1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
//===--- NoRecursionCheck.cpp - clang-tidy --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "NoRecursionCheck.h"
#include "clang/AST/ASTContext.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Analysis/CallGraph.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/SCCIterator.h"
using namespace clang::ast_matchers;
namespace clang {
namespace tidy {
namespace misc {
namespace {
/// Much like SmallSet, with two differences:
/// 1. It can *only* be constructed from an ArrayRef<>. If the element count
/// is small, there is no copy and said storage *must* outlive us.
/// 2. it is immutable, the way it was constructed it will stay.
template <typename T, unsigned SmallSize> class ImmutableSmallSet {
ArrayRef<T> Vector;
llvm::DenseSet<T> Set;
static_assert(SmallSize <= 32, "N should be small");
bool isSmall() const { return Set.empty(); }
public:
using size_type = size_t;
ImmutableSmallSet() = delete;
ImmutableSmallSet(const ImmutableSmallSet &) = delete;
ImmutableSmallSet(ImmutableSmallSet &&) = delete;
T &operator=(const ImmutableSmallSet &) = delete;
T &operator=(ImmutableSmallSet &&) = delete;
// WARNING: Storage *must* outlive us if we decide that the size is small.
ImmutableSmallSet(ArrayRef<T> Storage) {
// Is size small-enough to just keep using the existing storage?
if (Storage.size() <= SmallSize) {
Vector = Storage;
return;
}
// We've decided that it isn't performant to keep using vector.
// Let's migrate the data into Set.
Set.reserve(Storage.size());
Set.insert(Storage.begin(), Storage.end());
}
/// count - Return 1 if the element is in the set, 0 otherwise.
size_type count(const T &V) const {
if (isSmall()) {
// Since the collection is small, just do a linear search.
return llvm::find(Vector, V) == Vector.end() ? 0 : 1;
}
return Set.count(V);
}
};
/// Much like SmallSetVector, but with one difference:
/// when the size is \p SmallSize or less, when checking whether an element is
/// already in the set or not, we perform linear search over the vector,
/// but if the size is larger than \p SmallSize, we look in set.
/// FIXME: upstream this into SetVector/SmallSetVector itself.
template <typename T, unsigned SmallSize> class SmartSmallSetVector {
public:
using size_type = size_t;
private:
SmallVector<T, SmallSize> Vector;
llvm::DenseSet<T> Set;
static_assert(SmallSize <= 32, "N should be small");
// Are we still using Vector for uniqness tracking?
bool isSmall() const { return Set.empty(); }
// Will one more entry cause Vector to switch away from small-size storage?
bool entiretyOfVectorSmallSizeIsOccupied() const {
assert(isSmall() && Vector.size() <= SmallSize &&
"Shouldn't ask if we have already [should have] migrated into Set.");
return Vector.size() == SmallSize;
}
void populateSet() {
assert(Set.empty() && "Should not have already utilized the Set.");
// Magical growth factor prediction - to how many elements do we expect to
// sanely grow after switching away from small-size storage?
const size_t NewMaxElts = 4 * Vector.size();
Vector.reserve(NewMaxElts);
Set.reserve(NewMaxElts);
Set.insert(Vector.begin(), Vector.end());
}
/// count - Return 1 if the element is in the set, 0 otherwise.
size_type count(const T &V) const {
if (isSmall()) {
// Since the collection is small, just do a linear search.
return llvm::find(Vector, V) == Vector.end() ? 0 : 1;
}
// Look-up in the Set.
return Set.count(V);
}
bool setInsert(const T &V) {
if (count(V) != 0)
return false; // Already exists.
// Does not exist, Can/need to record it.
if (isSmall()) { // Are we still using Vector for uniqness tracking?
// Will one more entry fit within small-sized Vector?
if (!entiretyOfVectorSmallSizeIsOccupied())
return true; // We'll insert into vector right afterwards anyway.
// Time to switch to Set.
populateSet();
}
// Set time!
// Note that this must be after `populateSet()` might have been called.
bool SetInsertionSucceeded = Set.insert(V).second;
(void)SetInsertionSucceeded;
assert(SetInsertionSucceeded && "We did check that no such value existed");
return true;
}
public:
/// Insert a new element into the SmartSmallSetVector.
/// \returns true if the element was inserted into the SmartSmallSetVector.
bool insert(const T &X) {
bool Result = setInsert(X);
if (Result)
Vector.push_back(X);
return Result;
}
/// Clear the SmartSmallSetVector and return the underlying vector.
decltype(Vector) takeVector() {
Set.clear();
return std::move(Vector);
}
};
constexpr unsigned SmallCallStackSize = 16;
constexpr unsigned SmallSCCSize = 32;
using CallStackTy =
llvm::SmallVector<CallGraphNode::CallRecord, SmallCallStackSize>;
// In given SCC, find *some* call stack that will be cyclic.
// This will only find *one* such stack, it might not be the smallest one,
// and there may be other loops.
