1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
==========
LibTooling
==========
LibTooling is a library to support writing standalone tools based on Clang.
This document will provide a basic walkthrough of how to write a tool using
LibTooling.
For the information on how to setup Clang Tooling for LLVM see
:doc:`HowToSetupToolingForLLVM`
Introduction
------------
Tools built with LibTooling, like Clang Plugins, run ``FrontendActions`` over
code.
.. See FIXME for a tutorial on how to write FrontendActions.
In this tutorial, we'll demonstrate the different ways of running Clang's
``SyntaxOnlyAction``, which runs a quick syntax check, over a bunch of code.
Parsing a code snippet in memory
--------------------------------
If you ever wanted to run a ``FrontendAction`` over some sample code, for
example to unit test parts of the Clang AST, ``runToolOnCode`` is what you
looked for. Let me give you an example:
.. code-block:: c++
#include "clang/Tooling/Tooling.h"
TEST(runToolOnCode, CanSyntaxCheckCode) {
// runToolOnCode returns whether the action was correctly run over the
// given code.
EXPECT_TRUE(runToolOnCode(std::make_unique<clang::SyntaxOnlyAction>(), "class X {};"));
}
Writing a standalone tool
-------------------------
Once you unit tested your ``FrontendAction`` to the point where it cannot
possibly break, it's time to create a standalone tool. For a standalone tool
to run clang, it first needs to figure out what command line arguments to use
for a specified file. To that end we create a ``CompilationDatabase``. There
are different ways to create a compilation database, and we need to support all
of them depending on command-line options. There's the ``CommonOptionsParser``
class that takes the responsibility to parse command-line parameters related to
compilation databases and inputs, so that all tools share the implementation.
Parsing common tools options
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``CompilationDatabase`` can be read from a build directory or the command line.
Using ``CommonOptionsParser`` allows for explicit specification of a compile
command line, specification of build path using the ``-p`` command-line option,
and automatic location of the compilation database using source files paths.
.. code-block:: c++
#include "clang/Tooling/CommonOptionsParser.h"
#include "llvm/Support/CommandLine.h"
using namespace clang::tooling;
// Apply a custom category to all command-line options so that they are the
// only ones displayed.
static llvm::cl::OptionCategory MyToolCategory("my-tool options");
int main(int argc, const char **argv) {
// CommonOptionsParser constructor will parse arguments and create a
// CompilationDatabase. In case of error it will terminate the program.
CommonOptionsParser OptionsParser(argc, argv, MyToolCategory);
// Use OptionsParser.getCompilations() and OptionsParser.getSourcePathList()
// to retrieve CompilationDatabase and the list of input file paths.
}
Creating and running a ClangTool
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Once we have a ``CompilationDatabase``, we can create a ``ClangTool`` and run
our ``FrontendAction`` over some code. For example, to run the
``SyntaxOnlyAction`` over the files "a.cc" and "b.cc" one would write:
.. code-block:: c++
// A clang tool can run over a number of sources in the same process...
std::vector<std::string> Sources;
Sources.push_back("a.cc");
Sources.push_back("b.cc");
// We hand the CompilationDatabase we created and the sources to run over into
// the tool constructor.
ClangTool Tool(OptionsParser.getCompilations(), Sources);
// The ClangTool needs a new FrontendAction for each translation unit we run
// on. Thus, it takes a FrontendActionFactory as parameter. To create a
// FrontendActionFactory from a given FrontendAction type, we call
// newFrontendActionFactory<clang::SyntaxOnlyAction>().
int result = Tool.run(newFrontendActionFactory<clang::SyntaxOnlyAction>().get());
Putting it together --- the first tool
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Now we combine the two previous steps into our first real tool. A more advanced
version of this example tool is also checked into the clang tree at
``tools/clang-check/ClangCheck.cpp``.
.. code-block:: c++
// Declares clang::SyntaxOnlyAction.
#include "clang/Frontend/FrontendActions.h"
#include "clang/Tooling/CommonOptionsParser.h"
#include "clang/Tooling/Tooling.h"
// Declares llvm::cl::extrahelp.
#include "llvm/Support/CommandLine.h"
using namespace clang::tooling;
using namespace llvm;
// Apply a custom category to all command-line options so that they are the
// only ones displayed.
static cl::OptionCategory MyToolCategory("my-tool options");
// CommonOptionsParser declares HelpMessage with a description of the common
// command-line options related to the compilation database and input files.
// It's nice to have this help message in all tools.
static cl::extrahelp CommonHelp(CommonOptionsParser::HelpMessage);
// A help message for this specific tool can be added afterwards.
static cl::extrahelp MoreHelp("\nMore help text...\n");
int main(int argc, const char **argv) {
CommonOptionsParser OptionsParser(argc, argv, MyToolCategory);
ClangTool Tool(OptionsParser.getCompilations(),
OptionsParser.getSourcePathList());
return Tool.run(newFrontendActionFactory<clang::SyntaxOnlyAction>().get());
}
Running the tool on some code
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
When you check out and build clang, clang-check is already built and available
to you in bin/clang-check inside your build directory.
You can run clang-check on a file in the llvm repository by specifying all the
needed parameters after a "``--``" separator:
.. code-block:: bash
$ cd /path/to/source/llvm
$ export BD=/path/to/build/llvm
$ $BD/bin/clang-check tools/clang/tools/clang-check/ClangCheck.cpp -- \
clang++ -D__STDC_CONSTANT_MACROS -D__STDC_LIMIT_MACROS \
-Itools/clang/include -I$BD/include -Iinclude \
-Itools/clang/lib/Headers -c
As an alternative, you can also configure cmake to output a compile command
database into its build directory:
.. code-block:: bash
# Alternatively to calling cmake, use ccmake, toggle to advanced mode and
# set the parameter CMAKE_EXPORT_COMPILE_COMMANDS from the UI.
$ cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON .
This creates a file called ``compile_commands.json`` in the build directory.
Now you can run :program:`clang-check` over files in the project by specifying
the build path as first argument and some source files as further positional
arguments:
.. code-block:: bash
$ cd /path/to/source/llvm
$ export BD=/path/to/build/llvm
$ $BD/bin/clang-check -p $BD tools/clang/tools/clang-check/ClangCheck.cpp
.. _libtooling_builtin_includes:
Builtin includes
^^^^^^^^^^^^^^^^
Clang tools need their builtin headers and search for them the same way Clang
does. Thus, the default location to look for builtin headers is in a path
``$(dirname /path/to/tool)/../lib/clang/3.3/include`` relative to the tool
binary. This works out-of-the-box for tools running from llvm's toplevel
binary directory after building clang-resource-headers, or if the tool is
running from the binary directory of a clang install next to the clang binary.
Tips: if your tool fails to find ``stddef.h`` or similar headers, call the tool
with ``-v`` and look at the search paths it looks through.
Linking
^^^^^^^
For a list of libraries to link, look at one of the tools' CMake files (for
example `clang-check/CMakeList.txt
<https://github.com/llvm/llvm-project/blob/main/clang/tools/clang-check/CMakeLists.txt>`_).
|