| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 
 | /*
 * Copyright 2008-2009 Katholieke Universiteit Leuven
 * Copyright 2010      INRIA Saclay
 * Copyright 2011      Sven Verdoolaege
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege, K.U.Leuven, Departement
 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
 */
#define xSF(TYPE,SUFFIX) TYPE ## SUFFIX
#define SF(TYPE,SUFFIX) xSF(TYPE,SUFFIX)
/* Given a basic map with at least two parallel constraints (as found
 * by the function parallel_constraints), first look for more constraints
 * parallel to the two constraint and replace the found list of parallel
 * constraints by a single constraint with as "input" part the minimum
 * of the input parts of the list of constraints.  Then, recursively call
 * basic_map_partial_lexopt (possibly finding more parallel constraints)
 * and plug in the definition of the minimum in the result.
 *
 * As in parallel_constraints, only inequality constraints that only
 * involve input variables that do not occur in any other inequality
 * constraints are considered.
 *
 * More specifically, given a set of constraints
 *
 *	a x + b_i(p) >= 0
 *
 * Replace this set by a single constraint
 *
 *	a x + u >= 0
 *
 * with u a new parameter with constraints
 *
 *	u <= b_i(p)
 *
 * Any solution to the new system is also a solution for the original system
 * since
 *
 *	a x >= -u >= -b_i(p)
 *
 * Moreover, m = min_i(b_i(p)) satisfies the constraints on u and can
 * therefore be plugged into the solution.
 */
static TYPE *SF(basic_map_partial_lexopt_symm,SUFFIX)(
	__isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
	__isl_give isl_set **empty, int max, int first, int second)
{
	int i, n, k;
	int *list = NULL;
	isl_size bmap_in, bmap_param, bmap_all;
	unsigned n_in, n_out, n_div;
	isl_ctx *ctx;
	isl_vec *var = NULL;
	isl_mat *cst = NULL;
	isl_space *map_space, *set_space;
	map_space = isl_basic_map_get_space(bmap);
	set_space = empty ? isl_basic_set_get_space(dom) : NULL;
	bmap_in = isl_basic_map_dim(bmap, isl_dim_in);
	bmap_param = isl_basic_map_dim(bmap, isl_dim_param);
	bmap_all = isl_basic_map_dim(bmap, isl_dim_all);
	if (bmap_in < 0 || bmap_param < 0 || bmap_all < 0)
		goto error;
	n_in = bmap_param + bmap_in;
	n_out = bmap_all - n_in;
	ctx = isl_basic_map_get_ctx(bmap);
	list = isl_alloc_array(ctx, int, bmap->n_ineq);
	var = isl_vec_alloc(ctx, n_out);
	if ((bmap->n_ineq && !list) || (n_out && !var))
		goto error;
	list[0] = first;
	list[1] = second;
	isl_seq_cpy(var->el, bmap->ineq[first] + 1 + n_in, n_out);
	for (i = second + 1, n = 2; i < bmap->n_ineq; ++i) {
		if (isl_seq_eq(var->el, bmap->ineq[i] + 1 + n_in, n_out) &&
		    all_single_occurrence(bmap, i, n_in))
			list[n++] = i;
	}
	cst = isl_mat_alloc(ctx, n, 1 + n_in);
	if (!cst)
		goto error;
	for (i = 0; i < n; ++i)
		isl_seq_cpy(cst->row[i], bmap->ineq[list[i]], 1 + n_in);
	bmap = isl_basic_map_cow(bmap);
	if (!bmap)
		goto error;
	for (i = n - 1; i >= 0; --i)
		if (isl_basic_map_drop_inequality(bmap, list[i]) < 0)
			goto error;
	bmap = isl_basic_map_add_dims(bmap, isl_dim_in, 1);
	bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
	k = isl_basic_map_alloc_inequality(bmap);
	if (k < 0)
		goto error;
	isl_seq_clr(bmap->ineq[k], 1 + n_in);
	isl_int_set_si(bmap->ineq[k][1 + n_in], 1);
	isl_seq_cpy(bmap->ineq[k] + 1 + n_in + 1, var->el, n_out);
	bmap = isl_basic_map_finalize(bmap);
	n_div = isl_basic_set_dim(dom, isl_dim_div);
	dom = isl_basic_set_add_dims(dom, isl_dim_set, 1);
	dom = isl_basic_set_extend_constraints(dom, 0, n);
	for (i = 0; i < n; ++i) {
		k = isl_basic_set_alloc_inequality(dom);
		if (k < 0)
			goto error;
		isl_seq_cpy(dom->ineq[k], cst->row[i], 1 + n_in);
		isl_int_set_si(dom->ineq[k][1 + n_in], -1);
		isl_seq_clr(dom->ineq[k] + 1 + n_in + 1, n_div);
	}
	isl_vec_free(var);
	free(list);
	return SF(basic_map_partial_lexopt_symm_core,SUFFIX)(bmap, dom, empty,
						max, cst, map_space, set_space);
error:
	isl_space_free(map_space);
	isl_space_free(set_space);
	isl_mat_free(cst);
	isl_vec_free(var);
	free(list);
	isl_basic_set_free(dom);
	isl_basic_map_free(bmap);
	return NULL;
}
/* Recursive part of isl_tab_basic_map_partial_lexopt*, after detecting
 * equalities and removing redundant constraints.
