_free(space);
	isl_mat_free(eq);
	return bmap;
error:
	isl_space_free(space);
	isl_mat_free(eq);
	isl_basic_map_free(bmap);
	return NULL;
}
/* Construct and return a variable compression based on the equality
 * constraints in "bmap1" and "bmap2" that do not involve the local variables.
 * "n1" is the number of (initial) equality constraints in "bmap1"
 * that do involve local variables.
 * "n2" is the number of (initial) equality constraints in "bmap2"
 * that do involve local variables.
 * "total" is the total number of other variables.
 * This function assumes that Gaussian elimination
 * has been applied to the equality constraints in both "bmap1" and "bmap2"
 * such that the equality constraints not involving local variables
 * are those that start at "n1" or "n2".
 *
 * If either of "bmap1" and "bmap2" does not have such equality constraints,
 * then simply compute the compression based on the equality constraints
 * in the other basic map.
 * Otherwise, combine the equality constraints from both into a new
 * basic map such that Gaussian elimination can be applied to this combination
 * and then construct a variable compression from the resulting
 * equality constraints.
 */
static __isl_give isl_mat *combined_variable_compression(
	__isl_keep isl_basic_map *bmap1, int n1,
	__isl_keep isl_basic_map *bmap2, int n2, int total)
{
	isl_ctx *ctx;
	isl_mat *E1, *E2, *V;
	isl_basic_map *bmap;
	ctx = isl_basic_map_get_ctx(bmap1);
	if (bmap1->n_eq == n1) {
		E2 = isl_mat_sub_alloc6(ctx, bmap2->eq,
					n2, bmap2->n_eq - n2, 0, 1 + total);
		return isl_mat_variable_compression(E2, NULL);
	}
	if (bmap2->n_eq == n2) {
		E1 = isl_mat_sub_alloc6(ctx, bmap1->eq,
					n1, bmap1->n_eq - n1, 0, 1 + total);
		return isl_mat_variable_compression(E1, NULL);
	}
	E1 = isl_mat_sub_alloc6(ctx, bmap1->eq,
				n1, bmap1->n_eq - n1, 0, 1 + total);
	E2 = isl_mat_sub_alloc6(ctx, bmap2->eq,
				n2, bmap2->n_eq - n2, 0, 1 + total);
	E1 = isl_mat_concat(E1, E2);
	bmap = basic_map_from_equalities(isl_basic_map_get_space(bmap1), E1);
	bmap = isl_basic_map_gauss(bmap, NULL);
	if (!bmap)
		return NULL;
	E1 = isl_mat_sub_alloc6(ctx, bmap->eq, 0, bmap->n_eq, 0, 1 + total);
	V = isl_mat_variable_compression(E1, NULL);
	isl_basic_map_free(bmap);
	return V;
}
/* Extract the stride constraints from "bmap", compressed
 * with respect to both the stride constraints in "context" and
 * the remaining equality constraints in both "bmap" and "context".
 * "bmap_n_eq" is the number of (initial) stride constraints in "bmap".
 * "context_n_eq" is the number of (initial) stride constraints in "context".
 *
 * Let x be all variables in "bmap" (and "context") other than the local
 * variables.  First compute a variable compression
 *
 *	x = V x'
 *
 * based on the non-stride equality constraints in "bmap" and "context".
 * Consider the stride constraints of "context",
 *
 *	A(x) + B(y) = 0
 *
 * with y the local variables and plug in the variable compression,
 * resulting in
 *
 *	A(V x') + B(y) = 0
 *
 * Use these constraints to compute a parameter compression on x'
 *
 *	x' = T x''
 *
 * Now consider the stride constraints of "bmap"
 *
 *	C(x) + D(y) = 0
 *
 * and plug in x = V*T x''.
 * That is, return A = [C*V*T D].
 */
static __isl_give isl_mat *extract_compressed_stride_constraints(
	__isl_keep isl_basic_map *bmap, int bmap_n_eq,
	__isl_keep isl_basic_map *context, int context_n_eq)
{
	isl_size total, n_div;
	isl_ctx *ctx;
	isl_mat *A, *B, *T, *V;
	total = isl_basic_map_dim(context, isl_dim_all);
	n_div = isl_basic_map_dim(context, isl_dim_div);
	if (total < 0 || n_div < 0)
		return NULL;
	total -= n_div;
	ctx = isl_basic_map_get_ctx(bmap);
	V = combined_variable_compression(bmap, bmap_n_eq,
						context, context_n_eq, total);
	A = isl_mat_sub_alloc6(ctx, context->eq, 0, context_n_eq, 0, 1 + total);
	B = isl_mat_sub_alloc6(ctx, context->eq,
				0, context_n_eq, 1 + total, n_div);
	A = isl_mat_product(A, isl_mat_copy(V));
	T = isl_mat_parameter_compression_ext(A, B);
	T = isl_mat_product(V, T);
	n_div = isl_basic_map_dim(bmap, isl_dim_div);
	if (n_div < 0)
		T = isl_mat_free(T);
	else
		T = isl_mat_diagonal(T, isl_mat_identity(ctx, n_div));
	A = isl_mat_sub_alloc6(ctx, bmap->eq,
				0, bmap_n_eq, 0, 1 + total + n_div);
	A = isl_mat_product(A, T);
	return A;
}
/* Remove the prime factors from *g that have an exponent that
 * is strictly smaller than the exponent in "c".
 * All exponents in *g are known to be smaller than or equal
 * to those in "c".
 *
 * That is, if *g is equal to
 *
 *	p_1^{e_1} p_2^{e_2} ... p_n^{e_n}
 *
 * and "c" is equal to
 *
 *	p_1^{f_1} p_2^{f_2} ... p_n^{f_n}
 *
 * then update *g to
 *
 *	p_1^{e_1 * (e_1 = f_1)} p_2^{e_2 * (e_2 = f_2)} ...
 *		p_n^{e_n * (e_n = f_n)}
 *
 * If e_i = f_i, then c / *g does not have any p_i factors and therefore
 * neither does the gcd of *g and c / *g.
 * If e_i < f_i, then the gcd of *g and c / *g has a positive
 * power min(e_i, s_i) of p_i with s_i = f_i - e_i among its factors.
 * Dividing *g by this gcd therefore strictly reduces the exponent
 * of the prime factors that need to be removed, while leaving the
 * other prime factors untouched.
 * Repeating this process until gcd(*g, c / *g) = 1 therefore
 * removes all undesired factors, without removing any others.
 */
static void remove_incomplete_powers(isl_int *g, isl_int c)
{
	isl_int t;
	isl_int_init(t);
	for (;;) {
		isl_int_divexact(t, c, *g);
		isl_int_gcd(t, t, *g);
		if (isl_int_is_one(t))
			break;
		isl_int_divexact(*g, *g, t);
	}
	isl_int_clear(t);
}
/* Reduce the "n" stride constraints in "bmap" based on a copy "A"
 * of the same stride constraints in a compressed space that exploits
 * all equalities in the context and the other equalities in "bmap".
 *
 * If the stride constraints of "bmap" are of the form
 *
 *	C(x) + D(y) = 0
 *
 * then A is of the form
 *
 *	B(x') + D(y) = 0
 *
 * If any of these constraints involves only a single local variable y,
 * then the constraint appears as
 *
 *	f(x) + m y_i = 0
 *
 * in "bmap" and as
 *
 *	h(x') + m y_i = 0
 *
 * in "A".
 *
 * Let g be the gcd of m and the coefficients of h.
 * Then, in particular, g is a divisor of the coefficients of h and
 *
 *	f(x) = h(x')
 *
 * is known to be a multiple of g.
 * If some prime factor in m appears with the same exponent in g,
 * then it can be removed from m because f(x) is already known
 * to be a multiple of g and therefore in particular of this power
 * of the prime factors.
 * Prime factors that appear with a smaller exponent in g cannot
 * be removed from m.
 * Let g' be the divisor of g containing all prime factors that
 * appear with the same exponent in m and g, then
 *
 *	f(x) + m y_i = 0
 *
 * can be replaced by
 *
 *	f(x) + m/g' y_i' = 0
 *
 * Note that (if g' != 1) this changes the explicit representation
 * of y_i to that of y_i', so the integer division at position i
 * is marked unknown and later recomputed by a call to
 * isl_basic_map_gauss.
 */
static __isl_give isl_basic_map *reduce_stride_constraints(
	__isl_take isl_basic_map *bmap, int n, __isl_keep isl_mat *A)
{
	int i;
	isl_size total, n_div;
	int any = 0;
	isl_int gcd;
	total = isl_basic_map_dim(bmap, isl_dim_all);
	n_div = isl_basic_map_dim(bmap, isl_dim_div);
	if (total < 0 || n_div < 0 || !A)
		return isl_basic_map_free(bmap);
	total -= n_div;
	isl_int_init(gcd);
	for (i = 0; i < n; ++i) {
		int div;
		div = isl_seq_first_non_zero(bmap->eq[i] + 1 + total, n_div);
		if (div < 0)
			isl_die(isl_basic_map_get_ctx(bmap), isl_error_internal,
				"equality constraints modified unexpectedly",
				goto error);
		if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total + div + 1,
						n_div - div - 1) != -1)
			continue;
		if (isl_mat_row_gcd(A, i, &gcd) < 0)
			goto error;
		if (isl_int_is_one(gcd))
			continue;
		remove_incomplete_powers(&gcd, bmap->eq[i][1 + total + div]);
		if (isl_int_is_one(gcd))
			continue;
		isl_int_divexact(bmap->eq[i][1 + total + div],
				bmap->eq[i][1 + total + div], gcd);
		bmap = isl_basic_map_mark_div_unknown(bmap, div);
		if (!bmap)
			goto error;
		any = 1;
	}
	isl_int_clear(gcd);
	if (any)
		bmap = isl_basic_map_gauss(bmap, NULL);
	return bmap;
error:
	isl_int_clear(gcd);
	isl_basic_map_free(bmap);
	return NULL;
}
/* Simplify the stride constraints in "bmap" based on
 * the remaining equality constraints in "bmap" and all equality
 * constraints in "context".
 * Only do this if both "bmap" and "context" have stride constraints.
 *
 * First extract a copy of the stride constraints in "bmap" in a compressed
 * space exploiting all the other equality constraints and then
 * use this compressed copy to simplify the original stride constraints.
 */
static __isl_give isl_basic_map *gist_strides(__isl_take isl_basic_map *bmap,
	__isl_keep isl_basic_map *context)
{
	int bmap_n_eq, context_n_eq;
	isl_mat *A;
	if (!bmap || !context)
		return isl_basic_map_free(bmap);
	bmap_n_eq = n_div_eq(bmap);
	context_n_eq = n_div_eq(context);
	if (bmap_n_eq < 0 || context_n_eq < 0)
		return isl_basic_map_free(bmap);
	if (bmap_n_eq == 0 || context_n_eq == 0)
		return bmap;
	A = extract_compressed_stride_constraints(bmap, bmap_n_eq,
						    context, context_n_eq);
	bmap = reduce_stride_constraints(bmap, bmap_n_eq, A);
	isl_mat_free(A);
	return bmap;
}
/* Return a basic map that has the same intersection with "context" as "bmap"
 * and that is as "simple" as possible.
