1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
|
//===- IRTypes.cpp - Exports builtin and standard types -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "IRModule.h"
#include "PybindUtils.h"
#include "mlir-c/BuiltinAttributes.h"
#include "mlir-c/BuiltinTypes.h"
namespace py = pybind11;
using namespace mlir;
using namespace mlir::python;
using llvm::SmallVector;
using llvm::Twine;
namespace {
/// Checks whether the given type is an integer or float type.
static int mlirTypeIsAIntegerOrFloat(MlirType type) {
return mlirTypeIsAInteger(type) || mlirTypeIsABF16(type) ||
mlirTypeIsAF16(type) || mlirTypeIsAF32(type) || mlirTypeIsAF64(type);
}
class PyIntegerType : public PyConcreteType<PyIntegerType> {
public:
static constexpr IsAFunctionTy isaFunction = mlirTypeIsAInteger;
static constexpr const char *pyClassName = "IntegerType";
using PyConcreteType::PyConcreteType;
static void bindDerived(ClassTy &c) {
c.def_static(
"get_signless",
[](unsigned width, DefaultingPyMlirContext context) {
MlirType t = mlirIntegerTypeGet(context->get(), width);
return PyIntegerType(context->getRef(), t);
},
py::arg("width"), py::arg("context") = py::none(),
"Create a signless integer type");
c.def_static(
"get_signed",
[](unsigned width, DefaultingPyMlirContext context) {
MlirType t = mlirIntegerTypeSignedGet(context->get(), width);
return PyIntegerType(context->getRef(), t);
},
py::arg("width"), py::arg("context") = py::none(),
"Create a signed integer type");
c.def_static(
"get_unsigned",
[](unsigned width, DefaultingPyMlirContext context) {
MlirType t = mlirIntegerTypeUnsignedGet(context->get(), width);
return PyIntegerType(context->getRef(), t);
},
py::arg("width"), py::arg("context") = py::none(),
"Create an unsigned integer type");
c.def_property_readonly(
"width",
[](PyIntegerType &self) { return mlirIntegerTypeGetWidth(self); },
"Returns the width of the integer type");
c.def_property_readonly(
"is_signless",
[](PyIntegerType &self) -> bool {
return mlirIntegerTypeIsSignless(self);
},
"Returns whether this is a signless integer");
c.def_property_readonly(
"is_signed",
[](PyIntegerType &self) -> bool {
return mlirIntegerTypeIsSigned(self);
},
"Returns whether this is a signed integer");
c.def_property_readonly(
"is_unsigned",
[](PyIntegerType &self) -> bool {
return mlirIntegerTypeIsUnsigned(self);
},
"Returns whether this is an unsigned integer");
}
};
/// Index Type subclass - IndexType.
class PyIndexType : public PyConcreteType<PyIndexType> {
public:
static constexpr IsAFunctionTy isaFunction = mlirTypeIsAIndex;
static constexpr const char *pyClassName = "IndexType";
using PyConcreteType::PyConcreteType;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](DefaultingPyMlirContext context) {
MlirType t = mlirIndexTypeGet(context->get());
return PyIndexType(context->getRef(), t);
},
py::arg("context") = py::none(), "Create a index type.");
}
};
/// Floating Point Type subclass - BF16Type.
class PyBF16Type : public PyConcreteType<PyBF16Type> {
public:
static constexpr IsAFunctionTy isaFunction = mlirTypeIsABF16;
static constexpr const char *pyClassName = "BF16Type";
using PyConcreteType::PyConcreteType;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](DefaultingPyMlirContext context) {
MlirType t = mlirBF16TypeGet(context->get());
return PyBF16Type(context->getRef(), t);
},
py::arg("context") = py::none(), "Create a bf16 type.");
}
};
/// Floating Point Type subclass - F16Type.
class PyF16Type : public PyConcreteType<PyF16Type> {
public:
static constexpr IsAFunctionTy isaFunction = mlirTypeIsAF16;
static constexpr const char *pyClassName = "F16Type";
using PyConcreteType::PyConcreteType;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](DefaultingPyMlirContext context) {
MlirType t = mlirF16TypeGet(context->get());
return PyF16Type(context->getRef(), t);
},
py::arg("context") = py::none(), "Create a f16 type.");
}
};
/// Floating Point Type subclass - F32Type.
