| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 
 | // Purpose:
// Verifies that the debugging experience of loops marked optnone is as expected.
// REQUIRES: lldb
// UNSUPPORTED: system-windows
// UNSUPPORTED: system-darwin
// RUN: %dexter --fail-lt 1.0 -w \
// RUN:     --builder 'clang' --debugger 'lldb' \
// RUN:     --cflags "-O2 -g" -- %s
// A simple loop of assignments.
// With optimization level > 0 the compiler reorders basic blocks
// based on the basic block frequency analysis information.
// This also happens with optnone and it shouldn't.
// This is not affecting debug info so it is a minor limitation.
// Basic block placement based on the block frequency analysis
// is normally done to improve i-Cache performances.
__attribute__((optnone)) void simple_memcpy_loop(int *dest, const int *src,
                                                 unsigned nelems) {
  for (unsigned i = 0; i != nelems; ++i)
    dest[i] = src[i]; // DexLabel('target_simple_memcpy_loop')
}
// DexLimitSteps('i', 0, 4, 8, on_line=ref('target_simple_memcpy_loop'))
// DexExpectWatchValue('nelems', '16', on_line=ref('target_simple_memcpy_loop'))
// DexExpectWatchValue('src[i]', '3', '7', '1', on_line=ref('target_simple_memcpy_loop'))
// A trivial loop that could be optimized into a builtin memcpy
// which is either expanded into a optimal sequence of mov
// instructions or directly into a call to memset@plt
__attribute__((optnone)) void trivial_memcpy_loop(int *dest, const int *src) {
  for (unsigned i = 0; i != 16; ++i)
    dest[i] = src[i]; // DexLabel('target_trivial_memcpy_loop')
}
// DexLimitSteps('i', 3, 7, 9, 14, 15, on_line=ref('target_trivial_memcpy_loop'))
// DexExpectWatchValue('i', 3, 7, 9, 14, 15, on_line=ref('target_trivial_memcpy_loop'))
// DexExpectWatchValue('dest[i-1] == src[i-1]', 'true', on_line=ref('target_trivial_memcpy_loop'))
__attribute__((always_inline)) int foo(int a) { return a + 5; }
// A trivial loop of calls to a 'always_inline' function.
__attribute__((optnone)) void nonleaf_function_with_loop(int *dest,
                                                         const int *src) {
  for (unsigned i = 0; i != 16; ++i)
    dest[i] = foo(src[i]); // DexLabel('target_nonleaf_function_with_loop')
}
// DexLimitSteps('i', 1, on_line=ref('target_nonleaf_function_with_loop'))
// DexExpectWatchValue('dest[0]', '8', on_line=ref('target_nonleaf_function_with_loop'))
// DexExpectWatchValue('dest[1]', '4', on_line=ref('target_nonleaf_function_with_loop'))
// DexExpectWatchValue('dest[2]', '5', on_line=ref('target_nonleaf_function_with_loop'))
// DexExpectWatchValue('src[0]', '8', on_line=ref('target_nonleaf_function_with_loop'))
// DexExpectWatchValue('src[1]', '4', on_line=ref('target_nonleaf_function_with_loop'))
// DexExpectWatchValue('src[2]', '5', on_line=ref('target_nonleaf_function_with_loop'))
// DexExpectWatchValue('src[1] == dest[1]', 'true', on_line=ref('target_nonleaf_function_with_loop'))
// DexExpectWatchValue('src[2] == dest[2]', 'true', on_line=ref('target_nonleaf_function_with_loop'))
// This entire function could be optimized into a
// simple movl %esi, %eax.
// That is because we can compute the loop trip count
// knowing that ind-var 'i' can never be negative.
__attribute__((optnone)) int counting_loop(unsigned values) {
  unsigned i = 0;
  while (values--) // DexLabel('target_counting_loop')
    i++;
  return i;
}
// DexLimitSteps('i', 8, 16, on_line=ref('target_counting_loop'))
// DexExpectWatchValue('i', 8, 16, on_line=ref('target_counting_loop'))
// This loop could be rotated.