 *
 * The core computation is performed on the pure constraints.
 * When we add back the meaning of the integer divisions, we need
 * to (re)introduce the div constraints.  If we happen to have
 * discovered that some of these integer divisions are equal to
 * some affine combination of other variables, then these div
 * constraints may end up getting simplified in terms of the equalities,
 * resulting in extra inequalities on the other variables that
 * may have been removed already or that may not even have been
 * part of the input.  We try and remove those constraints of
 * this form that are most obviously redundant with respect to
 * the context.  We also remove those div constraints that are
 * redundant with respect to the other constraints in the result.
 *
 * The stride constraints among the equality constraints in "bmap" are
 * also simplified with respecting to the other equality constraints
 * in "bmap" and with respect to all equality constraints in "context".
 */
__isl_give isl_basic_map *isl_basic_map_gist(__isl_take isl_basic_map *bmap,
	__isl_take isl_basic_map *context)
{
	isl_basic_set *bset, *eq;
	isl_basic_map *eq_bmap;
	isl_size total, n_div, n_div_bmap;
	unsigned extra, n_eq, n_ineq;
	if (!bmap || !context)
		goto error;
	if (isl_basic_map_plain_is_universe(bmap)) {
		isl_basic_map_free(context);
		return bmap;
	}
	if (isl_basic_map_plain_is_empty(context)) {
		isl_space *space = isl_basic_map_get_space(bmap);
		isl_basic_map_free(bmap);
		isl_basic_map_free(context);
		return isl_basic_map_universe(space);
	}
	if (isl_basic_map_plain_is_empty(bmap)) {
		isl_basic_map_free(context);
		return bmap;
	}
	bmap = isl_basic_map_remove_redundancies(bmap);
	context = isl_basic_map_remove_redundancies(context);
	bmap = isl_basic_map_order_divs(bmap);
	context = isl_basic_map_align_divs(context, bmap);
	n_div = isl_basic_map_dim(context, isl_dim_div);
	total = isl_basic_map_dim(bmap, isl_dim_all);
	n_div_bmap = isl_basic_map_dim(bmap, isl_dim_div);
	if (n_div < 0 || total < 0 || n_div_bmap < 0)
		goto error;
	extra = n_div - n_div_bmap;
	bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
	bset = isl_basic_set_add_dims(bset, isl_dim_set, extra);
	bset = uset_gist(bset,
		    isl_basic_map_underlying_set(isl_basic_map_copy(context)));
	bset = isl_basic_set_project_out(bset, isl_dim_set, total, extra);
	if (!bset || bset->n_eq == 0 || n_div == 0 ||
	    isl_basic_set_plain_is_empty(bset)) {
		isl_basic_map_free(context);
		return isl_basic_map_overlying_set(bset, bmap);
	}
	n_eq = bset->n_eq;
	n_ineq = bset->n_ineq;
	eq = isl_basic_set_copy(bset);
	eq = isl_basic_set_cow(eq);
	eq = isl_basic_set_free_inequality(eq, n_ineq);
	bset = isl_basic_set_free_equality(bset, n_eq);
	eq_bmap = isl_basic_map_overlying_set(eq, isl_basic_map_copy(bmap));
	eq_bmap = gist_strides(eq_bmap, context);
	eq_bmap = isl_basic_map_remove_shifted_constraints(eq_bmap, context);
	bmap = isl_basic_map_overlying_set(bset, bmap);
	bmap = isl_basic_map_intersect(bmap, eq_bmap);
	bmap = isl_basic_map_remove_redundancies(bmap);
	return bmap;
error:
	isl_basic_map_free(bmap);
	isl_basic_map_free(context);
	return NULL;
}
/*
 * Assumes context has no implicit divs.
 */
__isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
	__isl_take isl_basic_map *context)
{
	int i;
	if (!map || !context)
		goto error;
	if (isl_basic_map_plain_is_empty(context)) {
		isl_space *space = isl_map_get_space(map);
		isl_map_free(map);
		isl_basic_map_free(context);
		return isl_map_universe(space);
	}
	context = isl_basic_map_remove_redundancies(context);
	map = isl_map_cow(map);
	if (isl_map_basic_map_check_equal_space(map, context) < 0)
		goto error;
	map = isl_map_compute_divs(map);
	if (!map)
		goto error;
	for (i = map->n - 1; i >= 0; --i) {
		map->p[i] = isl_basic_map_gist(map->p[i],
						isl_basic_map_copy(context));
		if (!map->p[i])
			goto error;
		if (isl_basic_map_plain_is_empty(map->p[i])) {
			isl_basic_map_free(map->p[i]);
			if (i != map->n - 1)
				map->p[i] = map->p[map->n - 1];
			map->n--;
		}
	}
	isl_basic_map_free(context);
	ISL_F_CLR(map, ISL_MAP_NORMALIZED);
	return map;
error:
	isl_map_free(map);
	isl_basic_map_free(context);
	return NULL;
}
/* Drop all inequalities from "bmap" that also appear in "context".
 * "context" is assumed to have only known local variables and
 * the initial local variables of "bmap" are assumed to be the same
 * as those of "context".
 * The constraints of both "bmap" and "context" are assumed
 * to have been sorted using isl_basic_map_sort_constraints.
 *
 * Run through the inequality constraints of "bmap" and "context"
 * in sorted order.
 * If a constraint of "bmap" involves variables not in "context",
 * then it cannot appear in "context".
 * If a matching constraint is found, it is removed from "bmap".
 */
static __isl_give isl_basic_map *drop_inequalities(
	__isl_take isl_basic_map *bmap, __isl_keep isl_basic_map *context)
{
	int i1, i2;
	isl_size total, bmap_total;
	unsigned extra;
	total = isl_basic_map_dim(context, isl_dim_all);
	bmap_total = isl_basic_map_dim(bmap, isl_dim_all);
	if (total < 0 || bmap_total < 0)
		return isl_basic_map_free(bmap);
	extra = bmap_total - total;
	i1 = bmap->n_ineq - 1;
	i2 = context->n_ineq - 1;
	while (bmap && i1 >= 0 && i2 >= 0) {
		int cmp;
		if (isl_seq_first_non_zero(bmap->ineq[i1] + 1 + total,
					    extra) != -1) {
			--i1;
			continue;
		}
		cmp = isl_basic_map_constraint_cmp(context, bmap->ineq[i1],
							context->ineq[i2]);
		if (cmp < 0) {
			--i2;
			continue;
		}
		if (cmp > 0) {
			--i1;
			continue;
		}
		if (isl_int_eq(bmap->ineq[i1][0], context->ineq[i2][0])) {
			bmap = isl_basic_map_cow(bmap);
			if (isl_basic_map_drop_inequality(bmap, i1) < 0)
				bmap = isl_basic_map_free(bmap);
		}
		--i1;
		--i2;
	}
	return bmap;
}
/* Drop all equalities from "bmap" that also appear in "context".
 * "context" is assumed to have only known local variables and
 * the initial local variables of "bmap" are assumed to be the same
 * as those of "context".
 *
 * Run through the equality constraints of "bmap" and "context"
 * in sorted order.
 * If a constraint of "bmap" involves variables not in "context",
 * then it cannot appear in "context".
 * If a matching constraint is found, it is removed from "bmap".
 */
static __isl_give isl_basic_map *drop_equalities(
	__isl_take isl_basic_map *bmap, __isl_keep isl_basic_map *context)
{
	int i1, i2;
	isl_size total, bmap_total;
	unsigned extra;
	total = isl_basic_map_dim(context, isl_dim_all);
	bmap_total = isl_basic_map_dim(bmap, isl_dim_all);
	if (total < 0 || bmap_total < 0)
		return isl_basic_map_free(bmap);
	extra = bmap_total - total;
	i1 = bmap->n_eq - 1;
	i2 = context->n_eq - 1;
	while (bmap && i1 >= 0 && i2 >= 0) {
		int last1, last2;
		if (isl_seq_first_non_zero(bmap->eq[i1] + 1 + total,
					    extra) != -1)
			break;
		last1 = isl_seq_last_non_zero(bmap->eq[i1] + 1, total);
		last2 = isl_seq_last_non_zero(context->eq[i2] + 1, total);
		if (last1 > last2) {
			--i2;
			continue;
		}
		if (last1 < last2) {
			--i1;
			continue;
		}
		if (isl_seq_eq(bmap->eq[i1], context->eq[i2], 1 + total)) {
			bmap = isl_basic_map_cow(bmap);
			if (isl_basic_map_drop_equality(bmap, i1) < 0)
				bmap = isl_basic_map_free(bmap);
		}
		--i1;
		--i2;
	}
	return bmap;
}
/* Remove the constraints in "context" from "bmap".
 * "context" is assumed to have explicit representations
 * for all local variables.
 *
 * First align the divs of "bmap" to those of "context" and
 * sort the constraints.  Then drop all constraints from "bmap"
 * that appear in "context".
 */
__isl_give isl_basic_map *isl_basic_map_plain_gist(
	__isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context)
{
	isl_bool done, known;
	done = isl_basic_map_plain_is_universe(context);
	if (done == isl_bool_false)
		done = isl_basic_map_plain_is_universe(bmap);
	if (done == isl_bool_false)
		done = isl_basic_map_plain_is_empty(context);
	if (done == isl_bool_false)
		done = isl_basic_map_plain_is_empty(bmap);
	if (done < 0)
		goto error;
	if (done) {
		isl_basic_map_free(context);
		return bmap;
	}
	known = isl_basic_map_divs_known(context);
	if (known < 0)
		goto error;
	if (!known)
		isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid,
			"context has unknown divs", goto error);
	context = isl_basic_map_order_divs(context);
	bmap = isl_basic_map_align_divs(bmap, context);
	bmap = isl_basic_map_gauss(bmap, NULL);
	bmap = isl_basic_map_sort_constraints(bmap);
	context = isl_basic_map_sort_constraints(context);
	bmap = drop_inequalities(bmap, context);
	bmap = drop_equalities(bmap, context);
	isl_basic_map_free(context);
	bmap = isl_basic_map_finalize(bmap);
	return bmap;
error:
	isl_basic_map_free(bmap);
	isl_basic_map_free(context);
	return NULL;
}
/* Replace "map" by the disjunct at position "pos" and free "context".
 */
static __isl_give isl_map *replace_by_disjunct(__isl_take isl_map *map,
	int pos, __isl_take isl_basic_map *context)
{
	isl_basic_map *bmap;
	bmap = isl_basic_map_copy(map->p[pos]);
	isl_map_free(map);
	isl_basic_map_free(context);
	return isl_map_from_basic_map(bmap);
}
/* Remove the constraints in "context" from "map".