 *
 * We first check if there are any parallel constraints (left).
 * If not, we are in the base case.
 * If there are parallel constraints, we replace them by a single
 * constraint in basic_map_partial_lexopt_symm_pma and then call
 * this function recursively to look for more parallel constraints.
 */
static __isl_give TYPE *SF(basic_map_partial_lexopt,SUFFIX)(
	__isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
	__isl_give isl_set **empty, int max)
{
	isl_bool par = isl_bool_false;
	int first, second;
	if (!bmap)
		goto error;
	if (bmap->ctx->opt->pip_symmetry)
		par = parallel_constraints(bmap, &first, &second);
	if (par < 0)
		goto error;
	if (!par)
		return SF(basic_map_partial_lexopt_base,SUFFIX)(bmap, dom,
								empty, max);
	return SF(basic_map_partial_lexopt_symm,SUFFIX)(bmap, dom, empty, max,
							 first, second);
error:
	isl_basic_set_free(dom);
	isl_basic_map_free(bmap);
	return NULL;
}
/* Compute the lexicographic minimum (or maximum if "flags" includes
 * ISL_OPT_MAX) of "bmap" over the domain "dom" and return the result as
 * either a map or a piecewise multi-affine expression depending on TYPE.
 * If "empty" is not NULL, then *empty is assigned a set that
 * contains those parts of the domain where there is no solution.
 * If "flags" includes ISL_OPT_FULL, then "dom" is NULL and the optimum
 * should be computed over the domain of "bmap".  "empty" is also NULL
 * in this case.
 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
 * then we compute the rational optimum.  Otherwise, we compute
 * the integral optimum.
 *
 * We perform some preprocessing.  As the PILP solver does not
 * handle implicit equalities very well, we first make sure all
 * the equalities are explicitly available.
 *
 * We also add context constraints to the basic map and remove
 * redundant constraints.  This is only needed because of the
 * way we handle simple symmetries.  In particular, we currently look
 * for symmetries on the constraints, before we set up the main tableau.
 * It is then no good to look for symmetries on possibly redundant constraints.
 * If the domain was extracted from the basic map, then there is
 * no need to add back those constraints again.
 */
__isl_give TYPE *SF(isl_tab_basic_map_partial_lexopt,SUFFIX)(
	__isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
	__isl_give isl_set **empty, unsigned flags)
{
	int max, full;
	isl_bool compatible;
	if (empty)
		*empty = NULL;
	full = ISL_FL_ISSET(flags, ISL_OPT_FULL);
	if (full)
		dom = extract_domain(bmap, flags);
	compatible = isl_basic_map_compatible_domain(bmap, dom);
	if (compatible < 0)
		goto error;
	if (!compatible)
		isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid,
			"domain does not match input", goto error);
	max = ISL_FL_ISSET(flags, ISL_OPT_MAX);
	if (isl_basic_set_dim(dom, isl_dim_all) == 0)
		return SF(basic_map_partial_lexopt,SUFFIX)(bmap, dom, empty,
							    max);
	if (!full)
		bmap = isl_basic_map_intersect_domain(bmap,
						    isl_basic_set_copy(dom));
	bmap = isl_basic_map_detect_equalities(bmap);
	bmap = isl_basic_map_remove_redundancies(bmap);
	return SF(basic_map_partial_lexopt,SUFFIX)(bmap, dom, empty, max);
error:
	isl_basic_set_free(dom);
	isl_basic_map_free(bmap);
	return NULL;
}
 |