1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
|
//===- bolt/Core/BinaryFunction.cpp - Low-level function ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the BinaryFunction class.
//
//===----------------------------------------------------------------------===//
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Core/BinaryBasicBlock.h"
#include "bolt/Core/DynoStats.h"
#include "bolt/Core/MCPlusBuilder.h"
#include "bolt/Utils/NameResolver.h"
#include "bolt/Utils/NameShortener.h"
#include "bolt/Utils/Utils.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/edit_distance.h"
#include "llvm/Demangle/Demangle.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include <functional>
#include <limits>
#include <numeric>
#include <string>
#define DEBUG_TYPE "bolt"
using namespace llvm;
using namespace bolt;
namespace opts {
extern cl::OptionCategory BoltCategory;
extern cl::OptionCategory BoltOptCategory;
extern cl::OptionCategory BoltRelocCategory;
extern cl::opt<bool> EnableBAT;
extern cl::opt<bool> Instrument;
extern cl::opt<bool> StrictMode;
extern cl::opt<bool> UpdateDebugSections;
extern cl::opt<unsigned> Verbosity;
extern bool processAllFunctions();
cl::opt<bool>
CheckEncoding("check-encoding",
cl::desc("perform verification of LLVM instruction encoding/decoding. "
"Every instruction in the input is decoded and re-encoded. "
"If the resulting bytes do not match the input, a warning message "
"is printed."),
cl::init(false),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<bool>
DotToolTipCode("dot-tooltip-code",
cl::desc("add basic block instructions as tool tips on nodes"),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltCategory));
cl::opt<JumpTableSupportLevel>
JumpTables("jump-tables",
cl::desc("jump tables support (default=basic)"),
cl::init(JTS_BASIC),
cl::values(
clEnumValN(JTS_NONE, "none",
"do not optimize functions with jump tables"),
clEnumValN(JTS_BASIC, "basic",
"optimize functions with jump tables"),
clEnumValN(JTS_MOVE, "move",
"move jump tables to a separate section"),
clEnumValN(JTS_SPLIT, "split",
"split jump tables section into hot and cold based on "
"function execution frequency"),
clEnumValN(JTS_AGGRESSIVE, "aggressive",
"aggressively split jump tables section based on usage "
"of the tables")),
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
static cl::opt<bool>
NoScan("no-scan",
cl::desc("do not scan cold functions for external references (may result in "
"slower binary)"),
cl::init(false),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltOptCategory));
cl::opt<bool>
PreserveBlocksAlignment("preserve-blocks-alignment",
cl::desc("try to preserve basic block alignment"),
cl::init(false),
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
cl::opt<bool>
PrintDynoStats("dyno-stats",
cl::desc("print execution info based on profile"),
cl::cat(BoltCategory));
static cl::opt<bool>
PrintDynoStatsOnly("print-dyno-stats-only",
cl::desc("while printing functions output dyno-stats and skip instructions"),
cl::init(false),
cl::Hidden,
cl::cat(BoltCategory));
static cl::list<std::string>
PrintOnly("print-only",
cl::CommaSeparated,
cl::desc("list of functions to print"),
cl::value_desc("func1,func2,func3,..."),
cl::Hidden,
cl::cat(BoltCategory));
cl::opt<bool>
TimeBuild("time-build",
cl::desc("print time spent constructing binary functions"),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltCategory));
cl::opt<bool>
TrapOnAVX512("trap-avx512",
cl::desc("in relocation mode trap upon entry to any function that uses "
"AVX-512 instructions"),
cl::init(false),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltCategory));
bool shouldPrint(const BinaryFunction &Function) {
if (Function.isIgnored())
return false;
if (PrintOnly.empty())
return true;
for (std::string &Name : opts::PrintOnly) {
if (Function.hasNameRegex(Name)) {
return true;
}
}
return false;
}
} // namespace opts
namespace llvm {
namespace bolt {
constexpr unsigned BinaryFunction::MinAlign;
namespace {
template <typename R> bool emptyRange(const R &Range) {
return Range.begin() == Range.end();
}
/// Gets debug line information for the instruction located at the given
/// address in the original binary. The SMLoc's pointer is used
/// to point to this information, which is represented by a
/// DebugLineTableRowRef. The returned pointer is null if no debug line
/// information for this instruction was found.