 * If any of the disjuncts in the result turns out to be the universe,
 * then return this universe.
 * "context" is assumed to have explicit representations
 * for all local variables.
 */
__isl_give isl_map *isl_map_plain_gist_basic_map(__isl_take isl_map *map,
	__isl_take isl_basic_map *context)
{
	int i;
	isl_bool univ, known;
	univ = isl_basic_map_plain_is_universe(context);
	if (univ < 0)
		goto error;
	if (univ) {
		isl_basic_map_free(context);
		return map;
	}
	known = isl_basic_map_divs_known(context);
	if (known < 0)
		goto error;
	if (!known)
		isl_die(isl_map_get_ctx(map), isl_error_invalid,
			"context has unknown divs", goto error);
	map = isl_map_cow(map);
	if (!map)
		goto error;
	for (i = 0; i < map->n; ++i) {
		map->p[i] = isl_basic_map_plain_gist(map->p[i],
						isl_basic_map_copy(context));
		univ = isl_basic_map_plain_is_universe(map->p[i]);
		if (univ < 0)
			goto error;
		if (univ && map->n > 1)
			return replace_by_disjunct(map, i, context);
	}
	isl_basic_map_free(context);
	ISL_F_CLR(map, ISL_MAP_NORMALIZED);
	if (map->n > 1)
		ISL_F_CLR(map, ISL_MAP_DISJOINT);
	return map;
error:
	isl_map_free(map);
	isl_basic_map_free(context);
	return NULL;
}
/* Remove the constraints in "context" from "set".
 * If any of the disjuncts in the result turns out to be the universe,
 * then return this universe.
 * "context" is assumed to have explicit representations
 * for all local variables.
 */
__isl_give isl_set *isl_set_plain_gist_basic_set(__isl_take isl_set *set,
	__isl_take isl_basic_set *context)
{
	return set_from_map(isl_map_plain_gist_basic_map(set_to_map(set),
							bset_to_bmap(context)));
}
/* Remove the constraints in "context" from "map".
 * If any of the disjuncts in the result turns out to be the universe,
 * then return this universe.
 * "context" is assumed to consist of a single disjunct and
 * to have explicit representations for all local variables.
 */
__isl_give isl_map *isl_map_plain_gist(__isl_take isl_map *map,
	__isl_take isl_map *context)
{
	isl_basic_map *hull;
	hull = isl_map_unshifted_simple_hull(context);
	return isl_map_plain_gist_basic_map(map, hull);
}
/* Replace "map" by a universe map in the same space and free "drop".
 */
static __isl_give isl_map *replace_by_universe(__isl_take isl_map *map,
	__isl_take isl_map *drop)
{
	isl_map *res;
	res = isl_map_universe(isl_map_get_space(map));
	isl_map_free(map);
	isl_map_free(drop);
	return res;
}
/* Return a map that has the same intersection with "context" as "map"
 * and that is as "simple" as possible.
 *
 * If "map" is already the universe, then we cannot make it any simpler.
 * Similarly, if "context" is the universe, then we cannot exploit it
 * to simplify "map"
 * If "map" and "context" are identical to each other, then we can
 * return the corresponding universe.
 *
 * If either "map" or "context" consists of multiple disjuncts,
 * then check if "context" happens to be a subset of "map",
 * in which case all constraints can be removed.
 * In case of multiple disjuncts, the standard procedure
 * may not be able to detect that all constraints can be removed.
 *
 * If none of these cases apply, we have to work a bit harder.
 * During this computation, we make use of a single disjunct context,
 * so if the original context consists of more than one disjunct
 * then we need to approximate the context by a single disjunct set.
 * Simply taking the simple hull may drop constraints that are
 * only implicitly available in each disjunct.  We therefore also
 * look for constraints among those defining "map" that are valid
 * for the context.  These can then be used to simplify away
 * the corresponding constraints in "map".
 */
__isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
	__isl_take isl_map *context)
{
	int equal;
	int is_universe;
	isl_size n_disjunct_map, n_disjunct_context;
	isl_bool subset;
	isl_basic_map *hull;
	is_universe = isl_map_plain_is_universe(map);
	if (is_universe >= 0 && !is_universe)
		is_universe = isl_map_plain_is_universe(context);
	if (is_universe < 0)
		goto error;
	if (is_universe) {
		isl_map_free(context);
		return map;
	}
	isl_map_align_params_bin(&map, &context);
	equal = isl_map_plain_is_equal(map, context);
	if (equal < 0)
		goto error;
	if (equal)
		return replace_by_universe(map, context);
	n_disjunct_map = isl_map_n_basic_map(map);
	n_disjunct_context = isl_map_n_basic_map(context);
	if (n_disjunct_map < 0 || n_disjunct_context < 0)
		goto error;
	if (n_disjunct_map != 1 || n_disjunct_context != 1) {
		subset = isl_map_is_subset(context, map);
		if (subset < 0)
			goto error;
		if (subset)
			return replace_by_universe(map, context);
	}
	context = isl_map_compute_divs(context);
	if (!context)
		goto error;
	if (n_disjunct_context == 1) {
		hull = isl_map_simple_hull(context);
	} else {
		isl_ctx *ctx;
		isl_map_list *list;
		ctx = isl_map_get_ctx(map);
		list = isl_map_list_alloc(ctx, 2);
		list = isl_map_list_add(list, isl_map_copy(context));
		list = isl_map_list_add(list, isl_map_copy(map));
		hull = isl_map_unshifted_simple_hull_from_map_list(context,
								    list);
	}
	return isl_map_gist_basic_map(map, hull);
error:
	isl_map_free(map);
	isl_map_free(context);
	return NULL;
}
__isl_give isl_basic_set *isl_basic_set_gist(__isl_take isl_basic_set *bset,
	__isl_take isl_basic_set *context)
{
	return bset_from_bmap(isl_basic_map_gist(bset_to_bmap(bset),
						bset_to_bmap(context)));
}
__isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
	__isl_take isl_basic_set *context)
{
	return set_from_map(isl_map_gist_basic_map(set_to_map(set),
					bset_to_bmap(context)));
}
__isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set,
	__isl_take isl_basic_set *context)
{
	isl_space *space = isl_set_get_space(set);
	isl_basic_set *dom_context = isl_basic_set_universe(space);
	dom_context = isl_basic_set_intersect_params(dom_context, context);
	return isl_set_gist_basic_set(set, dom_context);
}
__isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
	__isl_take isl_set *context)
{
	return set_from_map(isl_map_gist(set_to_map(set), set_to_map(context)));
}
/* Compute the gist of "bmap" with respect to the constraints "context"
 * on the domain.
 */
__isl_give isl_basic_map *isl_basic_map_gist_domain(
	__isl_take isl_basic_map *bmap, __isl_take isl_basic_set *context)
{
	isl_space *space = isl_basic_map_get_space(bmap);
	isl_basic_map *bmap_context = isl_basic_map_universe(space);
	bmap_context = isl_basic_map_intersect_domain(bmap_context, context);
	return isl_basic_map_gist(bmap, bmap_context);
}
__isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map,
	__isl_take isl_set *context)
{
	isl_map *map_context = isl_map_universe(isl_map_get_space(map));
	map_context = isl_map_intersect_domain(map_context, context);
	return isl_map_gist(map, map_context);
}
__isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map,
	__isl_take isl_set *context)
{
	isl_map *map_context = isl_map_universe(isl_map_get_space(map));
	map_context = isl_map_intersect_range(map_context, context);
	return isl_map_gist(map, map_context);
}
__isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map,
	__isl_take isl_set *context)
{
	isl_map *map_context = isl_map_universe(isl_map_get_space(map));
	map_context = isl_map_intersect_params(map_context, context);
	return isl_map_gist(map, map_context);
}
__isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set,
	__isl_take isl_set *context)
{
	return isl_map_gist_params(set, context);
}
/* Quick check to see if two basic maps are disjoint.
 * In particular, we reduce the equalities and inequalities of
 * one basic map in the context of the equalities of the other
 * basic map and check if we get a contradiction.
 */
isl_bool isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1,
	__isl_keep isl_basic_map *bmap2)
{
	struct isl_vec *v = NULL;
	int *elim = NULL;
	isl_size total;
	int i;
	if (isl_basic_map_check_equal_space(bmap1, bmap2) < 0)
		return isl_bool_error;
	if (bmap1->n_div || bmap2->n_div)
		return isl_bool_false;
	if (!bmap1->n_eq && !bmap2->n_eq)
		return isl_bool_false;
	total = isl_space_dim(bmap1->dim, isl_dim_all);
	if (total < 0)
		return isl_bool_error;
	if (total == 0)
		return isl_bool_false;
	v = isl_vec_alloc(bmap1->ctx, 1 + total);
	if (!v)
		goto error;
	elim = isl_alloc_array(bmap1->ctx, int, total);
	if (!elim)
		goto error;
	compute_elimination_index(bmap1, elim, total);
	for (i = 0; i < bmap2->n_eq; ++i) {
		int reduced;
		reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
							bmap1, elim, total);
		if (reduced && !isl_int_is_zero(v->block.data[0]) &&
		    isl_seq_first_non_zero(v->block.data + 1, total) == -1)
			goto disjoint;
	}
	for (i = 0; i < bmap2->n_ineq; ++i) {
		int reduced;
		reduced = reduced_using_equalities(v->block.data,
					bmap2->ineq[i], bmap1, elim, total);
		if (reduced && isl_int_is_neg(v->block.data[0]) &&
		    isl_seq_first_non_zero(v->block.data + 1, total) == -1)
			goto disjoint;
	}
	compute_elimination_index(bmap2, elim, total);
	for (i = 0; i < bmap1->n_ineq; ++i) {
		int reduced;
		reduced = reduced_using_equalities(v->block.data,
					bmap1->ineq[i], bmap2, elim, total);
		if (reduced && isl_int_is_neg(v->block.data[0]) &&
		    isl_seq_first_non_zero(v->block.data + 1, total) == -1)
			goto disjoint;
	}
	isl_vec_free(v);
	free(elim);
	return isl_bool_false;
disjoint:
	isl_vec_free(v);
	free(elim);
	return isl_bool_true;
error:
	isl_vec_free(v);
	free(elim);
	return isl_bool_error;
}
int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1,
	__isl_keep isl_basic_set *bset2)
{
	return isl_basic_map_plain_is_disjoint(bset_to_bmap(bset1),
					      bset_to_bmap(bset2));
}
/* Does "test" hold for all pairs of basic maps in "map1" and "map2"?
 */
static isl_bool all_pairs(__isl_keep isl_map *map1, __isl_keep isl_map *map2,
	isl_bool (*test)(__isl_keep isl_basic_map *bmap1,
		__isl_keep isl_basic_map *bmap2))
{
	int i, j;
	if (!map1 || !map2)
		return isl_bool_error;
	for (i = 0; i < map1->n; ++i) {
		for (j = 0; j < map2->n; ++j) {
			isl_bool d = test(map1->p[i], map2->p[j]);
			if (d != isl_bool_true)
				return d;
		}
	}
	return isl_bool_true;
}
/* Are "map1" and "map2" obviously disjoint, based on information
 * that can be derived without looking at the individual basic maps?