// while(cond){
//   ..
//   cond--;
// }
//
//  -->
// if(cond) {
//   do {
//     ...
//     cond--;
//   } while(cond);
// }
//
// the compiler will not try to optimize this function.
// However the Machine BB Placement Pass will try
// to reorder the basic block that computes the
// expression 'count' in order to simplify the control
// flow.
__attribute__((optnone)) int loop_rotate_test(int *src, unsigned count) {
  int result = 0;
  while (count) {
    result += src[count - 1]; // DexLabel('target_loop_rotate_test')
    count--;
  }
  return result; // DexLabel('target_loop_rotate_test_ret')
}
// DexLimitSteps('result', 13, on_line=ref('target_loop_rotate_test'))
// DexExpectWatchValue('src[count]', 13, on_line=ref('target_loop_rotate_test'))
// DexLimitSteps('result', 158, on_line=ref('target_loop_rotate_test_ret'))
// DexExpectWatchValue('result', 158, on_line=ref('target_loop_rotate_test_ret'))
typedef int *intptr __attribute__((aligned(16)));
// This loop can be vectorized if we enable
// the loop vectorizer.
__attribute__((optnone)) void loop_vectorize_test(intptr dest, intptr src) {
  unsigned count = 0;
  int tempArray[16];
  while(count != 16) { // DexLabel('target_loop_vectorize_test')
    tempArray[count] = src[count];
    tempArray[count+1] = src[count+1]; // DexLabel('target_loop_vectorize_test_2')
    tempArray[count+2] = src[count+2]; // DexLabel('target_loop_vectorize_test_3')
    tempArray[count+3] = src[count+3]; // DexLabel('target_loop_vectorize_test_4')
    dest[count] = tempArray[count]; // DexLabel('target_loop_vectorize_test_5')
    dest[count+1] = tempArray[count+1]; // DexLabel('target_loop_vectorize_test_6')
    dest[count+2] = tempArray[count+2]; // DexLabel('target_loop_vectorize_test_7')
    dest[count+3] = tempArray[count+3]; // DexLabel('target_loop_vectorize_test_8')
    count += 4; // DexLabel('target_loop_vectorize_test_9')
  }
}
// DexLimitSteps('count', 4, 8, 12, 16, from_line=ref('target_loop_vectorize_test'), to_line=ref('target_loop_vectorize_test_9'))
// DexExpectWatchValue('tempArray[count] == src[count]', 'true', on_line=ref('target_loop_vectorize_test_2'))
// DexExpectWatchValue('tempArray[count+1] == src[count+1]', 'true', on_line=ref('target_loop_vectorize_test_3'))
// DexExpectWatchValue('tempArray[count+2] == src[count+2]', 'true', on_line=ref('target_loop_vectorize_test_4'))
// DexExpectWatchValue('tempArray[count+3] == src[count+3]', 'true', on_line=ref('target_loop_vectorize_test_5'))
// DexExpectWatchValue('dest[count] == tempArray[count]', 'true', on_line=ref('target_loop_vectorize_test_6'))
// DexExpectWatchValue('dest[count+1] == tempArray[count+1]', 'true', on_line=ref('target_loop_vectorize_test_7'))
// DexExpectWatchValue('dest[count+2] == tempArray[count+2]', 'true', on_line=ref('target_loop_vectorize_test_8'))
// DexExpectWatchValue('dest[count+3] == tempArray[count+3]', 'true', on_line=ref('target_loop_vectorize_test_9'))
int main() {
  int A[] = {3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
  int B[] = {13, 14, 15, 16, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
  int C[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  simple_memcpy_loop(C, A, 16);
  trivial_memcpy_loop(B, C);
  nonleaf_function_with_loop(B, B);
  int count = counting_loop(16);
  count += loop_rotate_test(B, 16);
  loop_vectorize_test(A, B);
  return A[0] + count;
}
 |