File: TypeErasedDataflowAnalysis.cpp

package info (click to toggle)
llvm-toolchain-14 1%3A14.0.6-16
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,496,368 kB
  • sloc: cpp: 5,593,980; ansic: 986,873; asm: 585,869; python: 184,223; objc: 72,530; lisp: 31,119; f90: 27,793; javascript: 9,780; pascal: 9,762; sh: 9,482; perl: 7,468; ml: 5,432; awk: 3,523; makefile: 2,547; xml: 953; cs: 573; fortran: 567
file content (253 lines) | stat: -rw-r--r-- 10,439 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
//===- TypeErasedDataflowAnalysis.cpp -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file defines type-erased base types and functions for building dataflow
//  analyses that run over Control-Flow Graphs (CFGs).
//
//===----------------------------------------------------------------------===//

#include <memory>
#include <system_error>
#include <utility>
#include <vector>

#include "clang/AST/DeclCXX.h"
#include "clang/Analysis/Analyses/PostOrderCFGView.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
#include "clang/Analysis/FlowSensitive/DataflowWorklist.h"
#include "clang/Analysis/FlowSensitive/Transfer.h"
#include "clang/Analysis/FlowSensitive/TypeErasedDataflowAnalysis.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Support/Error.h"

namespace clang {
namespace dataflow {

/// Computes the input state for a given basic block by joining the output
/// states of its predecessors.
///
/// Requirements:
///
///   All predecessors of `Block` except those with loop back edges must have
///   already been transferred. States in `BlockStates` that are set to
///   `llvm::None` represent basic blocks that are not evaluated yet.
static TypeErasedDataflowAnalysisState computeBlockInputState(
    const ControlFlowContext &CFCtx,
    std::vector<llvm::Optional<TypeErasedDataflowAnalysisState>> &BlockStates,
    const CFGBlock &Block, const Environment &InitEnv,
    TypeErasedDataflowAnalysis &Analysis) {
  llvm::DenseSet<const CFGBlock *> Preds;
  Preds.insert(Block.pred_begin(), Block.pred_end());
  if (Block.getTerminator().isTemporaryDtorsBranch()) {
    // This handles a special case where the code that produced the CFG includes
    // a conditional operator with a branch that constructs a temporary and
    // calls a destructor annotated as noreturn. The CFG models this as follows:
    //
    // B1 (contains the condition of the conditional operator) - succs: B2, B3
    // B2 (contains code that does not call a noreturn destructor) - succs: B4
    // B3 (contains code that calls a noreturn destructor) - succs: B4
    // B4 (has temporary destructor terminator) - succs: B5, B6
    // B5 (noreturn block that is associated with the noreturn destructor call)
    // B6 (contains code that follows the conditional operator statement)
    //
    // The first successor (B5 above) of a basic block with a temporary
    // destructor terminator (B4 above) is the block that evaluates the
    // destructor. If that block has a noreturn element then the predecessor
    // block that constructed the temporary object (B3 above) is effectively a
    // noreturn block and its state should not be used as input for the state
    // of the block that has a temporary destructor terminator (B4 above). This
    // holds regardless of which branch of the ternary operator calls the
    // noreturn destructor. However, it doesn't cases where a nested ternary
    // operator includes a branch that contains a noreturn destructor call.
    //
    // See `NoreturnDestructorTest` for concrete examples.
    if (Block.succ_begin()->getReachableBlock()->hasNoReturnElement()) {
      auto StmtBlock = CFCtx.getStmtToBlock().find(Block.getTerminatorStmt());
      assert(StmtBlock != CFCtx.getStmtToBlock().end());
      Preds.erase(StmtBlock->getSecond());
    }
  }

  llvm::Optional<TypeErasedDataflowAnalysisState> MaybeState;
  for (const CFGBlock *Pred : Preds) {
    // Skip if the `Block` is unreachable or control flow cannot get past it.
    if (!Pred || Pred->hasNoReturnElement())
      continue;

    // Skip if `Pred` was not evaluated yet. This could happen if `Pred` has a
    // loop back edge to `Block`.
    const llvm::Optional<TypeErasedDataflowAnalysisState> &MaybePredState =
        BlockStates[Pred->getBlockID()];
    if (!MaybePredState.hasValue())
      continue;

    const TypeErasedDataflowAnalysisState &PredState =
        MaybePredState.getValue();
    if (MaybeState.hasValue()) {
      Analysis.joinTypeErased(MaybeState->Lattice, PredState.Lattice);
      MaybeState->Env.join(PredState.Env, Analysis);
    } else {
      MaybeState = PredState;
    }
  }
  if (!MaybeState.hasValue()) {
    // FIXME: Consider passing `Block` to `Analysis.typeErasedInitialElement()`
    // to enable building analyses like computation of dominators that
    // initialize the state of each basic block differently.
    MaybeState.emplace(Analysis.typeErasedInitialElement(), InitEnv);
  }
  return *MaybeState;
}

/// Transfers `State` by evaluating `CfgStmt` in the context of `Analysis`.
/// `HandleTransferredStmt` (if provided) will be applied to `CfgStmt`, after it
/// is evaluated.
static void
transferCFGStmt(const CFGStmt &CfgStmt, TypeErasedDataflowAnalysis &Analysis,
                TypeErasedDataflowAnalysisState &State,
                std::function<void(const CFGStmt &,
                                   const TypeErasedDataflowAnalysisState &)>
                    HandleTransferredStmt) {
  const Stmt *S = CfgStmt.getStmt();
  assert(S != nullptr);

  if (Analysis.applyBuiltinTransfer())
    transfer(*S, State.Env);
  Analysis.transferTypeErased(S, State.Lattice, State.Env);

  if (HandleTransferredStmt != nullptr)
    HandleTransferredStmt(CfgStmt, State);
}