 *
 * In particular, if one of them is empty or if they live in different spaces
 * (ignoring parameters), then they are clearly disjoint.
 */
static isl_bool isl_map_plain_is_disjoint_global(__isl_keep isl_map *map1,
	__isl_keep isl_map *map2)
{
	isl_bool disjoint;
	isl_bool match;
	if (!map1 || !map2)
		return isl_bool_error;
	disjoint = isl_map_plain_is_empty(map1);
	if (disjoint < 0 || disjoint)
		return disjoint;
	disjoint = isl_map_plain_is_empty(map2);
	if (disjoint < 0 || disjoint)
		return disjoint;
	match = isl_map_tuple_is_equal(map1, isl_dim_in, map2, isl_dim_in);
	if (match < 0 || !match)
		return match < 0 ? isl_bool_error : isl_bool_true;
	match = isl_map_tuple_is_equal(map1, isl_dim_out, map2, isl_dim_out);
	if (match < 0 || !match)
		return match < 0 ? isl_bool_error : isl_bool_true;
	return isl_bool_false;
}
/* Are "map1" and "map2" obviously disjoint?
 *
 * If one of them is empty or if they live in different spaces (ignoring
 * parameters), then they are clearly disjoint.
 * This is checked by isl_map_plain_is_disjoint_global.
 *
 * If they have different parameters, then we skip any further tests.
 *
 * If they are obviously equal, but not obviously empty, then we will
 * not be able to detect if they are disjoint.
 *
 * Otherwise we check if each basic map in "map1" is obviously disjoint
 * from each basic map in "map2".
 */
isl_bool isl_map_plain_is_disjoint(__isl_keep isl_map *map1,
	__isl_keep isl_map *map2)
{
	isl_bool disjoint;
	isl_bool intersect;
	isl_bool match;
	disjoint = isl_map_plain_is_disjoint_global(map1, map2);
	if (disjoint < 0 || disjoint)
		return disjoint;
	match = isl_map_has_equal_params(map1, map2);
	if (match < 0 || !match)
		return match < 0 ? isl_bool_error : isl_bool_false;
	intersect = isl_map_plain_is_equal(map1, map2);
	if (intersect < 0 || intersect)
		return intersect < 0 ? isl_bool_error : isl_bool_false;
	return all_pairs(map1, map2, &isl_basic_map_plain_is_disjoint);
}
/* Are "map1" and "map2" disjoint?
 * The parameters are assumed to have been aligned.
 *
 * In particular, check whether all pairs of basic maps are disjoint.
 */
static isl_bool isl_map_is_disjoint_aligned(__isl_keep isl_map *map1,
	__isl_keep isl_map *map2)
{
	return all_pairs(map1, map2, &isl_basic_map_is_disjoint);
}
/* Are "map1" and "map2" disjoint?
 *
 * They are disjoint if they are "obviously disjoint" or if one of them
 * is empty.  Otherwise, they are not disjoint if one of them is universal.
 * If the two inputs are (obviously) equal and not empty, then they are
 * not disjoint.
 * If none of these cases apply, then check if all pairs of basic maps
 * are disjoint after aligning the parameters.
 */
isl_bool isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2)
{
	isl_bool disjoint;
	isl_bool intersect;
	disjoint = isl_map_plain_is_disjoint_global(map1, map2);
	if (disjoint < 0 || disjoint)
		return disjoint;
	disjoint = isl_map_is_empty(map1);
	if (disjoint < 0 || disjoint)
		return disjoint;
	disjoint = isl_map_is_empty(map2);
	if (disjoint < 0 || disjoint)
		return disjoint;
	intersect = isl_map_plain_is_universe(map1);
	if (intersect < 0 || intersect)
		return isl_bool_not(intersect);
	intersect = isl_map_plain_is_universe(map2);
	if (intersect < 0 || intersect)
		return isl_bool_not(intersect);
	intersect = isl_map_plain_is_equal(map1, map2);
	if (intersect < 0 || intersect)
		return isl_bool_not(intersect);
	return isl_map_align_params_map_map_and_test(map1, map2,
						&isl_map_is_disjoint_aligned);
}
/* Are "bmap1" and "bmap2" disjoint?
 *
 * They are disjoint if they are "obviously disjoint" or if one of them
 * is empty.  Otherwise, they are not disjoint if one of them is universal.
 * If none of these cases apply, we compute the intersection and see if
 * the result is empty.
 */
isl_bool isl_basic_map_is_disjoint(__isl_keep isl_basic_map *bmap1,
	__isl_keep isl_basic_map *bmap2)
{
	isl_bool disjoint;
	isl_bool intersect;
	isl_basic_map *test;
	disjoint = isl_basic_map_plain_is_disjoint(bmap1, bmap2);
	if (disjoint < 0 || disjoint)
		return disjoint;
	disjoint = isl_basic_map_is_empty(bmap1);
	if (disjoint < 0 || disjoint)
		return disjoint;
	disjoint = isl_basic_map_is_empty(bmap2);
	if (disjoint < 0 || disjoint)
		return disjoint;
	intersect = isl_basic_map_plain_is_universe(bmap1);
	if (intersect < 0 || intersect)
		return isl_bool_not(intersect);
	intersect = isl_basic_map_plain_is_universe(bmap2);
	if (intersect < 0 || intersect)
		return isl_bool_not(intersect);
	test = isl_basic_map_intersect(isl_basic_map_copy(bmap1),
		isl_basic_map_copy(bmap2));
	disjoint = isl_basic_map_is_empty(test);
	isl_basic_map_free(test);
	return disjoint;
}
/* Are "bset1" and "bset2" disjoint?
 */
isl_bool isl_basic_set_is_disjoint(__isl_keep isl_basic_set *bset1,
	__isl_keep isl_basic_set *bset2)
{
	return isl_basic_map_is_disjoint(bset1, bset2);
}
isl_bool isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
	__isl_keep isl_set *set2)
{
	return isl_map_plain_is_disjoint(set_to_map(set1), set_to_map(set2));
}
/* Are "set1" and "set2" disjoint?
 */
isl_bool isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
{
	return isl_map_is_disjoint(set1, set2);
}
/* Is "v" equal to 0, 1 or -1?
 */
static int is_zero_or_one(isl_int v)
{
	return isl_int_is_zero(v) || isl_int_is_one(v) || isl_int_is_negone(v);
}
/* Are the "n" coefficients starting at "first" of inequality constraints
 * "i" and "j" of "bmap" opposite to each other?
 */
static int is_opposite_part(__isl_keep isl_basic_map *bmap, int i, int j,
	int first, int n)
{
	return isl_seq_is_neg(bmap->ineq[i] + first, bmap->ineq[j] + first, n);
}
/* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
 * apart from the constant term?
 */
static isl_bool is_opposite(__isl_keep isl_basic_map *bmap, int i, int j)
{
	isl_size total;
	total = isl_basic_map_dim(bmap, isl_dim_all);
	if (total < 0)
		return isl_bool_error;
	return is_opposite_part(bmap, i, j, 1, total);
}
/* Check if we can combine a given div with lower bound l and upper
 * bound u with some other div and if so return that other div.
 * Otherwise, return a position beyond the integer divisions.
 * Return -1 on error.
 *
 * We first check that
 *	- the bounds are opposites of each other (except for the constant
 *	  term)
 *	- the bounds do not reference any other div
 *	- no div is defined in terms of this div
 *
 * Let m be the size of the range allowed on the div by the bounds.
 * That is, the bounds are of the form
 *
 *	e <= a <= e + m - 1
 *
 * with e some expression in the other variables.
 * We look for another div b such that no third div is defined in terms
 * of this second div b and such that in any constraint that contains
 * a (except for the given lower and upper bound), also contains b
 * with a coefficient that is m times that of b.
 * That is, all constraints (except for the lower and upper bound)
 * are of the form
 *
 *	e + f (a + m b) >= 0
 *
 * Furthermore, in the constraints that only contain b, the coefficient
 * of b should be equal to 1 or -1.
 * If so, we return b so that "a + m b" can be replaced by
 * a single div "c = a + m b".
 */
static int div_find_coalesce(__isl_keep isl_basic_map *bmap, int *pairs,
	unsigned div, unsigned l, unsigned u)
{
	int i, j;
	unsigned n_div;
	isl_size v_div;
	int coalesce;
	isl_bool opp;
	n_div = isl_basic_map_dim(bmap, isl_dim_div);
	if (n_div <= 1)
		return n_div;
	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
	if (v_div < 0)
		return -1;
	if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + v_div, div) != -1)
		return n_div;
	if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + v_div + div + 1,
				   n_div - div - 1) != -1)
		return n_div;
	opp = is_opposite(bmap, l, u);
	if (opp < 0 || !opp)
		return opp < 0 ? -1 : n_div;
	for (i = 0; i < n_div; ++i) {
		if (isl_int_is_zero(bmap->div[i][0]))
			continue;
		if (!isl_int_is_zero(bmap->div[i][1 + 1 + v_div + div]))
			return n_div;
	}
	isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
	if (isl_int_is_neg(bmap->ineq[l][0])) {
		isl_int_sub(bmap->ineq[l][0],
			    bmap->ineq[l][0], bmap->ineq[u][0]);
		bmap = isl_basic_map_copy(bmap);
		bmap = isl_basic_map_set_to_empty(bmap);
		isl_basic_map_free(bmap);
		return n_div;
	}
	isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
	coalesce = n_div;
	for (i = 0; i < n_div; ++i) {
		if (i == div)
			continue;
		if (!pairs[i])
			continue;
		for (j = 0; j < n_div; ++j) {
			if (isl_int_is_zero(bmap->div[j][0]))
				continue;
			if (!isl_int_is_zero(bmap->div[j][1 + 1 + v_div + i]))
				break;
		}
		if (j < n_div)
			continue;
		for (j = 0; j < bmap->n_ineq; ++j) {
			int valid;
			if (j == l || j == u)
				continue;
			if (isl_int_is_zero(bmap->ineq[j][1 + v_div + div])) {
				if (is_zero_or_one(bmap->ineq[j][1 + v_div + i]))
					continue;
				break;
			}
			if (isl_int_is_zero(bmap->ineq[j][1 + v_div + i]))
				break;
			isl_int_mul(bmap->ineq[j][1 + v_div + div],
				    bmap->ineq[j][1 + v_div + div],
				    bmap->ineq[l][0]);
			valid = isl_int_eq(bmap->ineq[j][1 + v_div + div],
					   bmap->ineq[j][1 + v_div + i]);
			isl_int_divexact(bmap->ineq[j][1 + v_div + div],
					 bmap->ineq[j][1 + v_div + div],
					 bmap->ineq[l][0]);
			if (!valid)
				break;
		}
		if (j < bmap->n_ineq)
			continue;
		coalesce = i;
		break;
	}
	isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
	isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
	return coalesce;
}
/* Internal data structure used during the construction and/or evaluation of
 * an inequality that ensures that a pair of bounds always allows
 * for an integer value.