class PyF32Type : public PyConcreteType<PyF32Type> {
public:
static constexpr IsAFunctionTy isaFunction = mlirTypeIsAF32;
static constexpr const char *pyClassName = "F32Type";
using PyConcreteType::PyConcreteType;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](DefaultingPyMlirContext context) {
MlirType t = mlirF32TypeGet(context->get());
return PyF32Type(context->getRef(), t);
},
py::arg("context") = py::none(), "Create a f32 type.");
}
};
/// Floating Point Type subclass - F64Type.
class PyF64Type : public PyConcreteType<PyF64Type> {
public:
static constexpr IsAFunctionTy isaFunction = mlirTypeIsAF64;
static constexpr const char *pyClassName = "F64Type";
using PyConcreteType::PyConcreteType;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](DefaultingPyMlirContext context) {
MlirType t = mlirF64TypeGet(context->get());
return PyF64Type(context->getRef(), t);
},
py::arg("context") = py::none(), "Create a f64 type.");
}
};
/// None Type subclass - NoneType.
class PyNoneType : public PyConcreteType<PyNoneType> {
public:
static constexpr IsAFunctionTy isaFunction = mlirTypeIsANone;
static constexpr const char *pyClassName = "NoneType";
using PyConcreteType::PyConcreteType;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](DefaultingPyMlirContext context) {
MlirType t = mlirNoneTypeGet(context->get());
return PyNoneType(context->getRef(), t);
},
py::arg("context") = py::none(), "Create a none type.");
}
};
/// Complex Type subclass - ComplexType.
class PyComplexType : public PyConcreteType<PyComplexType> {
public:
static constexpr IsAFunctionTy isaFunction = mlirTypeIsAComplex;
static constexpr const char *pyClassName = "ComplexType";
using PyConcreteType::PyConcreteType;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](PyType &elementType) {
// The element must be a floating point or integer scalar type.
if (mlirTypeIsAIntegerOrFloat(elementType)) {
MlirType t = mlirComplexTypeGet(elementType);
return PyComplexType(elementType.getContext(), t);
}
throw SetPyError(
PyExc_ValueError,
Twine("invalid '") +
py::repr(py::cast(elementType)).cast<std::string>() +
"' and expected floating point or integer type.");
},
"Create a complex type");
c.def_property_readonly(
"element_type",
[](PyComplexType &self) -> PyType {
MlirType t = mlirComplexTypeGetElementType(self);
return PyType(self.getContext(), t);
},
"Returns element type.");
}
};
class PyShapedType : public PyConcreteType<PyShapedType> {
public:
static constexpr IsAFunctionTy isaFunction = mlirTypeIsAShaped;
static constexpr const char *pyClassName = "ShapedType";
using PyConcreteType::PyConcreteType;
static void bindDerived(ClassTy &c) {
c.def_property_readonly(
"element_type",
[](PyShapedType &self) {
MlirType t = mlirShapedTypeGetElementType(self);
return PyType(self.getContext(), t);
},
"Returns the element type of the shaped type.");
c.def_property_readonly(
"has_rank",
[](PyShapedType &self) -> bool { return mlirShapedTypeHasRank(self); },
"Returns whether the given shaped type is ranked.");
c.def_property_readonly(
"rank",
[](PyShapedType &self) {
self.requireHasRank();
return mlirShapedTypeGetRank(self);
},
"Returns the rank of the given ranked shaped type.");
c.def_property_readonly(
"has_static_shape",
[](PyShapedType &self) -> bool {
return mlirShapedTypeHasStaticShape(self);
},
"Returns whether the given shaped type has a static shape.");
c.def(
"is_dynamic_dim",
[](PyShapedType &self, intptr_t dim) -> bool {
self.requireHasRank();
return mlirShapedTypeIsDynamicDim(self, dim);
},
py::arg("dim"),
"Returns whether the dim-th dimension of the given shaped type is "
"dynamic.");