CallStackTy pathfindSomeCycle(ArrayRef<CallGraphNode *> SCC) {
// We'll need to be able to performantly look up whether some CallGraphNode
// is in SCC or not, so cache all the SCC elements in a set.
const ImmutableSmallSet<CallGraphNode *, SmallSCCSize> SCCElts(SCC);
// Is node N part if the current SCC?
auto NodeIsPartOfSCC = [&SCCElts](CallGraphNode *N) {
return SCCElts.count(N) != 0;
};
// Track the call stack that will cause a cycle.
SmartSmallSetVector<CallGraphNode::CallRecord, SmallCallStackSize>
CallStackSet;
// Arbitrarily take the first element of SCC as entry point.
CallGraphNode::CallRecord EntryNode(SCC.front(), /*CallExpr=*/nullptr);
// Continue recursing into subsequent callees that are part of this SCC,
// and are thus known to be part of the call graph loop, until loop forms.
CallGraphNode::CallRecord *Node = &EntryNode;
while (true) {
// Did we see this node before?
if (!CallStackSet.insert(*Node))
break; // Cycle completed! Note that didn't insert the node into stack!
// Else, perform depth-first traversal: out of all callees, pick first one
// that is part of this SCC. This is not guaranteed to yield shortest cycle.
Node = llvm::find_if(Node->Callee->callees(), NodeIsPartOfSCC);
}
// Note that we failed to insert the last node, that completes the cycle.
// But we really want to have it. So insert it manually into stack only.
CallStackTy CallStack = CallStackSet.takeVector();
CallStack.emplace_back(*Node);
return CallStack;
}
} // namespace
void NoRecursionCheck::registerMatchers(MatchFinder *Finder) {
Finder->addMatcher(translationUnitDecl().bind("TUDecl"), this);
}
void NoRecursionCheck::handleSCC(ArrayRef<CallGraphNode *> SCC) {
assert(!SCC.empty() && "Empty SCC does not make sense.");
// First of all, call out every strongly connected function.
for (CallGraphNode *N : SCC) {
FunctionDecl *D = N->getDefinition();
diag(D->getLocation(), "function %0 is within a recursive call chain") << D;
}
// Now, SCC only tells us about strongly connected function declarations in
// the call graph. It doesn't *really* tell us about the cycles they form.
// And there may be more than one cycle in SCC.
// So let's form a call stack that eventually exposes *some* cycle.
const CallStackTy EventuallyCyclicCallStack = pathfindSomeCycle(SCC);
assert(!EventuallyCyclicCallStack.empty() && "We should've found the cycle");
// While last node of the call stack does cause a loop, due to the way we
// pathfind the cycle, the loop does not necessarily begin at the first node
// of the call stack, so drop front nodes of the call stack until it does.
const auto CyclicCallStack =
ArrayRef<CallGraphNode::CallRecord>(EventuallyCyclicCallStack)
.drop_until([LastNode = EventuallyCyclicCallStack.back()](
CallGraphNode::CallRecord FrontNode) {
return FrontNode == LastNode;
});
assert(CyclicCallStack.size() >= 2 && "Cycle requires at least 2 frames");
// Which function we decided to be the entry point that lead to the recursion?
FunctionDecl *CycleEntryFn = CyclicCallStack.front().Callee->getDefinition();
// And now, for ease of understanding, let's print the call sequence that
// forms the cycle in question.
diag(CycleEntryFn->getLocation(),
"example recursive call chain, starting from function %0",
DiagnosticIDs::Note)
<< CycleEntryFn;
for (int CurFrame = 1, NumFrames = CyclicCallStack.size();
CurFrame != NumFrames; ++CurFrame) {
CallGraphNode::CallRecord PrevNode = CyclicCallStack[CurFrame - 1];
CallGraphNode::CallRecord CurrNode = CyclicCallStack[CurFrame];
Decl *PrevDecl = PrevNode.Callee->getDecl();
Decl *CurrDecl = CurrNode.Callee->getDecl();
diag(CurrNode.CallExpr->getBeginLoc(),
"Frame #%0: function %1 calls function %2 here:", DiagnosticIDs::Note)
<< CurFrame << cast<NamedDecl>(PrevDecl) << cast<NamedDecl>(CurrDecl);
}
diag(CyclicCallStack.back().CallExpr->getBeginLoc(),
"... which was the starting point of the recursive call chain; there "
"may be other cycles",
DiagnosticIDs::Note);
}
void NoRecursionCheck::check(const MatchFinder::MatchResult &Result) {
// Build call graph for the entire translation unit.
const auto *TU = Result.Nodes.getNodeAs<TranslationUnitDecl>("TUDecl");
CallGraph CG;
CG.addToCallGraph(const_cast<TranslationUnitDecl *>(TU));
// Look for cycles in call graph,
// by looking for Strongly Connected Components (SCC's)
for (llvm::scc_iterator<CallGraph *> SCCI = llvm::scc_begin(&CG),
SCCE = llvm::scc_end(&CG);
SCCI != SCCE; ++SCCI) {
if (!SCCI.hasCycle()) // We only care about cycles, not standalone nodes.
continue;
handleSCC(*SCCI);
}
}
} // namespace misc
} // namespace tidy
} // namespace clang
|