 *
 * "tab" is the tableau in which the inequality is evaluated.  It may
 * be NULL until it is actually needed.
 * "v" contains the inequality coefficients.
 * "g", "fl" and "fu" are temporary scalars used during the construction and
 * evaluation.
 */
struct test_ineq_data {
	struct isl_tab *tab;
	isl_vec *v;
	isl_int g;
	isl_int fl;
	isl_int fu;
};
/* Free all the memory allocated by the fields of "data".
 */
static void test_ineq_data_clear(struct test_ineq_data *data)
{
	isl_tab_free(data->tab);
	isl_vec_free(data->v);
	isl_int_clear(data->g);
	isl_int_clear(data->fl);
	isl_int_clear(data->fu);
}
/* Is the inequality stored in data->v satisfied by "bmap"?
 * That is, does it only attain non-negative values?
 * data->tab is a tableau corresponding to "bmap".
 */
static isl_bool test_ineq_is_satisfied(__isl_keep isl_basic_map *bmap,
	struct test_ineq_data *data)
{
	isl_ctx *ctx;
	enum isl_lp_result res;
	ctx = isl_basic_map_get_ctx(bmap);
	if (!data->tab)
		data->tab = isl_tab_from_basic_map(bmap, 0);
	res = isl_tab_min(data->tab, data->v->el, ctx->one, &data->g, NULL, 0);
	if (res == isl_lp_error)
		return isl_bool_error;
	return res == isl_lp_ok && isl_int_is_nonneg(data->g);
}
/* Given a lower and an upper bound on div i, do they always allow
 * for an integer value of the given div?
 * Determine this property by constructing an inequality
 * such that the property is guaranteed when the inequality is nonnegative.
 * The lower bound is inequality l, while the upper bound is inequality u.
 * The constructed inequality is stored in data->v.
 *
 * Let the upper bound be
 *
 *	-n_u a + e_u >= 0
 *
 * and the lower bound
 *
 *	n_l a + e_l >= 0
 *
 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
 * We have
 *
 *	- f_u e_l <= f_u f_l g a <= f_l e_u
 *
 * Since all variables are integer valued, this is equivalent to
 *
 *	- f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
 *
 * If this interval is at least f_u f_l g, then it contains at least
 * one integer value for a.
 * That is, the test constraint is
 *
 *	f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
 *
 * or
 *
 *	f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 - f_u f_l g >= 0
 *
 * If the coefficients of f_l e_u + f_u e_l have a common divisor g',
 * then the constraint can be scaled down by a factor g',
 * with the constant term replaced by
 * floor((f_l e_{u,0} + f_u e_{l,0} + f_l - 1 + f_u - 1 + 1 - f_u f_l g)/g').
 * Note that the result of applying Fourier-Motzkin to this pair
 * of constraints is
 *
 *	f_l e_u + f_u e_l >= 0
 *
 * If the constant term of the scaled down version of this constraint,
 * i.e., floor((f_l e_{u,0} + f_u e_{l,0})/g') is equal to the constant
 * term of the scaled down test constraint, then the test constraint
 * is known to hold and no explicit evaluation is required.
 * This is essentially the Omega test.
 *
 * If the test constraint consists of only a constant term, then
 * it is sufficient to look at the sign of this constant term.
 */
static isl_bool int_between_bounds(__isl_keep isl_basic_map *bmap, int i,
	int l, int u, struct test_ineq_data *data)
{
	unsigned offset;
	isl_size n_div;
	offset = isl_basic_map_offset(bmap, isl_dim_div);
	n_div = isl_basic_map_dim(bmap, isl_dim_div);
	if (n_div < 0)
		return isl_bool_error;
	isl_int_gcd(data->g,
		    bmap->ineq[l][offset + i], bmap->ineq[u][offset + i]);
	isl_int_divexact(data->fl, bmap->ineq[l][offset + i], data->g);
	isl_int_divexact(data->fu, bmap->ineq[u][offset + i], data->g);
	isl_int_neg(data->fu, data->fu);
	isl_seq_combine(data->v->el, data->fl, bmap->ineq[u],
			data->fu, bmap->ineq[l], offset + n_div);
	isl_int_mul(data->g, data->g, data->fl);
	isl_int_mul(data->g, data->g, data->fu);
	isl_int_sub(data->g, data->g, data->fl);
	isl_int_sub(data->g, data->g, data->fu);
	isl_int_add_ui(data->g, data->g, 1);
	isl_int_sub(data->fl, data->v->el[0], data->g);
	isl_seq_gcd(data->v->el + 1, offset - 1 + n_div, &data->g);
	if (isl_int_is_zero(data->g))
		return isl_int_is_nonneg(data->fl);
	if (isl_int_is_one(data->g)) {
		isl_int_set(data->v->el[0], data->fl);
		return test_ineq_is_satisfied(bmap, data);
	}
	isl_int_fdiv_q(data->fl, data->fl, data->g);
	isl_int_fdiv_q(data->v->el[0], data->v->el[0], data->g);
	if (isl_int_eq(data->fl, data->v->el[0]))
		return isl_bool_true;
	isl_int_set(data->v->el[0], data->fl);
	isl_seq_scale_down(data->v->el + 1, data->v->el + 1, data->g,
			    offset - 1 + n_div);
	return test_ineq_is_satisfied(bmap, data);
}
/* Remove more kinds of divs that are not strictly needed.
 * In particular, if all pairs of lower and upper bounds on a div
 * are such that they allow at least one integer value of the div,
 * then we can eliminate the div using Fourier-Motzkin without
 * introducing any spurious solutions.
 *
 * If at least one of the two constraints has a unit coefficient for the div,
 * then the presence of such a value is guaranteed so there is no need to check.
 * In particular, the value attained by the bound with unit coefficient
 * can serve as this intermediate value.
 */
static __isl_give isl_basic_map *drop_more_redundant_divs(
	__isl_take isl_basic_map *bmap, __isl_take int *pairs, int n)
{
	isl_ctx *ctx;
	struct test_ineq_data data = { NULL, NULL };
	unsigned off;
	isl_size n_div;
	int remove = -1;
	isl_int_init(data.g);
	isl_int_init(data.fl);
	isl_int_init(data.fu);
	n_div = isl_basic_map_dim(bmap, isl_dim_div);
	if (n_div < 0)
		goto error;
	ctx = isl_basic_map_get_ctx(bmap);
	off = isl_basic_map_offset(bmap, isl_dim_div);
	data.v = isl_vec_alloc(ctx, off + n_div);
	if (!data.v)
		goto error;
	while (n > 0) {
		int i, l, u;
		int best = -1;
		isl_bool has_int;
		for (i = 0; i < n_div; ++i) {
			if (!pairs[i])
				continue;
			if (best >= 0 && pairs[best] <= pairs[i])
				continue;
			best = i;
		}
		i = best;
		for (l = 0; l < bmap->n_ineq; ++l) {
			if (!isl_int_is_pos(bmap->ineq[l][off + i]))
				continue;
			if (isl_int_is_one(bmap->ineq[l][off + i]))
				continue;
			for (u = 0; u < bmap->n_ineq; ++u) {
				if (!isl_int_is_neg(bmap->ineq[u][off + i]))
					continue;
				if (isl_int_is_negone(bmap->ineq[u][off + i]))
					continue;
				has_int = int_between_bounds(bmap, i, l, u,
								&data);
				if (has_int < 0)
					goto error;
				if (data.tab && data.tab->empty)
					break;
				if (!has_int)
					break;
			}
			if (u < bmap->n_ineq)
				break;
		}
		if (data.tab && data.tab->empty) {
			bmap = isl_basic_map_set_to_empty(bmap);
			break;
		}
		if (l == bmap->n_ineq) {
			remove = i;
			break;
		}
		pairs[i] = 0;
		--n;
	}
	test_ineq_data_clear(&data);
	free(pairs);
	if (remove < 0)
		return bmap;
	bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
	return isl_basic_map_drop_redundant_divs(bmap);
error:
	free(pairs);
	isl_basic_map_free(bmap);
	test_ineq_data_clear(&data);
	return NULL;
}
/* Given a pair of divs div1 and div2 such that, except for the lower bound l
 * and the upper bound u, div1 always occurs together with div2 in the form
 * (div1 + m div2), where m is the constant range on the variable div1
 * allowed by l and u, replace the pair div1 and div2 by a single
 * div that is equal to div1 + m div2.
 *
 * The new div will appear in the location that contains div2.
 * We need to modify all constraints that contain
 * div2 = (div - div1) / m
 * The coefficient of div2 is known to be equal to 1 or -1.
 * (If a constraint does not contain div2, it will also not contain div1.)
 * If the constraint also contains div1, then we know they appear
 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
 * i.e., the coefficient of div is f.
 *
 * Otherwise, we first need to introduce div1 into the constraint.
 * Let l be
 *
 *	div1 + f >=0
 *
 * and u
 *
 *	-div1 + f' >= 0
 *
 * A lower bound on div2
 *
 *	div2 + t >= 0
 *
 * can be replaced by
 *
 *	m div2 + div1 + m t + f >= 0
 *
 * An upper bound
 *
 *	-div2 + t >= 0
 *
 * can be replaced by
 *
 *	-(m div2 + div1) + m t + f' >= 0
 *
 * These constraint are those that we would obtain from eliminating
 * div1 using Fourier-Motzkin.
 *
 * After all constraints have been modified, we drop the lower and upper
 * bound and then drop div1.
 * Since the new div is only placed in the same location that used
 * to store div2, but otherwise has a different meaning, any possible
 * explicit representation of the original div2 is removed.
 */
static __isl_give isl_basic_map *coalesce_divs(__isl_take isl_basic_map *bmap,
	unsigned div1, unsigned div2, unsigned l, unsigned u)
{
	isl_ctx *ctx;
	isl_int m;
	isl_size v_div;
	unsigned total;
	int i;
	ctx = isl_basic_map_get_ctx(bmap);
	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
	if (v_div < 0)
		return isl_basic_map_free(bmap);
	total = 1 + v_div + bmap->n_div;
	isl_int_init(m);
	isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
	isl_int_add_ui(m, m, 1);
	for (i = 0; i < bmap->n_ineq; ++i) {
		if (i == l || i == u)
			continue;
		if (isl_int_is_zero(bmap->ineq[i][1 + v_div + div2]))
			continue;
		if (isl_int_is_zero(bmap->ineq[i][1 + v_div + div1])) {
			if (isl_int_is_pos(bmap->ineq[i][1 + v_div + div2]))
				isl_seq_combine(bmap->ineq[i], m, bmap->ineq[i],
						ctx->one, bmap->ineq[l], total);
			else
				isl_seq_combine(bmap->ineq[i], m, bmap->ineq[i],
						ctx->one, bmap->ineq[u], total);
		}
		isl_int_set(bmap->ineq[i][1 + v_div + div2],
			    bmap->ineq[i][1 + v_div + div1]);
		isl_int_set_si(bmap->ineq[i][1 + v_div + div1], 0);
	}
	isl_int_clear(m);
	if (l > u) {
		isl_basic_map_drop_inequality(bmap, l);
		isl_basic_map_drop_inequality(bmap, u);
	} else {
		isl_basic_map_drop_inequality(bmap, u);
		isl_basic_map_drop_inequality(bmap, l);
	}
	bmap = isl_basic_map_mark_div_unknown(bmap, div2);
	bmap = isl_basic_map_drop_div(bmap, div1);
	return bmap;
}
/* First check if we can coalesce any pair of divs and
 * then continue with dropping more redundant divs.