c.def(
"get_dim_size",
[](PyShapedType &self, intptr_t dim) {
self.requireHasRank();
return mlirShapedTypeGetDimSize(self, dim);
},
py::arg("dim"),
"Returns the dim-th dimension of the given ranked shaped type.");
c.def_static(
"is_dynamic_size",
[](int64_t size) -> bool { return mlirShapedTypeIsDynamicSize(size); },
py::arg("dim_size"),
"Returns whether the given dimension size indicates a dynamic "
"dimension.");
c.def(
"is_dynamic_stride_or_offset",
[](PyShapedType &self, int64_t val) -> bool {
self.requireHasRank();
return mlirShapedTypeIsDynamicStrideOrOffset(val);
},
py::arg("dim_size"),
"Returns whether the given value is used as a placeholder for dynamic "
"strides and offsets in shaped types.");
c.def_property_readonly(
"shape",
[](PyShapedType &self) {
self.requireHasRank();
std::vector<int64_t> shape;
int64_t rank = mlirShapedTypeGetRank(self);
shape.reserve(rank);
for (int64_t i = 0; i < rank; ++i)
shape.push_back(mlirShapedTypeGetDimSize(self, i));
return shape;
},
"Returns the shape of the ranked shaped type as a list of integers.");
}
private:
void requireHasRank() {
if (!mlirShapedTypeHasRank(*this)) {
throw SetPyError(
PyExc_ValueError,
"calling this method requires that the type has a rank.");
}
}
};
/// Vector Type subclass - VectorType.
class PyVectorType : public PyConcreteType<PyVectorType, PyShapedType> {
public:
static constexpr IsAFunctionTy isaFunction = mlirTypeIsAVector;
static constexpr const char *pyClassName = "VectorType";
using PyConcreteType::PyConcreteType;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](std::vector<int64_t> shape, PyType &elementType,
DefaultingPyLocation loc) {
MlirType t = mlirVectorTypeGetChecked(loc, shape.size(), shape.data(),
elementType);
// TODO: Rework error reporting once diagnostic engine is exposed
// in C API.
if (mlirTypeIsNull(t)) {
throw SetPyError(
PyExc_ValueError,
Twine("invalid '") +
py::repr(py::cast(elementType)).cast<std::string>() +
"' and expected floating point or integer type.");
}
return PyVectorType(elementType.getContext(), t);
},
py::arg("shape"), py::arg("elementType"), py::arg("loc") = py::none(),
"Create a vector type");
}
};
/// Ranked Tensor Type subclass - RankedTensorType.
class PyRankedTensorType
: public PyConcreteType<PyRankedTensorType, PyShapedType> {
public:
static constexpr IsAFunctionTy isaFunction = mlirTypeIsARankedTensor;
static constexpr const char *pyClassName = "RankedTensorType";
using PyConcreteType::PyConcreteType;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](std::vector<int64_t> shape, PyType &elementType,
llvm::Optional<PyAttribute> &encodingAttr,
DefaultingPyLocation loc) {
MlirType t = mlirRankedTensorTypeGetChecked(
loc, shape.size(), shape.data(), elementType,
encodingAttr ? encodingAttr->get() : mlirAttributeGetNull());
// TODO: Rework error reporting once diagnostic engine is exposed
// in C API.
if (mlirTypeIsNull(t)) {
throw SetPyError(
PyExc_ValueError,
Twine("invalid '") +
py::repr(py::cast(elementType)).cast<std::string>() +
"' and expected floating point, integer, vector or "
"complex "
"type.");
}
return PyRankedTensorType(elementType.getContext(), t);
},
py::arg("shape"), py::arg("element_type"),
py::arg("encoding") = py::none(), py::arg("loc") = py::none(),
"Create a ranked tensor type");
c.def_property_readonly(
"encoding",
[](PyRankedTensorType &self) -> llvm::Optional<PyAttribute> {
MlirAttribute encoding = mlirRankedTensorTypeGetEncoding(self.get());
if (mlirAttributeIsNull(encoding))
return llvm::None;
return PyAttribute(self.getContext(), encoding);
});
}
};
/// Unranked Tensor Type subclass - UnrankedTensorType.
