| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 
 | /*
 * Double-precision e^x function.
 *
 * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 * See https://llvm.org/LICENSE.txt for license information.
 * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 */
#include <float.h>
#include <math.h>
#include <stdint.h>
#include "math_config.h"
#define N (1 << EXP_TABLE_BITS)
#define InvLn2N __exp_data.invln2N
#define NegLn2hiN __exp_data.negln2hiN
#define NegLn2loN __exp_data.negln2loN
#define Shift __exp_data.shift
#define T __exp_data.tab
#define C2 __exp_data.poly[5 - EXP_POLY_ORDER]
#define C3 __exp_data.poly[6 - EXP_POLY_ORDER]
#define C4 __exp_data.poly[7 - EXP_POLY_ORDER]
#define C5 __exp_data.poly[8 - EXP_POLY_ORDER]
#define C6 __exp_data.poly[9 - EXP_POLY_ORDER]
/* Handle cases that may overflow or underflow when computing the result that
   is scale*(1+TMP) without intermediate rounding.  The bit representation of
   scale is in SBITS, however it has a computed exponent that may have
   overflown into the sign bit so that needs to be adjusted before using it as
   a double.  (int32_t)KI is the k used in the argument reduction and exponent
   adjustment of scale, positive k here means the result may overflow and
   negative k means the result may underflow.  */
static inline double
specialcase (double_t tmp, uint64_t sbits, uint64_t ki)
{
  double_t scale, y;
  if ((ki & 0x80000000) == 0)
    {
      /* k > 0, the exponent of scale might have overflowed by <= 460.  */
      sbits -= 1009ull << 52;
      scale = asdouble (sbits);
      y = 0x1p1009 * (scale + scale * tmp);
      return check_oflow (eval_as_double (y));
    }
  /* k < 0, need special care in the subnormal range.  */
  sbits += 1022ull << 52;
  scale = asdouble (sbits);
  y = scale + scale * tmp;
  if (y < 1.0)
    {
      /* Round y to the right precision before scaling it into the subnormal
	 range to avoid double rounding that can cause 0.5+E/2 ulp error where
	 E is the worst-case ulp error outside the subnormal range.  So this
	 is only useful if the goal is better than 1 ulp worst-case error.  */
      double_t hi, lo;
      lo = scale - y + scale * tmp;
      hi = 1.0 + y;
      lo = 1.0 - hi + y + lo;
      y = eval_as_double (hi + lo) - 1.0;
      /* Avoid -0.0 with downward rounding.  */
      if (WANT_ROUNDING && y == 0.0)
	y = 0.0;
      /* The underflow exception needs to be signaled explicitly.  */
      force_eval_double (opt_barrier_double (0x1p-1022) * 0x1p-1022);
    }
  y = 0x1p-1022 * y;
  return check_uflow (eval_as_double (y));
}
/* Top 12 bits of a double (sign and exponent bits).  */
static inline uint32_t
top12 (double x)
{
  return asuint64 (x) >> 52;
}
/* Computes exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
   If hastail is 0 then xtail is assumed to be 0 too.  */
static inline double
exp_inline (double x, double xtail, int hastail)
{
  uint32_t abstop;
  uint64_t ki, idx, top, sbits;
  /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
  double_t kd, z, r, r2, scale, tail, tmp;
  abstop = top12 (x) & 0x7ff;
  if (unlikely (abstop - top12 (0x1p-54) >= top12 (512.0) - top12 (0x1p-54)))
    {
      if (abstop - top12 (0x1p-54) >= 0x80000000)
	/* Avoid spurious underflow for tiny x.  */
	/* Note: 0 is common input.  */
	return WANT_ROUNDING ? 1.0 + x : 1.0;
      if (abstop >= top12 (1024.0))
	{
	  if (asuint64 (x) == asuint64 (-INFINITY))
	    return 0.0;
	  if (abstop >= top12 (INFINITY))
	    return 1.0 + x;
	  if (asuint64 (x) >> 63)
	    return __math_uflow (0);
	  else
	    return __math_oflow (0);
	}
      /* Large x is special cased below.  */
      abstop = 0;
    }
  /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)].  */
  /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N].  */
  z = InvLn2N * x;
#if TOINT_INTRINSICS
  kd = roundtoint (z);
  ki = converttoint (z);
#elif EXP_USE_TOINT_NARROW
  /* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes.  */
  kd = eval_as_double (z + Shift);
  ki = asuint64 (kd) >> 16;
  kd = (double_t) (int32_t) ki;
#else
  /* z - kd is in [-1, 1] in non-nearest rounding modes.  */
  kd = eval_as_double (z + Shift);
  ki = asuint64 (kd);
  kd -= Shift;
#endif
  r = x + kd * NegLn2hiN + kd * NegLn2loN;
  /* The code assumes 2^-200 < |xtail| < 2^-8/N.  */
  if (hastail)
    r += xtail;
  /* 2^(k/N) ~= scale * (1 + tail).  */
  idx = 2 * (ki % N);
  top = ki << (52 - EXP_TABLE_BITS);
  tail = asdouble (T[idx]);
  /* This is only a valid scale when -1023*N < k < 1024*N.  */
  sbits = T[idx + 1] + top;
  /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1).  */
  /* Evaluation is optimized assuming superscalar pipelined execution.  */
  r2 = r * r;
  /* Without fma the worst case error is 0.25/N ulp larger.  */
  /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp.  */
#if EXP_POLY_ORDER == 4
  tmp = tail + r + r2 * C2 + r * r2 * (C3 + r * C4);
#elif EXP_POLY_ORDER == 5
  tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
#elif EXP_POLY_ORDER == 6
  tmp = tail + r + r2 * (0.5 + r * C3) + r2 * r2 * (C4 + r * C5 + r2 * C6);
#endif
  if (unlikely (abstop == 0))
    return specialcase (tmp, sbits, ki);
  scale = asdouble (sbits);
  /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
     is no spurious underflow here even without fma.  */
  return eval_as_double (scale + scale * tmp);
}
double
exp (double x)
{
  return exp_inline (x, 0, 0);
}
/* May be useful for implementing pow where more than double
   precision input is needed.  */
double
__exp_dd (double x, double xtail)
{
  return exp_inline (x, xtail, 1);
}
#if USE_GLIBC_ABI
strong_alias (exp, __exp_finite)
hidden_alias (exp, __ieee754_exp)
hidden_alias (__exp_dd, __exp1)
# if LDBL_MANT_DIG == 53
long double expl (long double x) { return exp (x); }
# endif
#endif
 |