 *
 * We loop over all pairs of lower and upper bounds on a div
 * with coefficient 1 and -1, respectively, check if there
 * is any other div "c" with which we can coalesce the div
 * and if so, perform the coalescing.
 */
static __isl_give isl_basic_map *coalesce_or_drop_more_redundant_divs(
	__isl_take isl_basic_map *bmap, int *pairs, int n)
{
	int i, l, u;
	isl_size v_div;
	isl_size n_div;
	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
	n_div = isl_basic_map_dim(bmap, isl_dim_div);
	if (v_div < 0 || n_div < 0)
		return isl_basic_map_free(bmap);
	for (i = 0; i < n_div; ++i) {
		if (!pairs[i])
			continue;
		for (l = 0; l < bmap->n_ineq; ++l) {
			if (!isl_int_is_one(bmap->ineq[l][1 + v_div + i]))
				continue;
			for (u = 0; u < bmap->n_ineq; ++u) {
				int c;
				if (!isl_int_is_negone(bmap->ineq[u][1+v_div+i]))
					continue;
				c = div_find_coalesce(bmap, pairs, i, l, u);
				if (c < 0)
					goto error;
				if (c >= n_div)
					continue;
				free(pairs);
				bmap = coalesce_divs(bmap, i, c, l, u);
				return isl_basic_map_drop_redundant_divs(bmap);
			}
		}
	}
	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
		free(pairs);
		return bmap;
	}
	return drop_more_redundant_divs(bmap, pairs, n);
error:
	free(pairs);
	isl_basic_map_free(bmap);
	return NULL;
}
/* Are the "n" coefficients starting at "first" of inequality constraints
 * "i" and "j" of "bmap" equal to each other?
 */
static int is_parallel_part(__isl_keep isl_basic_map *bmap, int i, int j,
	int first, int n)
{
	return isl_seq_eq(bmap->ineq[i] + first, bmap->ineq[j] + first, n);
}
/* Are inequality constraints "i" and "j" of "bmap" equal to each other,
 * apart from the constant term and the coefficient at position "pos"?
 */
static isl_bool is_parallel_except(__isl_keep isl_basic_map *bmap, int i, int j,
	int pos)
{
	isl_size total;
	total = isl_basic_map_dim(bmap, isl_dim_all);
	if (total < 0)
		return isl_bool_error;
	return is_parallel_part(bmap, i, j, 1, pos - 1) &&
		is_parallel_part(bmap, i, j, pos + 1, total - pos);
}
/* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
 * apart from the constant term and the coefficient at position "pos"?
 */
static isl_bool is_opposite_except(__isl_keep isl_basic_map *bmap, int i, int j,
	int pos)
{
	isl_size total;
	total = isl_basic_map_dim(bmap, isl_dim_all);
	if (total < 0)
		return isl_bool_error;
	return is_opposite_part(bmap, i, j, 1, pos - 1) &&
		is_opposite_part(bmap, i, j, pos + 1, total - pos);
}
/* Restart isl_basic_map_drop_redundant_divs after "bmap" has
 * been modified, simplying it if "simplify" is set.
 * Free the temporary data structure "pairs" that was associated
 * to the old version of "bmap".
 */
static __isl_give isl_basic_map *drop_redundant_divs_again(
	__isl_take isl_basic_map *bmap, __isl_take int *pairs, int simplify)
{
	if (simplify)
		bmap = isl_basic_map_simplify(bmap);
	free(pairs);
	return isl_basic_map_drop_redundant_divs(bmap);
}
/* Is "div" the single unknown existentially quantified variable
 * in inequality constraint "ineq" of "bmap"?
 * "div" is known to have a non-zero coefficient in "ineq".
 */
static isl_bool single_unknown(__isl_keep isl_basic_map *bmap, int ineq,
	int div)
{
	int i;
	isl_size n_div;
	unsigned o_div;
	isl_bool known;
	known = isl_basic_map_div_is_known(bmap, div);
	if (known < 0 || known)
		return isl_bool_not(known);
	n_div = isl_basic_map_dim(bmap, isl_dim_div);
	if (n_div < 0)
		return isl_bool_error;
	if (n_div == 1)
		return isl_bool_true;
	o_div = isl_basic_map_offset(bmap, isl_dim_div);
	for (i = 0; i < n_div; ++i) {
		isl_bool known;
		if (i == div)
			continue;
		if (isl_int_is_zero(bmap->ineq[ineq][o_div + i]))
			continue;
		known = isl_basic_map_div_is_known(bmap, i);
		if (known < 0 || !known)
			return known;
	}
	return isl_bool_true;
}
/* Does integer division "div" have coefficient 1 in inequality constraint
 * "ineq" of "map"?
 */
static isl_bool has_coef_one(__isl_keep isl_basic_map *bmap, int div, int ineq)
{
	unsigned o_div;
	o_div = isl_basic_map_offset(bmap, isl_dim_div);
	if (isl_int_is_one(bmap->ineq[ineq][o_div + div]))
		return isl_bool_true;
	return isl_bool_false;
}
/* Turn inequality constraint "ineq" of "bmap" into an equality and
 * then try and drop redundant divs again,
 * freeing the temporary data structure "pairs" that was associated
 * to the old version of "bmap".
 */
static __isl_give isl_basic_map *set_eq_and_try_again(
	__isl_take isl_basic_map *bmap, int ineq, __isl_take int *pairs)
{
	bmap = isl_basic_map_cow(bmap);
	isl_basic_map_inequality_to_equality(bmap, ineq);
	return drop_redundant_divs_again(bmap, pairs, 1);
}
/* Drop the integer division at position "div", along with the two
 * inequality constraints "ineq1" and "ineq2" in which it appears
 * from "bmap" and then try and drop redundant divs again,
 * freeing the temporary data structure "pairs" that was associated
 * to the old version of "bmap".
 */
static __isl_give isl_basic_map *drop_div_and_try_again(
	__isl_take isl_basic_map *bmap, int div, int ineq1, int ineq2,
	__isl_take int *pairs)
{
	if (ineq1 > ineq2) {
		isl_basic_map_drop_inequality(bmap, ineq1);
		isl_basic_map_drop_inequality(bmap, ineq2);
	} else {
		isl_basic_map_drop_inequality(bmap, ineq2);
		isl_basic_map_drop_inequality(bmap, ineq1);
	}
	bmap = isl_basic_map_drop_div(bmap, div);
	return drop_redundant_divs_again(bmap, pairs, 0);
}
/* Given two inequality constraints
 *
 *	f(x) + n d + c >= 0,		(ineq)
 *
 * with d the variable at position "pos", and
 *
 *	f(x) + c0 >= 0,			(lower)
 *
 * compute the maximal value of the lower bound ceil((-f(x) - c)/n)
 * determined by the first constraint.
 * That is, store
 *
 *	ceil((c0 - c)/n)
 *
 * in *l.
 */
static void lower_bound_from_parallel(__isl_keep isl_basic_map *bmap,
	int ineq, int lower, int pos, isl_int *l)
{
	isl_int_neg(*l, bmap->ineq[ineq][0]);
	isl_int_add(*l, *l, bmap->ineq[lower][0]);
	isl_int_cdiv_q(*l, *l, bmap->ineq[ineq][pos]);
}
/* Given two inequality constraints
 *
 *	f(x) + n d + c >= 0,		(ineq)
 *
 * with d the variable at position "pos", and
 *
 *	-f(x) - c0 >= 0,		(upper)
 *
 * compute the minimal value of the lower bound ceil((-f(x) - c)/n)
 * determined by the first constraint.
 * That is, store
 *
 *	ceil((-c1 - c)/n)
 *
 * in *u.
 */
static void lower_bound_from_opposite(__isl_keep isl_basic_map *bmap,
	int ineq, int upper, int pos, isl_int *u)
{
	isl_int_neg(*u, bmap->ineq[ineq][0]);
	isl_int_sub(*u, *u, bmap->ineq[upper][0]);
	isl_int_cdiv_q(*u, *u, bmap->ineq[ineq][pos]);
}
/* Given a lower bound constraint "ineq" on "div" in "bmap",
 * does the corresponding lower bound have a fixed value in "bmap"?
 *
 * In particular, "ineq" is of the form
 *
 *	f(x) + n d + c >= 0
 *
 * with n > 0, c the constant term and
 * d the existentially quantified variable "div".
 * That is, the lower bound is
 *
 *	ceil((-f(x) - c)/n)
 *
 * Look for a pair of constraints
 *
 *	f(x) + c0 >= 0
 *	-f(x) + c1 >= 0
 *
 * i.e., -c1 <= -f(x) <= c0, that fix ceil((-f(x) - c)/n) to a constant value.
 * That is, check that
 *
 *	ceil((-c1 - c)/n) = ceil((c0 - c)/n)
 *
 * If so, return the index of inequality f(x) + c0 >= 0.
 * Otherwise, return bmap->n_ineq.
 * Return -1 on error.
 */
static int lower_bound_is_cst(__isl_keep isl_basic_map *bmap, int div, int ineq)
{
	int i;
	int lower = -1, upper = -1;
	unsigned o_div;
	isl_int l, u;
	int equal;
	o_div = isl_basic_map_offset(bmap, isl_dim_div);
	for (i = 0; i < bmap->n_ineq && (lower < 0 || upper < 0); ++i) {
		isl_bool par, opp;
		if (i == ineq)
			continue;
		if (!isl_int_is_zero(bmap->ineq[i][o_div + div]))
			continue;
		par = isl_bool_false;
		if (lower < 0)
			par = is_parallel_except(bmap, ineq, i, o_div + div);
		if (par < 0)
			return -1;
		if (par) {
			lower = i;
			continue;
		}
		opp = isl_bool_false;
		if (upper < 0)
			opp = is_opposite_except(bmap, ineq, i, o_div + div);
		if (opp < 0)
			return -1;
		if (opp)
			upper = i;
	}
	if (lower < 0 || upper < 0)
		return bmap->n_ineq;
	isl_int_init(l);
	isl_int_init(u);
	lower_bound_from_parallel(bmap, ineq, lower, o_div + div, &l);
	lower_bound_from_opposite(bmap, ineq, upper, o_div + div, &u);
	equal = isl_int_eq(l, u);
	isl_int_clear(l);
	isl_int_clear(u);
	return equal ? lower : bmap->n_ineq;
}
/* Given a lower bound constraint "ineq" on the existentially quantified
 * variable "div", such that the corresponding lower bound has
 * a fixed value in "bmap", assign this fixed value to the variable and
 * then try and drop redundant divs again,
 * freeing the temporary data structure "pairs" that was associated
 * to the old version of "bmap".
