1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
#include <mach-o/loader.h>
#include <stdio.h>
#include <stdlib.h>
#include <mach/machine.h>
#include <string.h>
#include <mach/machine/thread_state.h>
#include <inttypes.h>
#include <sys/syslimits.h>
#include <uuid/uuid.h>
// Given an executable binary with
// "fmain" (a function pointer to main)
// "main"
// symbols, create a fake arm64e corefile that
// contains a memory segment for the fmain
// function pointer, with the value of the
// address of main() with ptrauth bits masked on.
//
// The corefile does not include the "addrable bits"
// LC_NOTE, so lldb will need to fall back on its
// default value from the Darwin arm64 ABI.
int main(int argc, char **argv)
{
if (argc != 3) {
fprintf (stderr, "usage: %s executable-binary output-file\n", argv[0]);
exit(1);
}
FILE *exe = fopen(argv[1], "r");
if (!exe) {
fprintf (stderr, "Unable to open executable %s for reading\n", argv[1]);
exit(1);
}
FILE *out = fopen(argv[2], "w");
if (!out) {
fprintf (stderr, "Unable to open %s for writing\n", argv[2]);
exit(1);
}
char buf[PATH_MAX + 6];
sprintf (buf, "nm '%s'", argv[1]);
FILE *nm = popen(buf, "r");
if (!nm) {
fprintf (stderr, "Unable to run nm on '%s'", argv[1]);
exit (1);
}
uint64_t main_addr = 0;
uint64_t fmain_addr = 0;
while (fgets (buf, sizeof(buf), nm)) {
if (strstr (buf, "_fmain")) {
fmain_addr = strtoul (buf, NULL, 16);
}
if (strstr (buf, "_main")) {
main_addr = strtoul (buf, NULL, 16);
}
}
pclose (nm);
sprintf (buf, "dwarfdump -u '%s'", argv[1]);
FILE *dwarfdump = popen(buf, "r");
if (!dwarfdump) {
fprintf (stderr, "Unable to run dwarfdump -u on '%s'\n", argv[1]);
exit (1);
}
uuid_t uuid;
uuid_clear (uuid);
while (fgets (buf, sizeof(buf), dwarfdump)) {
if (strncmp (buf, "UUID: ", 6) == 0) {
buf[6 + 36] = '\0';
if (uuid_parse (buf + 6, uuid) != 0) {
fprintf (stderr, "Unable to parse UUID in '%s'\n", buf);
exit (1);
}
}
}
if (uuid_is_null(uuid)) {
fprintf (stderr, "Got a null uuid for the binary\n");
exit (1);
}
if (main_addr == 0 || fmain_addr == 0) {
fprintf(stderr, "Unable to find address of main or fmain in %s.\n",
argv[1]);
exit (1);
}
// Write out a corefile with contents in this order:
// 1. mach header
// 2. LC_THREAD load command
// 3. LC_SEGMENT_64 load command
// 4. LC_NOTE load command
// 5. memory segment contents
// 6. "load binary" note contents
// struct thread_command {
// uint32_t cmd;
// uint32_t cmdsize;
// uint32_t flavor
// uint32_t count
// struct XXX_thread_state state
int size_of_thread_cmd = 4 + 4 + 4 + 4 + sizeof (arm_thread_state64_t);
struct mach_header_64 mh;
mh.magic = 0xfeedfacf;
mh.cputype = CPU_TYPE_ARM64;
mh.cpusubtype = CPU_SUBTYPE_ARM64E;
mh.filetype = MH_CORE;
mh.ncmds = 3; // LC_THREAD, LC_SEGMENT_64, LC_NOTE
mh.sizeofcmds = size_of_thread_cmd + sizeof(struct segment_command_64) + sizeof(struct note_command);
mh.flags = 0;
mh.reserved = 0;
fwrite(&mh, sizeof (mh), 1, out);
struct note_command lcnote;
struct segment_command_64 seg;
seg.cmd = LC_SEGMENT_64;
seg.cmdsize = sizeof(seg);
memset (&seg.segname, 0, 16);
seg.vmaddr = fmain_addr;
seg.vmsize = 8;
// Offset to segment contents
seg.fileoff = sizeof (mh) + size_of_thread_cmd + sizeof(seg) + sizeof(lcnote);
seg.filesize = 8;
seg.maxprot = 3;
seg.initprot = 3;
seg.nsects = 0;
seg.flags = 0;
fwrite (&seg, sizeof (seg), 1, out);
uint32_t cmd = LC_THREAD;
fwrite (&cmd, sizeof (cmd), 1, out);
uint32_t cmdsize = size_of_thread_cmd;
fwrite (&cmdsize, sizeof (cmdsize), 1, out);
uint32_t flavor = ARM_THREAD_STATE64;
fwrite (&flavor, sizeof (flavor), 1, out);
// count is number of uint32_t's of the register context
uint32_t count = sizeof (arm_thread_state64_t) / 4;
fwrite (&count, sizeof (count), 1, out);
arm_thread_state64_t regstate;
memset (®state, 0, sizeof (regstate));
fwrite (®state, sizeof (regstate), 1, out);
lcnote.cmd = LC_NOTE;
lcnote.cmdsize = sizeof (lcnote);
strcpy (lcnote.data_owner, "load binary");
// 8 is the size of the LC_SEGMENT contents
lcnote.offset = sizeof (mh) + size_of_thread_cmd + sizeof(seg) + sizeof(lcnote) + 8;
// struct load_binary
// {
// uint32_t version; // currently 1
// uuid_t uuid; // all zeroes if uuid not specified
// uint64_t load_address; // virtual address where the macho is loaded, UINT64_MAX if unavail
// uint64_t slide; // slide to be applied to file address to get load address, 0 if unavail
// char name_cstring[]; // must be nul-byte terminated c-string, '\0' alone if name unavail
// } __attribute__((packed));
lcnote.size = 4 + 16 + 8 + 8 + sizeof("a.out");
fwrite (&lcnote, sizeof(lcnote), 1, out);
// Write the contents of the memory segment
// Or together a random PAC value from a system using 39 bits
// of addressing with the address of main(). lldb will need
// to correctly strip off the high bits to find the address of
// main.
uint64_t segment_contents = 0xe46bff0000000000 | main_addr;
fwrite (&segment_contents, sizeof (segment_contents), 1, out);
// Now write the contents of the "load binary" LC_NOTE.
{
uint32_t version = 1;
fwrite (&version, sizeof (version), 1, out);
fwrite (&uuid, sizeof (uuid), 1, out);
uint64_t load_address = UINT64_MAX;
fwrite (&load_address, sizeof (load_address), 1, out);
uint64_t slide = 0;
fwrite (&slide, sizeof (slide), 1, out);
strcpy (buf, "a.out");
fwrite (buf, 6, 1, out);
}
fclose (out);
exit (0);
}
|