class PyUnrankedTensorType
: public PyConcreteType<PyUnrankedTensorType, PyShapedType> {
public:
static constexpr IsAFunctionTy isaFunction = mlirTypeIsAUnrankedTensor;
static constexpr const char *pyClassName = "UnrankedTensorType";
using PyConcreteType::PyConcreteType;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](PyType &elementType, DefaultingPyLocation loc) {
MlirType t = mlirUnrankedTensorTypeGetChecked(loc, elementType);
// TODO: Rework error reporting once diagnostic engine is exposed
// in C API.
if (mlirTypeIsNull(t)) {
throw SetPyError(
PyExc_ValueError,
Twine("invalid '") +
py::repr(py::cast(elementType)).cast<std::string>() +
"' and expected floating point, integer, vector or "
"complex "
"type.");
}
return PyUnrankedTensorType(elementType.getContext(), t);
},
py::arg("element_type"), py::arg("loc") = py::none(),
"Create a unranked tensor type");
}
};
/// Ranked MemRef Type subclass - MemRefType.
class PyMemRefType : public PyConcreteType<PyMemRefType, PyShapedType> {
public:
static constexpr IsAFunctionTy isaFunction = mlirTypeIsAMemRef;
static constexpr const char *pyClassName = "MemRefType";
using PyConcreteType::PyConcreteType;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](std::vector<int64_t> shape, PyType &elementType,
PyAttribute *layout, PyAttribute *memorySpace,
DefaultingPyLocation loc) {
MlirAttribute layoutAttr = layout ? *layout : mlirAttributeGetNull();
MlirAttribute memSpaceAttr =
memorySpace ? *memorySpace : mlirAttributeGetNull();
MlirType t =
mlirMemRefTypeGetChecked(loc, elementType, shape.size(),
shape.data(), layoutAttr, memSpaceAttr);
// TODO: Rework error reporting once diagnostic engine is exposed
// in C API.
if (mlirTypeIsNull(t)) {
throw SetPyError(
PyExc_ValueError,
Twine("invalid '") +
py::repr(py::cast(elementType)).cast<std::string>() +
"' and expected floating point, integer, vector or "
"complex "
"type.");
}
return PyMemRefType(elementType.getContext(), t);
},
py::arg("shape"), py::arg("element_type"),
py::arg("layout") = py::none(), py::arg("memory_space") = py::none(),
py::arg("loc") = py::none(), "Create a memref type")
.def_property_readonly(
"layout",
[](PyMemRefType &self) -> PyAttribute {
MlirAttribute layout = mlirMemRefTypeGetLayout(self);
return PyAttribute(self.getContext(), layout);
},
"The layout of the MemRef type.")
.def_property_readonly(
"affine_map",
[](PyMemRefType &self) -> PyAffineMap {
MlirAffineMap map = mlirMemRefTypeGetAffineMap(self);
return PyAffineMap(self.getContext(), map);
},
"The layout of the MemRef type as an affine map.")
.def_property_readonly(
"memory_space",
[](PyMemRefType &self) -> PyAttribute {
MlirAttribute a = mlirMemRefTypeGetMemorySpace(self);
return PyAttribute(self.getContext(), a);
},
"Returns the memory space of the given MemRef type.");
}
};
/// Unranked MemRef Type subclass - UnrankedMemRefType.
class PyUnrankedMemRefType
: public PyConcreteType<PyUnrankedMemRefType, PyShapedType> {
public:
static constexpr IsAFunctionTy isaFunction = mlirTypeIsAUnrankedMemRef;
static constexpr const char *pyClassName = "UnrankedMemRefType";
using PyConcreteType::PyConcreteType;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](PyType &elementType, PyAttribute *memorySpace,
DefaultingPyLocation loc) {
MlirAttribute memSpaceAttr = {};
if (memorySpace)
memSpaceAttr = *memorySpace;
MlirType t =
mlirUnrankedMemRefTypeGetChecked(loc, elementType, memSpaceAttr);
// TODO: Rework error reporting once diagnostic engine is exposed
// in C API.