 * "lower" determines the constant value for the lower bound.
 *
 * In particular, "ineq" is of the form
 *
 *	f(x) + n d + c >= 0,
 *
 * while "lower" is of the form
 *
 *	f(x) + c0 >= 0
 *
 * The lower bound is ceil((-f(x) - c)/n) and its constant value
 * is ceil((c0 - c)/n).
 */
static __isl_give isl_basic_map *fix_cst_lower(__isl_take isl_basic_map *bmap,
	int div, int ineq, int lower, int *pairs)
{
	isl_int c;
	unsigned o_div;
	isl_int_init(c);
	o_div = isl_basic_map_offset(bmap, isl_dim_div);
	lower_bound_from_parallel(bmap, ineq, lower, o_div + div, &c);
	bmap = isl_basic_map_fix(bmap, isl_dim_div, div, c);
	free(pairs);
	isl_int_clear(c);
	return isl_basic_map_drop_redundant_divs(bmap);
}
/* Do any of the integer divisions of "bmap" involve integer division "div"?
 *
 * The integer division "div" could only ever appear in any later
 * integer division (with an explicit representation).
 */
static isl_bool any_div_involves_div(__isl_keep isl_basic_map *bmap, int div)
{
	int i;
	isl_size v_div, n_div;
	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
	n_div = isl_basic_map_dim(bmap, isl_dim_div);
	if (v_div < 0 || n_div < 0)
		return isl_bool_error;
	for (i = div + 1; i < n_div; ++i) {
		isl_bool unknown;
		unknown = isl_basic_map_div_is_marked_unknown(bmap, i);
		if (unknown < 0)
			return isl_bool_error;
		if (unknown)
			continue;
		if (!isl_int_is_zero(bmap->div[i][1 + 1 + v_div + div]))
			return isl_bool_true;
	}
	return isl_bool_false;
}
/* Remove divs that are not strictly needed based on the inequality
 * constraints.
 * In particular, if a div only occurs positively (or negatively)
 * in constraints, then it can simply be dropped.
 * Also, if a div occurs in only two constraints and if moreover
 * those two constraints are opposite to each other, except for the constant
 * term and if the sum of the constant terms is such that for any value
 * of the other values, there is always at least one integer value of the
 * div, i.e., if one plus this sum is greater than or equal to
 * the (absolute value) of the coefficient of the div in the constraints,
 * then we can also simply drop the div.
 *
 * If an existentially quantified variable does not have an explicit
 * representation, appears in only a single lower bound that does not
 * involve any other such existentially quantified variables and appears
 * in this lower bound with coefficient 1,
 * then fix the variable to the value of the lower bound.  That is,
 * turn the inequality into an equality.
 * If for any value of the other variables, there is any value
 * for the existentially quantified variable satisfying the constraints,
 * then this lower bound also satisfies the constraints.
 * It is therefore safe to pick this lower bound.
 *
 * The same reasoning holds even if the coefficient is not one.
 * However, fixing the variable to the value of the lower bound may
 * in general introduce an extra integer division, in which case
 * it may be better to pick another value.
 * If this integer division has a known constant value, then plugging
 * in this constant value removes the existentially quantified variable
 * completely.  In particular, if the lower bound is of the form
 * ceil((-f(x) - c)/n) and there are two constraints, f(x) + c0 >= 0 and
 * -f(x) + c1 >= 0 such that ceil((-c1 - c)/n) = ceil((c0 - c)/n),
 * then the existentially quantified variable can be assigned this
 * shared value.
 *
 * We skip divs that appear in equalities or in the definition of other divs.
 * Divs that appear in the definition of other divs usually occur in at least
 * 4 constraints, but the constraints may have been simplified.
 *
 * If any divs are left after these simple checks then we move on
 * to more complicated cases in drop_more_redundant_divs.
 */
static __isl_give isl_basic_map *isl_basic_map_drop_redundant_divs_ineq(
	__isl_take isl_basic_map *bmap)
{
	int i, j;
	isl_size off;
	int *pairs = NULL;
	int n = 0;
	isl_size n_ineq;
	if (!bmap)
		goto error;
	if (bmap->n_div == 0)
		return bmap;
	off = isl_basic_map_var_offset(bmap, isl_dim_div);
	if (off < 0)
		return isl_basic_map_free(bmap);
	pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
	if (!pairs)
		goto error;
	n_ineq = isl_basic_map_n_inequality(bmap);
	if (n_ineq < 0)
		goto error;
	for (i = 0; i < bmap->n_div; ++i) {
		int pos, neg;
		int last_pos, last_neg;
		int redundant;
		int defined;
		isl_bool involves, opp, set_div;
		defined = !isl_int_is_zero(bmap->div[i][0]);
		involves = any_div_involves_div(bmap, i);
		if (involves < 0)
			goto error;
		if (involves)
			continue;
		for (j = 0; j < bmap->n_eq; ++j)
			if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
				break;
		if (j < bmap->n_eq)
			continue;
		++n;
		pos = neg = 0;
		for (j = 0; j < bmap->n_ineq; ++j) {
			if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
				last_pos = j;
				++pos;
			}
			if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
				last_neg = j;
				++neg;
			}
		}
		pairs[i] = pos * neg;
		if (pairs[i] == 0) {
			for (j = bmap->n_ineq - 1; j >= 0; --j)
				if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
					isl_basic_map_drop_inequality(bmap, j);
			bmap = isl_basic_map_drop_div(bmap, i);
			return drop_redundant_divs_again(bmap, pairs, 0);
		}
		if (pairs[i] != 1)
			opp = isl_bool_false;
		else
			opp = is_opposite(bmap, last_pos, last_neg);
		if (opp < 0)
			goto error;
		if (!opp) {
			int lower;
			isl_bool single, one;
			if (pos != 1)
				continue;
			single = single_unknown(bmap, last_pos, i);
			if (single < 0)
				goto error;
			if (!single)
				continue;
			one = has_coef_one(bmap, i, last_pos);
			if (one < 0)
				goto error;
			if (one)
				return set_eq_and_try_again(bmap, last_pos,
							    pairs);
			lower = lower_bound_is_cst(bmap, i, last_pos);
			if (lower < 0)
				goto error;
			if (lower < n_ineq)
				return fix_cst_lower(bmap, i, last_pos, lower,
						pairs);
			continue;
		}
		isl_int_add(bmap->ineq[last_pos][0],
			    bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
		isl_int_add_ui(bmap->ineq[last_pos][0],
			       bmap->ineq[last_pos][0], 1);
		redundant = isl_int_ge(bmap->ineq[last_pos][0],
				bmap->ineq[last_pos][1+off+i]);
		isl_int_sub_ui(bmap->ineq[last_pos][0],
			       bmap->ineq[last_pos][0], 1);
		isl_int_sub(bmap->ineq[last_pos][0],
			    bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
		if (redundant)
			return drop_div_and_try_again(bmap, i,
						    last_pos, last_neg, pairs);
		if (defined)
			set_div = isl_bool_false;
		else
			set_div = ok_to_set_div_from_bound(bmap, i, last_pos);
		if (set_div < 0)
			return isl_basic_map_free(bmap);
		if (set_div) {
			bmap = set_div_from_lower_bound(bmap, i, last_pos);
			return drop_redundant_divs_again(bmap, pairs, 1);
		}
		pairs[i] = 0;
		--n;
	}
	if (n > 0)
		return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
	free(pairs);
	return bmap;
error:
	free(pairs);
	isl_basic_map_free(bmap);
	return NULL;
}
/* Consider the coefficients at "c" as a row vector and replace
 * them with their product with "T".  "T" is assumed to be a square matrix.
 */
static isl_stat preimage(isl_int *c, __isl_keep isl_mat *T)
{
	isl_size n;
	isl_ctx *ctx;
	isl_vec *v;
	n = isl_mat_rows(T);
	if (n < 0)
		return isl_stat_error;
	if (isl_seq_first_non_zero(c, n) == -1)
		return isl_stat_ok;
	ctx = isl_mat_get_ctx(T);
	v = isl_vec_alloc(ctx, n);
	if (!v)
		return isl_stat_error;
	isl_seq_swp_or_cpy(v->el, c, n);
	v = isl_vec_mat_product(v, isl_mat_copy(T));
	if (!v)
		return isl_stat_error;
	isl_seq_swp_or_cpy(c, v->el, n);
	isl_vec_free(v);
	return isl_stat_ok;
}
/* Plug in T for the variables in "bmap" starting at "pos".
 * T is a linear unimodular matrix, i.e., without constant term.
 */
static __isl_give isl_basic_map *isl_basic_map_preimage_vars(
	__isl_take isl_basic_map *bmap, unsigned pos, __isl_take isl_mat *T)
{
	int i;
	isl_size n_row, n_col;
	bmap = isl_basic_map_cow(bmap);
	n_row = isl_mat_rows(T);
	n_col = isl_mat_cols(T);
	if (!bmap || n_row < 0 || n_col < 0)
		goto error;
	if (n_col != n_row)
		isl_die(isl_mat_get_ctx(T), isl_error_invalid,
			"expecting square matrix", goto error);
	if (isl_basic_map_check_range(bmap, isl_dim_all, pos, n_col) < 0)
		goto error;
	for (i = 0; i < bmap->n_eq; ++i)
		if (preimage(bmap->eq[i] + 1 + pos, T) < 0)
			goto error;
	for (i = 0; i < bmap->n_ineq; ++i)
		if (preimage(bmap->ineq[i] + 1 + pos, T) < 0)
			goto error;
	for (i = 0; i < bmap->n_div; ++i) {
		if (isl_basic_map_div_is_marked_unknown(bmap, i))
			continue;
		if (preimage(bmap->div[i] + 1 + 1 + pos, T) < 0)
			goto error;
	}
	isl_mat_free(T);
	return bmap;
error:
	isl_basic_map_free(bmap);
	isl_mat_free(T);
	return NULL;
}
/* Remove divs that are not strictly needed.
 *
 * First look for an equality constraint involving two or more
 * existentially quantified variables without an explicit
 * representation.  Replace the combination that appears
 * in the equality constraint by a single existentially quantified
 * variable such that the equality can be used to derive
 * an explicit representation for the variable.
 * If there are no more such equality constraints, then continue
 * with isl_basic_map_drop_redundant_divs_ineq.
 *
 * In particular, if the equality constraint is of the form
 *
 *	f(x) + \sum_i c_i a_i = 0
 *
 * with a_i existentially quantified variable without explicit
 * representation, then apply a transformation on the existentially
 * quantified variables to turn the constraint into
 *
 *	f(x) + g a_1' = 0
 *
 * with g the gcd of the c_i.
