1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
//===--- UnrollLoopsCheck.cpp - clang-tidy --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "UnrollLoopsCheck.h"
#include "clang/AST/APValue.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/ParentMapContext.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include <math.h>
using namespace clang::ast_matchers;
namespace clang {
namespace tidy {
namespace altera {
UnrollLoopsCheck::UnrollLoopsCheck(StringRef Name, ClangTidyContext *Context)
: ClangTidyCheck(Name, Context),
MaxLoopIterations(Options.get("MaxLoopIterations", 100U)) {}
void UnrollLoopsCheck::registerMatchers(MatchFinder *Finder) {
const auto HasLoopBound = hasDescendant(
varDecl(allOf(matchesName("__end*"),
hasDescendant(integerLiteral().bind("cxx_loop_bound")))));
const auto CXXForRangeLoop =
cxxForRangeStmt(anyOf(HasLoopBound, unless(HasLoopBound)));
const auto AnyLoop = anyOf(forStmt(), whileStmt(), doStmt(), CXXForRangeLoop);
Finder->addMatcher(
stmt(allOf(AnyLoop, unless(hasDescendant(stmt(AnyLoop))))).bind("loop"),
this);
}
void UnrollLoopsCheck::check(const MatchFinder::MatchResult &Result) {
const auto *Loop = Result.Nodes.getNodeAs<Stmt>("loop");
const auto *CXXLoopBound =
Result.Nodes.getNodeAs<IntegerLiteral>("cxx_loop_bound");
const ASTContext *Context = Result.Context;
switch (unrollType(Loop, Result.Context)) {
case NotUnrolled:
diag(Loop->getBeginLoc(),
"kernel performance could be improved by unrolling this loop with a "
"'#pragma unroll' directive");
break;
case PartiallyUnrolled:
// Loop already partially unrolled, do nothing.
break;
case FullyUnrolled:
if (hasKnownBounds(Loop, CXXLoopBound, Context)) {
if (hasLargeNumIterations(Loop, CXXLoopBound, Context)) {
diag(Loop->getBeginLoc(),
"loop likely has a large number of iterations and thus "
"cannot be fully unrolled; to partially unroll this loop, use "
"the '#pragma unroll <num>' directive");
return;
}
return;
}
if (isa<WhileStmt, DoStmt>(Loop)) {
diag(Loop->getBeginLoc(),
"full unrolling requested, but loop bounds may not be known; to "
"partially unroll this loop, use the '#pragma unroll <num>' "
"directive",
DiagnosticIDs::Note);
break;
}
diag(Loop->getBeginLoc(),
"full unrolling requested, but loop bounds are not known; to "
"partially unroll this loop, use the '#pragma unroll <num>' "
"directive");
break;
}
}
enum UnrollLoopsCheck::UnrollType
UnrollLoopsCheck::unrollType(const Stmt *Statement, ASTContext *Context) {
const DynTypedNodeList Parents = Context->getParents<Stmt>(*Statement);
for (const DynTypedNode &Parent : Parents) {
const auto *ParentStmt = Parent.get<AttributedStmt>();
if (!ParentStmt)
continue;
for (const Attr *Attribute : ParentStmt->getAttrs()) {
const auto *LoopHint = dyn_cast<LoopHintAttr>(Attribute);
if (!LoopHint)
continue;
switch (LoopHint->getState()) {
case LoopHintAttr::Numeric:
return PartiallyUnrolled;
case LoopHintAttr::Disable:
return NotUnrolled;
case LoopHintAttr::Full:
return FullyUnrolled;
case LoopHintAttr::Enable:
return FullyUnrolled;
case LoopHintAttr::AssumeSafety:
return NotUnrolled;
case LoopHintAttr::FixedWidth:
return NotUnrolled;
case LoopHintAttr::ScalableWidth:
return NotUnrolled;
}
}
}
return NotUnrolled;
}
bool UnrollLoopsCheck::hasKnownBounds(const Stmt *Statement,
const IntegerLiteral *CXXLoopBound,
const ASTContext *Context) {
if (isa<CXXForRangeStmt>(Statement))
return CXXLoopBound != nullptr;
// Too many possibilities in a while statement, so always recommend partial
// unrolling for these.
if (isa<WhileStmt, DoStmt>(Statement))
return false;
// The last loop type is a for loop.
const auto *ForLoop = cast<ForStmt>(Statement);
const Stmt *Initializer = ForLoop->getInit();
const Expr *Conditional = ForLoop->getCond();
const Expr *Increment = ForLoop->getInc();
if (!Initializer || !Conditional || !Increment)
return false;
// If the loop variable value isn't known, loop bounds are unknown.
if (const auto *InitDeclStatement = dyn_cast<DeclStmt>(Initializer)) {
if (const auto *VariableDecl =
dyn_cast<VarDecl>(InitDeclStatement->getSingleDecl())) {
APValue *Evaluation = VariableDecl->evaluateValue();
if (!Evaluation || !Evaluation->hasValue())
return false;
}
}
// If increment is unary and not one of ++ and --, loop bounds are unknown.
if (const auto *Op = dyn_cast<UnaryOperator>(Increment))
if (!Op->isIncrementDecrementOp())
return false;
if (const auto *BinaryOp = dyn_cast<BinaryOperator>(Conditional)) {
const Expr *LHS = BinaryOp->getLHS();
const Expr *RHS = BinaryOp->getRHS();
// If both sides are value dependent or constant, loop bounds are unknown.
return LHS->isEvaluatable(*Context) != RHS->isEvaluatable(*Context);
}
return false; // If it's not a binary operator, loop bounds are unknown.
