1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
//===--- NewDeleteOverloadsCheck.cpp - clang-tidy--------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "NewDeleteOverloadsCheck.h"
#include "clang/AST/ASTContext.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
using namespace clang::ast_matchers;
namespace clang {
namespace tidy {
namespace misc {
namespace {
AST_MATCHER(FunctionDecl, isPlacementOverload) {
bool New;
switch (Node.getOverloadedOperator()) {
default:
return false;
case OO_New:
case OO_Array_New:
New = true;
break;
case OO_Delete:
case OO_Array_Delete:
New = false;
break;
}
// Variadic functions are always placement functions.
if (Node.isVariadic())
return true;
// Placement new is easy: it always has more than one parameter (the first
// parameter is always the size). If it's an overload of delete or delete[]
// that has only one parameter, it's never a placement delete.
if (New)
return Node.getNumParams() > 1;
if (Node.getNumParams() == 1)
return false;
// Placement delete is a little more challenging. They always have more than
// one parameter with the first parameter being a pointer. However, the
// second parameter can be a size_t for sized deallocation, and that is never
// a placement delete operator.
if (Node.getNumParams() <= 1 || Node.getNumParams() > 2)
return true;
const auto *FPT = Node.getType()->castAs<FunctionProtoType>();
ASTContext &Ctx = Node.getASTContext();
if (Ctx.getLangOpts().SizedDeallocation &&
Ctx.hasSameType(FPT->getParamType(1), Ctx.getSizeType()))
return false;
return true;
}
OverloadedOperatorKind getCorrespondingOverload(const FunctionDecl *FD) {
switch (FD->getOverloadedOperator()) {
default:
break;
case OO_New:
return OO_Delete;
case OO_Delete:
return OO_New;
case OO_Array_New:
return OO_Array_Delete;
case OO_Array_Delete:
return OO_Array_New;
}
llvm_unreachable("Not an overloaded allocation operator");
}
const char *getOperatorName(OverloadedOperatorKind K) {
switch (K) {
default:
break;
case OO_New:
return "operator new";
case OO_Delete:
return "operator delete";
case OO_Array_New:
return "operator new[]";
case OO_Array_Delete:
return "operator delete[]";
}
llvm_unreachable("Not an overloaded allocation operator");
}
bool areCorrespondingOverloads(const FunctionDecl *LHS,
const FunctionDecl *RHS) {
return RHS->getOverloadedOperator() == getCorrespondingOverload(LHS);
}
bool hasCorrespondingOverloadInBaseClass(const CXXMethodDecl *MD,
const CXXRecordDecl *RD = nullptr) {
if (RD) {
// Check the methods in the given class and accessible to derived classes.
for (const auto *BMD : RD->methods())
if (BMD->isOverloadedOperator() && BMD->getAccess() != AS_private &&
areCorrespondingOverloads(MD, BMD))
return true;
} else {
// Get the parent class of the method; we do not need to care about checking
// the methods in this class as the caller has already done that by looking
// at the declaration contexts.
RD = MD->getParent();
}
for (const auto &BS : RD->bases()) {
// We can't say much about a dependent base class, but to avoid false
// positives assume it can have a corresponding overload.
if (BS.getType()->isDependentType())
return true;
if (const auto *BaseRD = BS.getType()->getAsCXXRecordDecl())
if (hasCorrespondingOverloadInBaseClass(MD, BaseRD))
return true;
}
return false;
}
} // anonymous namespace
void NewDeleteOverloadsCheck::registerMatchers(MatchFinder *Finder) {
// Match all operator new and operator delete overloads (including the array
// forms). Do not match implicit operators, placement operators, or
// deleted/private operators.
//
// Technically, trivially-defined operator delete seems like a reasonable
// thing to also skip. e.g., void operator delete(void *) {}
// However, I think it's more reasonable to warn in this case as the user
// should really be writing that as a deleted function.
Finder->addMatcher(
functionDecl(unless(anyOf(isImplicit(), isPlacementOverload(),
isDeleted(), cxxMethodDecl(isPrivate()))),
anyOf(hasOverloadedOperatorName("new"),
hasOverloadedOperatorName("new[]"),
hasOverloadedOperatorName("delete"),
hasOverloadedOperatorName("delete[]")))
.bind("func"),
this);
}
void NewDeleteOverloadsCheck::check(const MatchFinder::MatchResult &Result) {
// Add any matches we locate to the list of things to be checked at the
// end of the translation unit.
const auto *FD = Result.Nodes.getNodeAs<FunctionDecl>("func");
const CXXRecordDecl *RD = nullptr;
if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
RD = MD->getParent();
Overloads[RD].push_back(FD);
}
void NewDeleteOverloadsCheck::onEndOfTranslationUnit() {
// Walk over the list of declarations we've found to see if there is a
// corresponding overload at the same declaration context or within a base
// class. If there is not, add the element to the list of declarations to
// diagnose.
SmallVector<const FunctionDecl *, 4> Diagnose;
for (const auto &RP : Overloads) {
// We don't care about the CXXRecordDecl key in the map; we use it as a way
// to shard the overloads by declaration context to reduce the algorithmic
// complexity when searching for corresponding free store functions.
for (const auto *Overload : RP.second) {
const auto *Match =
std::find_if(RP.second.begin(), RP.second.end(),
[&Overload](const FunctionDecl *FD) {
if (FD == Overload)
return false;
// If the declaration contexts don't match, we don't
// need to check any further.
if (FD->getDeclContext() != Overload->getDeclContext())
return false;
// Since the declaration contexts match, see whether
// the current element is the corresponding operator.
if (!areCorrespondingOverloads(Overload, FD))
return false;
return true;
});
if (Match == RP.second.end()) {
// Check to see if there is a corresponding overload in a base class
// context. If there isn't, or if the overload is not a class member
// function, then we should diagnose.
const auto *MD = dyn_cast<CXXMethodDecl>(Overload);
if (!MD || !hasCorrespondingOverloadInBaseClass(MD))
Diagnose.push_back(Overload);
}
}
}
for (const auto *FD : Diagnose)
diag(FD->getLocation(), "declaration of %0 has no matching declaration "
"of '%1' at the same scope")
<< FD << getOperatorName(getCorrespondingOverload(FD));
}
} // namespace misc
} // namespace tidy
} // namespace clang
|