SMLoc findDebugLineInformationForInstructionAt(
uint64_t Address, DWARFUnit *Unit,
const DWARFDebugLine::LineTable *LineTable) {
// We use the pointer in SMLoc to store an instance of DebugLineTableRowRef,
// which occupies 64 bits. Thus, we can only proceed if the struct fits into
// the pointer itself.
assert(sizeof(decltype(SMLoc().getPointer())) >=
sizeof(DebugLineTableRowRef) &&
"Cannot fit instruction debug line information into SMLoc's pointer");
SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc();
uint32_t RowIndex = LineTable->lookupAddress(
{Address, object::SectionedAddress::UndefSection});
if (RowIndex == LineTable->UnknownRowIndex)
return NullResult;
assert(RowIndex < LineTable->Rows.size() &&
"Line Table lookup returned invalid index.");
decltype(SMLoc().getPointer()) Ptr;
DebugLineTableRowRef *InstructionLocation =
reinterpret_cast<DebugLineTableRowRef *>(&Ptr);
InstructionLocation->DwCompileUnitIndex = Unit->getOffset();
InstructionLocation->RowIndex = RowIndex + 1;
return SMLoc::getFromPointer(Ptr);
}
std::string buildSectionName(StringRef Prefix, StringRef Name,
const BinaryContext &BC) {
if (BC.isELF())
return (Prefix + Name).str();
static NameShortener NS;
return (Prefix + Twine(NS.getID(Name))).str();
}
raw_ostream &operator<<(raw_ostream &OS, const BinaryFunction::State State) {
switch (State) {
case BinaryFunction::State::Empty: OS << "empty"; break;
case BinaryFunction::State::Disassembled: OS << "disassembled"; break;
case BinaryFunction::State::CFG: OS << "CFG constructed"; break;
case BinaryFunction::State::CFG_Finalized: OS << "CFG finalized"; break;
case BinaryFunction::State::EmittedCFG: OS << "emitted with CFG"; break;
case BinaryFunction::State::Emitted: OS << "emitted"; break;
}
return OS;
}
} // namespace
std::string BinaryFunction::buildCodeSectionName(StringRef Name,
const BinaryContext &BC) {
return buildSectionName(BC.isELF() ? ".local.text." : ".l.text.", Name, BC);
}
std::string BinaryFunction::buildColdCodeSectionName(StringRef Name,
const BinaryContext &BC) {
return buildSectionName(BC.isELF() ? ".local.cold.text." : ".l.c.text.", Name,
BC);
}
uint64_t BinaryFunction::Count = 0;
Optional<StringRef> BinaryFunction::hasNameRegex(const StringRef Name) const {
const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str();
Regex MatchName(RegexName);
Optional<StringRef> Match = forEachName(
[&MatchName](StringRef Name) { return MatchName.match(Name); });
return Match;
}
Optional<StringRef>
BinaryFunction::hasRestoredNameRegex(const StringRef Name) const {
const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str();
Regex MatchName(RegexName);
Optional<StringRef> Match = forEachName([&MatchName](StringRef Name) {
return MatchName.match(NameResolver::restore(Name));
});
return Match;
}
std::string BinaryFunction::getDemangledName() const {
StringRef MangledName = NameResolver::restore(getOneName());
return demangle(MangledName.str());
}
BinaryBasicBlock *
BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) {
if (Offset > Size)
return nullptr;
if (BasicBlockOffsets.empty())
return nullptr;
/*
* This is commented out because it makes BOLT too slow.