/// Transfers `State` by evaluating `CfgInit`.
static void transferCFGInitializer(const CFGInitializer &CfgInit,
                                   TypeErasedDataflowAnalysisState &State) {
  const auto &ThisLoc = *cast<AggregateStorageLocation>(
      State.Env.getThisPointeeStorageLocation());

  const CXXCtorInitializer *Initializer = CfgInit.getInitializer();
  assert(Initializer != nullptr);

  auto *InitStmt = Initializer->getInit();
  assert(InitStmt != nullptr);

  auto *InitStmtLoc =
      State.Env.getStorageLocation(*InitStmt, SkipPast::Reference);
  if (InitStmtLoc == nullptr)
    return;

  auto *InitStmtVal = State.Env.getValue(*InitStmtLoc);
  if (InitStmtVal == nullptr)
    return;

  const FieldDecl *Member = Initializer->getMember();
  assert(Member != nullptr);

  if (Member->getType()->isReferenceType()) {
    auto &MemberLoc = ThisLoc.getChild(*Member);
    State.Env.setValue(MemberLoc,
                       State.Env.takeOwnership(
                           std::make_unique<ReferenceValue>(*InitStmtLoc)));
  } else {
    auto &MemberLoc = ThisLoc.getChild(*Member);
    State.Env.setValue(MemberLoc, *InitStmtVal);
  }
}

TypeErasedDataflowAnalysisState transferBlock(
    const ControlFlowContext &CFCtx,
    std::vector<llvm::Optional<TypeErasedDataflowAnalysisState>> &BlockStates,
    const CFGBlock &Block, const Environment &InitEnv,
    TypeErasedDataflowAnalysis &Analysis,
    std::function<void(const CFGStmt &,
                       const TypeErasedDataflowAnalysisState &)>
        HandleTransferredStmt) {
  TypeErasedDataflowAnalysisState State =
      computeBlockInputState(CFCtx, BlockStates, Block, InitEnv, Analysis);
  for (const CFGElement &Element : Block) {
    switch (Element.getKind()) {
    case CFGElement::Statement:
      transferCFGStmt(*Element.getAs<CFGStmt>(), Analysis, State,
                      HandleTransferredStmt);
      break;
    case CFGElement::Initializer:
      if (Analysis.applyBuiltinTransfer())
        transferCFGInitializer(*Element.getAs<CFGInitializer>(), State);
      break;
    default:
      // FIXME: Evaluate other kinds of `CFGElement`.
      break;
    }
  }
  return State;
}

llvm::Expected<std::vector<llvm::Optional<TypeErasedDataflowAnalysisState>>>
runTypeErasedDataflowAnalysis(const ControlFlowContext &CFCtx,
                              TypeErasedDataflowAnalysis &Analysis,
                              const Environment &InitEnv) {
  PostOrderCFGView POV(&CFCtx.getCFG());
  ForwardDataflowWorklist Worklist(CFCtx.getCFG(), &POV);

  std::vector<llvm::Optional<TypeErasedDataflowAnalysisState>> BlockStates;
  BlockStates.resize(CFCtx.getCFG().size(), llvm::None);

  // The entry basic block doesn't contain statements so it can be skipped.
  const CFGBlock &Entry = CFCtx.getCFG().getEntry();
  BlockStates[Entry.getBlockID()] = {Analysis.typeErasedInitialElement(),
                                     InitEnv};
  Worklist.enqueueSuccessors(&Entry);

  // Bugs in lattices and transfer functions can prevent the analysis from
  // converging. To limit the damage (infinite loops) that these bugs can cause,
  // limit the number of iterations.
  // FIXME: Consider making the maximum number of iterations configurable.
  // FIXME: Set up statistics (see llvm/ADT/Statistic.h) to count average number
  // of iterations, number of functions that time out, etc.
  uint32_t Iterations = 0;
  static constexpr uint32_t MaxIterations = 1 << 16;
  while (const CFGBlock *Block = Worklist.dequeue()) {
    if (++Iterations > MaxIterations) {
      return llvm::createStringError(std::errc::timed_out,
                                     "maximum number of iterations reached");
    }

    const llvm::Optional<TypeErasedDataflowAnalysisState> &OldBlockState =
        BlockStates[Block->getBlockID()];
    TypeErasedDataflowAnalysisState NewBlockState =
        transferBlock(CFCtx, BlockStates, *Block, InitEnv, Analysis);

    if (OldBlockState.hasValue() &&
        Analysis.isEqualTypeErased(OldBlockState.getValue().Lattice,
                                   NewBlockState.Lattice) &&
        OldBlockState->Env.equivalentTo(NewBlockState.Env, Analysis)) {
      // The state of `Block` didn't change after transfer so there's no need to
      // revisit its successors.
      continue;
    }

    BlockStates[Block->getBlockID()] = std::move(NewBlockState);

    // Do not add unreachable successor blocks to `Worklist`.
    if (Block->hasNoReturnElement())
      continue;

    Worklist.enqueueSuccessors(Block);
  }
  // FIXME: Consider evaluating unreachable basic blocks (those that have a
  // state set to `llvm::None` at this point) to also analyze dead code.

  return BlockStates;
}

} // namespace dataflow
} // namespace clang