if (mlirTypeIsNull(t)) {
throw SetPyError(
PyExc_ValueError,
Twine("invalid '") +
py::repr(py::cast(elementType)).cast<std::string>() +
"' and expected floating point, integer, vector or "
"complex "
"type.");
}
return PyUnrankedMemRefType(elementType.getContext(), t);
},
py::arg("element_type"), py::arg("memory_space"),
py::arg("loc") = py::none(), "Create a unranked memref type")
.def_property_readonly(
"memory_space",
[](PyUnrankedMemRefType &self) -> PyAttribute {
MlirAttribute a = mlirMemRefTypeGetMemorySpace(self);
return PyAttribute(self.getContext(), a);
},
"Returns the memory space of the given Unranked MemRef type.");
}
};
/// Tuple Type subclass - TupleType.
class PyTupleType : public PyConcreteType<PyTupleType> {
public:
static constexpr IsAFunctionTy isaFunction = mlirTypeIsATuple;
static constexpr const char *pyClassName = "TupleType";
using PyConcreteType::PyConcreteType;
static void bindDerived(ClassTy &c) {
c.def_static(
"get_tuple",
[](py::list elementList, DefaultingPyMlirContext context) {
intptr_t num = py::len(elementList);
// Mapping py::list to SmallVector.
SmallVector<MlirType, 4> elements;
for (auto element : elementList)
elements.push_back(element.cast<PyType>());
MlirType t = mlirTupleTypeGet(context->get(), num, elements.data());
return PyTupleType(context->getRef(), t);
},
py::arg("elements"), py::arg("context") = py::none(),
"Create a tuple type");
c.def(
"get_type",
[](PyTupleType &self, intptr_t pos) -> PyType {
MlirType t = mlirTupleTypeGetType(self, pos);
return PyType(self.getContext(), t);
},
py::arg("pos"), "Returns the pos-th type in the tuple type.");
c.def_property_readonly(
"num_types",
[](PyTupleType &self) -> intptr_t {
return mlirTupleTypeGetNumTypes(self);
},
"Returns the number of types contained in a tuple.");
}
};
/// Function type.
class PyFunctionType : public PyConcreteType<PyFunctionType> {
public:
static constexpr IsAFunctionTy isaFunction = mlirTypeIsAFunction;
static constexpr const char *pyClassName = "FunctionType";
using PyConcreteType::PyConcreteType;
static void bindDerived(ClassTy &c) {
c.def_static(
"get",
[](std::vector<PyType> inputs, std::vector<PyType> results,
DefaultingPyMlirContext context) {
SmallVector<MlirType, 4> inputsRaw(inputs.begin(), inputs.end());
SmallVector<MlirType, 4> resultsRaw(results.begin(), results.end());
MlirType t = mlirFunctionTypeGet(context->get(), inputsRaw.size(),
inputsRaw.data(), resultsRaw.size(),
resultsRaw.data());
return PyFunctionType(context->getRef(), t);
},
py::arg("inputs"), py::arg("results"), py::arg("context") = py::none(),
"Gets a FunctionType from a list of input and result types");
c.def_property_readonly(
"inputs",
[](PyFunctionType &self) {
MlirType t = self;
auto contextRef = self.getContext();
py::list types;
for (intptr_t i = 0, e = mlirFunctionTypeGetNumInputs(self); i < e;
++i) {
types.append(PyType(contextRef, mlirFunctionTypeGetInput(t, i)));
}
return types;
},
"Returns the list of input types in the FunctionType.");
c.def_property_readonly(
"results",
[](PyFunctionType &self) {
auto contextRef = self.getContext();
py::list types;
for (intptr_t i = 0, e = mlirFunctionTypeGetNumResults(self); i < e;
++i) {
types.append(
PyType(contextRef, mlirFunctionTypeGetResult(self, i)));
}
return types;
},
"Returns the list of result types in the FunctionType.");
}
};
} // namespace
void mlir::python::populateIRTypes(py::module &m) {
PyIntegerType::bind(m);
PyIndexType::bind(m);
PyBF16Type::bind(m);
PyF16Type::bind(m);
PyF32Type::bind(m);
PyF64Type::bind(m);
PyNoneType::bind(m);
PyComplexType::bind(m);
PyShapedType::bind(m);
PyVectorType::bind(m);
PyRankedTensorType::bind(m);
PyUnrankedTensorType::bind(m);
PyMemRefType::bind(m);
PyUnrankedMemRefType::bind(m);
PyTupleType::bind(m);
PyFunctionType::bind(m);
}
|