* assert(std::is_sorted(BasicBlockOffsets.begin(),
* BasicBlockOffsets.end(),
* CompareBasicBlockOffsets())));
*/
auto I = std::upper_bound(BasicBlockOffsets.begin(), BasicBlockOffsets.end(),
BasicBlockOffset(Offset, nullptr),
CompareBasicBlockOffsets());
assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0");
--I;
BinaryBasicBlock *BB = I->second;
return (Offset < BB->getOffset() + BB->getOriginalSize()) ? BB : nullptr;
}
void BinaryFunction::markUnreachableBlocks() {
std::stack<BinaryBasicBlock *> Stack;
for (BinaryBasicBlock *BB : layout())
BB->markValid(false);
// Add all entries and landing pads as roots.
for (BinaryBasicBlock *BB : BasicBlocks) {
if (isEntryPoint(*BB) || BB->isLandingPad()) {
Stack.push(BB);
BB->markValid(true);
continue;
}
// FIXME:
// Also mark BBs with indirect jumps as reachable, since we do not
// support removing unused jump tables yet (GH-issue20).
for (const MCInst &Inst : *BB) {
if (BC.MIB->getJumpTable(Inst)) {
Stack.push(BB);
BB->markValid(true);
break;
}
}
}
// Determine reachable BBs from the entry point
while (!Stack.empty()) {
BinaryBasicBlock *BB = Stack.top();
Stack.pop();
for (BinaryBasicBlock *Succ : BB->successors()) {
if (Succ->isValid())
continue;
Succ->markValid(true);
Stack.push(Succ);
}
}
}
// Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs
// will be cleaned up by fixBranches().
std::pair<unsigned, uint64_t> BinaryFunction::eraseInvalidBBs() {
BasicBlockOrderType NewLayout;
unsigned Count = 0;
uint64_t Bytes = 0;
for (BinaryBasicBlock *BB : layout()) {
if (BB->isValid()) {
NewLayout.push_back(BB);
} else {
assert(!isEntryPoint(*BB) && "all entry blocks must be valid");
++Count;
Bytes += BC.computeCodeSize(BB->begin(), BB->end());
}
}
BasicBlocksLayout = std::move(NewLayout);
BasicBlockListType NewBasicBlocks;
for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) {
BinaryBasicBlock *BB = *I;
if (BB->isValid()) {
NewBasicBlocks.push_back(BB);
} else {
// Make sure the block is removed from the list of predecessors.
BB->removeAllSuccessors();
DeletedBasicBlocks.push_back(BB);
}
}
BasicBlocks = std::move(NewBasicBlocks);
assert(BasicBlocks.size() == BasicBlocksLayout.size());
// Update CFG state if needed
if (Count > 0)
recomputeLandingPads();
return std::make_pair(Count, Bytes);
}
bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const {
// This function should work properly before and after function reordering.
// In order to accomplish this, we use the function index (if it is valid).
// If the function indices are not valid, we fall back to the original
// addresses. This should be ok because the functions without valid indices
// should have been ordered with a stable sort.
const BinaryFunction *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol);
if (CalleeBF) {
if (CalleeBF->isInjected())
return true;
if (hasValidIndex() && CalleeBF->hasValidIndex()) {
return getIndex() < CalleeBF->getIndex();
} else if (hasValidIndex() && !CalleeBF->hasValidIndex()) {
return true;
} else if (!hasValidIndex() && CalleeBF->hasValidIndex()) {
return false;
} else {
return getAddress() < CalleeBF->getAddress();
}
} else {
// Absolute symbol.