 * In order to easily identify which existentially quantified variables
 * have a complete explicit representation, i.e., without being defined
 * in terms of other existentially quantified variables without
 * an explicit representation, the existentially quantified variables
 * are first sorted.
 *
 * The variable transformation is computed by extending the row
 * [c_1/g ... c_n/g] to a unimodular matrix, obtaining the transformation
 *
 *	[a_1']   [c_1/g ... c_n/g]   [ a_1 ]
 *	[a_2']                       [ a_2 ]
 *	 ...   =         U             ....
 *	[a_n']            	     [ a_n ]
 *
 * with [c_1/g ... c_n/g] representing the first row of U.
 * The inverse of U is then plugged into the original constraints.
 * The call to isl_basic_map_simplify makes sure the explicit
 * representation for a_1' is extracted from the equality constraint.
 */
__isl_give isl_basic_map *isl_basic_map_drop_redundant_divs(
	__isl_take isl_basic_map *bmap)
{
	int first;
	int i;
	unsigned o_div;
	isl_size n_div;
	int l;
	isl_ctx *ctx;
	isl_mat *T;
	if (!bmap)
		return NULL;
	if (isl_basic_map_divs_known(bmap))
		return isl_basic_map_drop_redundant_divs_ineq(bmap);
	if (bmap->n_eq == 0)
		return isl_basic_map_drop_redundant_divs_ineq(bmap);
	bmap = isl_basic_map_sort_divs(bmap);
	if (!bmap)
		return NULL;
	first = isl_basic_map_first_unknown_div(bmap);
	if (first < 0)
		return isl_basic_map_free(bmap);
	o_div = isl_basic_map_offset(bmap, isl_dim_div);
	n_div = isl_basic_map_dim(bmap, isl_dim_div);
	if (n_div < 0)
		return isl_basic_map_free(bmap);
	for (i = 0; i < bmap->n_eq; ++i) {
		l = isl_seq_first_non_zero(bmap->eq[i] + o_div + first,
					    n_div - (first));
		if (l < 0)
			continue;
		l += first;
		if (isl_seq_first_non_zero(bmap->eq[i] + o_div + l + 1,
					    n_div - (l + 1)) == -1)
			continue;
		break;
	}
	if (i >= bmap->n_eq)
		return isl_basic_map_drop_redundant_divs_ineq(bmap);
	ctx = isl_basic_map_get_ctx(bmap);
	T = isl_mat_alloc(ctx, n_div - l, n_div - l);
	if (!T)
		return isl_basic_map_free(bmap);
	isl_seq_cpy(T->row[0], bmap->eq[i] + o_div + l, n_div - l);
	T = isl_mat_normalize_row(T, 0);
	T = isl_mat_unimodular_complete(T, 1);
	T = isl_mat_right_inverse(T);
	for (i = l; i < n_div; ++i)
		bmap = isl_basic_map_mark_div_unknown(bmap, i);
	bmap = isl_basic_map_preimage_vars(bmap, o_div - 1 + l, T);
	bmap = isl_basic_map_simplify(bmap);
	return isl_basic_map_drop_redundant_divs(bmap);
}
/* Does "bmap" satisfy any equality that involves more than 2 variables
 * and/or has coefficients different from -1 and 1?
 */
static isl_bool has_multiple_var_equality(__isl_keep isl_basic_map *bmap)
{
	int i;
	isl_size total;
	total = isl_basic_map_dim(bmap, isl_dim_all);
	if (total < 0)
		return isl_bool_error;
	for (i = 0; i < bmap->n_eq; ++i) {
		int j, k;
		j = isl_seq_first_non_zero(bmap->eq[i] + 1, total);
		if (j < 0)
			continue;
		if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
		    !isl_int_is_negone(bmap->eq[i][1 + j]))
			return isl_bool_true;
		j += 1;
		k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
		if (k < 0)
			continue;
		j += k;
		if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
		    !isl_int_is_negone(bmap->eq[i][1 + j]))
			return isl_bool_true;
		j += 1;
		k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
		if (k >= 0)
			return isl_bool_true;
	}
	return isl_bool_false;
}
/* Remove any common factor g from the constraint coefficients in "v".
 * The constant term is stored in the first position and is replaced
 * by floor(c/g).  If any common factor is removed and if this results
 * in a tightening of the constraint, then set *tightened.
 */
static __isl_give isl_vec *normalize_constraint(__isl_take isl_vec *v,
	int *tightened)
{
	isl_ctx *ctx;
	if (!v)
		return NULL;
	ctx = isl_vec_get_ctx(v);
	isl_seq_gcd(v->el + 1, v->size - 1, &ctx->normalize_gcd);
	if (isl_int_is_zero(ctx->normalize_gcd))
		return v;
	if (isl_int_is_one(ctx->normalize_gcd))
		return v;
	v = isl_vec_cow(v);
	if (!v)
		return NULL;
	if (tightened && !isl_int_is_divisible_by(v->el[0], ctx->normalize_gcd))
		*tightened = 1;
	isl_int_fdiv_q(v->el[0], v->el[0], ctx->normalize_gcd);
	isl_seq_scale_down(v->el + 1, v->el + 1, ctx->normalize_gcd,
				v->size - 1);
	return v;
}
/* If "bmap" is an integer set that satisfies any equality involving
 * more than 2 variables and/or has coefficients different from -1 and 1,
 * then use variable compression to reduce the coefficients by removing
 * any (hidden) common factor.
 * In particular, apply the variable compression to each constraint,
 * factor out any common factor in the non-constant coefficients and
 * then apply the inverse of the compression.
 * At the end, we mark the basic map as having reduced constants.
 * If this flag is still set on the next invocation of this function,
 * then we skip the computation.
 *
 * Removing a common factor may result in a tightening of some of
 * the constraints.  If this happens, then we may end up with two
 * opposite inequalities that can be replaced by an equality.
 * We therefore call isl_basic_map_detect_inequality_pairs,
 * which checks for such pairs of inequalities as well as eliminate_divs_eq
 * and isl_basic_map_gauss if such a pair was found.
 *
 * Tightening may also result in some other constraints becoming
 * (rationally) redundant with respect to the tightened constraint
 * (in combination with other constraints).  The basic map may
 * therefore no longer be assumed to have no redundant constraints.
 *
 * Note that this function may leave the result in an inconsistent state.
 * In particular, the constraints may not be gaussed.
 * Unfortunately, isl_map_coalesce actually depends on this inconsistent state
 * for some of the test cases to pass successfully.
 * Any potential modification of the representation is therefore only
 * performed on a single copy of the basic map.
 */
__isl_give isl_basic_map *isl_basic_map_reduce_coefficients(
	__isl_take isl_basic_map *bmap)
{
	isl_size total;
	isl_bool multi;
	isl_ctx *ctx;
	isl_vec *v;
	isl_mat *eq, *T, *T2;
	int i;
	int tightened;
	if (!bmap)
		return NULL;
	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS))
		return bmap;
	if (isl_basic_map_is_rational(bmap))
		return bmap;
	if (bmap->n_eq == 0)
		return bmap;
	multi = has_multiple_var_equality(bmap);
	if (multi < 0)
		return isl_basic_map_free(bmap);
	if (!multi)
		return bmap;
	total = isl_basic_map_dim(bmap, isl_dim_all);
	if (total < 0)
		return isl_basic_map_free(bmap);
	ctx = isl_basic_map_get_ctx(bmap);
	v = isl_vec_alloc(ctx, 1 + total);
	if (!v)
		return isl_basic_map_free(bmap);
	eq = isl_mat_sub_alloc6(ctx, bmap->eq, 0, bmap->n_eq, 0, 1 + total);
	T = isl_mat_variable_compression(eq, &T2);
	if (!T || !T2)
		goto error;
	if (T->n_col == 0) {
		isl_mat_free(T);
		isl_mat_free(T2);
		isl_vec_free(v);
		return isl_basic_map_set_to_empty(bmap);
	}
	bmap = isl_basic_map_cow(bmap);
	if (!bmap)
		goto error;
	tightened = 0;
	for (i = 0; i < bmap->n_ineq; ++i) {
		isl_seq_cpy(v->el, bmap->ineq[i], 1 + total);
		v = isl_vec_mat_product(v, isl_mat_copy(T));
		v = normalize_constraint(v, &tightened);
		v = isl_vec_mat_product(v, isl_mat_copy(T2));
		if (!v)
			goto error;
		isl_seq_cpy(bmap->ineq[i], v->el, 1 + total);
	}
	isl_mat_free(T);
	isl_mat_free(T2);
	isl_vec_free(v);
	ISL_F_SET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
	if (tightened) {
		int progress = 0;
		ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
		bmap = isl_basic_map_detect_inequality_pairs(bmap, &progress);
		if (progress) {
			bmap = eliminate_divs_eq(bmap, &progress);
			bmap = isl_basic_map_gauss(bmap, NULL);
		}
	}
	return bmap;
error:
	isl_mat_free(T);
	isl_mat_free(T2);
	isl_vec_free(v);
	return isl_basic_map_free(bmap);
}
/* Shift the integer division at position "div" of "bmap"
 * by "shift" times the variable at position "pos".
 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
 * corresponds to the constant term.
 *
 * That is, if the integer division has the form
 *
 *	floor(f(x)/d)
 *
 * then replace it by
 *
 *	floor((f(x) + shift * d * x_pos)/d) - shift * x_pos
 */
__isl_give isl_basic_map *isl_basic_map_shift_div(
	__isl_take isl_basic_map *bmap, int div, int pos, isl_int shift)
{
	int i;
	isl_size total, n_div;
	if (isl_int_is_zero(shift))
		return bmap;
	total = isl_basic_map_dim(bmap, isl_dim_all);
	n_div = isl_basic_map_dim(bmap, isl_dim_div);
	total -= n_div;
	if (total < 0 || n_div < 0)
		return isl_basic_map_free(bmap);
	isl_int_addmul(bmap->div[div][1 + pos], shift, bmap->div[div][0]);
	for (i = 0; i < bmap->n_eq; ++i) {
		if (isl_int_is_zero(bmap->eq[i][1 + total + div]))
			continue;
		isl_int_submul(bmap->eq[i][pos],
				shift, bmap->eq[i][1 + total + div]);
	}
	for (i = 0; i < bmap->n_ineq; ++i) {
		if (isl_int_is_zero(bmap->ineq[i][1 + total + div]))
			continue;
		isl_int_submul(bmap->ineq[i][pos],
				shift, bmap->ineq[i][1 + total + div]);
	}
	for (i = 0; i < bmap->n_div; ++i) {
		if (isl_int_is_zero(bmap->div[i][0]))
			continue;
		if (isl_int_is_zero(bmap->div[i][1 + 1 + total + div]))
			continue;
		isl_int_submul(bmap->div[i][1 + pos],
				shift, bmap->div[i][1 + 1 + total + div]);
	}
	return bmap;
}
 |