}
const Expr *UnrollLoopsCheck::getCondExpr(const Stmt *Statement) {
if (const auto *ForLoop = dyn_cast<ForStmt>(Statement))
return ForLoop->getCond();
if (const auto *WhileLoop = dyn_cast<WhileStmt>(Statement))
return WhileLoop->getCond();
if (const auto *DoWhileLoop = dyn_cast<DoStmt>(Statement))
return DoWhileLoop->getCond();
if (const auto *CXXRangeLoop = dyn_cast<CXXForRangeStmt>(Statement))
return CXXRangeLoop->getCond();
llvm_unreachable("Unknown loop");
}
bool UnrollLoopsCheck::hasLargeNumIterations(const Stmt *Statement,
const IntegerLiteral *CXXLoopBound,
const ASTContext *Context) {
// Because hasKnownBounds is called before this, if this is true, then
// CXXLoopBound is also matched.
if (isa<CXXForRangeStmt>(Statement)) {
assert(CXXLoopBound && "CXX ranged for loop has no loop bound");
return exprHasLargeNumIterations(CXXLoopBound, Context);
}
const auto *ForLoop = cast<ForStmt>(Statement);
const Stmt *Initializer = ForLoop->getInit();
const Expr *Conditional = ForLoop->getCond();
const Expr *Increment = ForLoop->getInc();
int InitValue;
// If the loop variable value isn't known, we can't know the loop bounds.
if (const auto *InitDeclStatement = dyn_cast<DeclStmt>(Initializer)) {
if (const auto *VariableDecl =
dyn_cast<VarDecl>(InitDeclStatement->getSingleDecl())) {
APValue *Evaluation = VariableDecl->evaluateValue();
if (!Evaluation || !Evaluation->isInt())
return true;
InitValue = Evaluation->getInt().getExtValue();
}
}
int EndValue;
const auto *BinaryOp = cast<BinaryOperator>(Conditional);
if (!extractValue(EndValue, BinaryOp, Context))
return true;
double Iterations;
// If increment is unary and not one of ++, --, we can't know the loop bounds.
if (const auto *Op = dyn_cast<UnaryOperator>(Increment)) {
if (Op->isIncrementOp())
Iterations = EndValue - InitValue;
else if (Op->isDecrementOp())
Iterations = InitValue - EndValue;
else
llvm_unreachable("Unary operator neither increment nor decrement");
}
// If increment is binary and not one of +, -, *, /, we can't know the loop
// bounds.
if (const auto *Op = dyn_cast<BinaryOperator>(Increment)) {
int ConstantValue;
if (!extractValue(ConstantValue, Op, Context))
return true;
switch (Op->getOpcode()) {
case (BO_AddAssign):
Iterations = ceil(float(EndValue - InitValue) / ConstantValue);
break;
case (BO_SubAssign):
Iterations = ceil(float(InitValue - EndValue) / ConstantValue);
break;
case (BO_MulAssign):
Iterations = 1 + (log(EndValue) - log(InitValue)) / log(ConstantValue);
break;
case (BO_DivAssign):
Iterations = 1 + (log(InitValue) - log(EndValue)) / log(ConstantValue);
break;
default:
// All other operators are not handled; assume large bounds.
return true;
}
}
return Iterations > MaxLoopIterations;
}
bool UnrollLoopsCheck::extractValue(int &Value, const BinaryOperator *Op,
const ASTContext *Context) {
const Expr *LHS = Op->getLHS();
const Expr *RHS = Op->getRHS();
Expr::EvalResult Result;
if (LHS->isEvaluatable(*Context))
LHS->EvaluateAsRValue(Result, *Context);
else if (RHS->isEvaluatable(*Context))
RHS->EvaluateAsRValue(Result, *Context);
else
return false; // Cannot evaluate either side.
if (!Result.Val.isInt())
return false; // Cannot check number of iterations, return false to be
// safe.
Value = Result.Val.getInt().getExtValue();
return true;
}
bool UnrollLoopsCheck::exprHasLargeNumIterations(const Expr *Expression,
const ASTContext *Context) {
Expr::EvalResult Result;
if (Expression->EvaluateAsRValue(Result, *Context)) {
if (!Result.Val.isInt())
return false; // Cannot check number of iterations, return false to be
// safe.
// The following assumes values go from 0 to Val in increments of 1.
return Result.Val.getInt() > MaxLoopIterations;
}
// Cannot evaluate Expression as an r-value, so cannot check number of
// iterations.
return false;
}
void UnrollLoopsCheck::storeOptions(ClangTidyOptions::OptionMap &Opts) {
Options.store(Opts, "MaxLoopIterations", MaxLoopIterations);
}
} // namespace altera
} // namespace tidy
} // namespace clang
|