ErrorOr<uint64_t> CalleeAddressOrError = BC.getSymbolValue(*CalleeSymbol);
assert(CalleeAddressOrError && "unregistered symbol found");
return *CalleeAddressOrError > getAddress();
}
}
void BinaryFunction::dump(bool PrintInstructions) const {
print(dbgs(), "", PrintInstructions);
}
void BinaryFunction::print(raw_ostream &OS, std::string Annotation,
bool PrintInstructions) const {
if (!opts::shouldPrint(*this))
return;
StringRef SectionName =
OriginSection ? OriginSection->getName() : "<no origin section>";
OS << "Binary Function \"" << *this << "\" " << Annotation << " {";
std::vector<StringRef> AllNames = getNames();
if (AllNames.size() > 1) {
OS << "\n All names : ";
const char *Sep = "";
for (const StringRef Name : AllNames) {
OS << Sep << Name;
Sep = "\n ";
}
}
OS << "\n Number : " << FunctionNumber
<< "\n State : " << CurrentState
<< "\n Address : 0x" << Twine::utohexstr(Address)
<< "\n Size : 0x" << Twine::utohexstr(Size)
<< "\n MaxSize : 0x" << Twine::utohexstr(MaxSize)
<< "\n Offset : 0x" << Twine::utohexstr(FileOffset)
<< "\n Section : " << SectionName
<< "\n Orc Section : " << getCodeSectionName()
<< "\n LSDA : 0x" << Twine::utohexstr(getLSDAAddress())
<< "\n IsSimple : " << IsSimple
<< "\n IsMultiEntry: " << isMultiEntry()
<< "\n IsSplit : " << isSplit()
<< "\n BB Count : " << size();
if (HasFixedIndirectBranch)
OS << "\n HasFixedIndirectBranch : true";
if (HasUnknownControlFlow)
OS << "\n Unknown CF : true";
if (getPersonalityFunction())
OS << "\n Personality : " << getPersonalityFunction()->getName();
if (IsFragment)
OS << "\n IsFragment : true";
if (isFolded())
OS << "\n FoldedInto : " << *getFoldedIntoFunction();
for (BinaryFunction *ParentFragment : ParentFragments)
OS << "\n Parent : " << *ParentFragment;
if (!Fragments.empty()) {
OS << "\n Fragments : ";
const char *Sep = "";
for (BinaryFunction *Frag : Fragments) {
OS << Sep << *Frag;
Sep = ", ";
}
}
if (hasCFG())
OS << "\n Hash : " << Twine::utohexstr(computeHash());
if (isMultiEntry()) {
OS << "\n Secondary Entry Points : ";
const char *Sep = "";
for (const auto &KV : SecondaryEntryPoints) {
OS << Sep << KV.second->getName();
Sep = ", ";
}
}
if (FrameInstructions.size())
OS << "\n CFI Instrs : " << FrameInstructions.size();
if (BasicBlocksLayout.size()) {
OS << "\n BB Layout : ";
const char *Sep = "";
for (BinaryBasicBlock *BB : BasicBlocksLayout) {
OS << Sep << BB->getName();
Sep = ", ";
}
}
if (ImageAddress)
OS << "\n Image : 0x" << Twine::utohexstr(ImageAddress);
if (ExecutionCount != COUNT_NO_PROFILE) {
OS << "\n Exec Count : " << ExecutionCount;
OS << "\n Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f);
}
if (opts::PrintDynoStats && !BasicBlocksLayout.empty()) {
OS << '\n';
DynoStats dynoStats = getDynoStats(*this);
OS << dynoStats;
}
OS << "\n}\n";
if (opts::PrintDynoStatsOnly || !PrintInstructions || !BC.InstPrinter)
return;
// Offset of the instruction in function.
uint64_t Offset = 0;
if (BasicBlocks.empty() && !Instructions.empty()) {
// Print before CFG was built.
for (const std::pair<const uint32_t, MCInst> &II : Instructions) {
Offset = II.first;
// Print label if exists at this offset.
auto LI = Labels.find(Offset);
if (LI != Labels.end()) {
if (const MCSymbol *EntrySymbol =
getSecondaryEntryPointSymbol(LI->second))
OS << EntrySymbol->getName() << " (Entry Point):\n";
OS << LI->second->getName() << ":\n";
}
BC.printInstruction(OS, II.second, Offset, this);
}
}
for (uint32_t I = 0, E = BasicBlocksLayout.size(); I != E; ++I) {
BinaryBasicBlock *BB = BasicBlocksLayout[I];
if (I != 0 && BB->isCold() != BasicBlocksLayout[I - 1]->isCold())
OS << "------- HOT-COLD SPLIT POINT -------\n\n";
OS << BB->getName() << " (" << BB->size()
<< " instructions, align : " << BB->getAlignment() << ")\n";
if (isEntryPoint(*BB)) {
if (MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB))
OS << " Secondary Entry Point: " << EntrySymbol->getName() << '\n';
else
OS << " Entry Point\n";
}
if (BB->isLandingPad())
OS << " Landing Pad\n";
uint64_t BBExecCount = BB->getExecutionCount();
if (hasValidProfile()) {
OS << " Exec Count : ";
if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE)
OS << BBExecCount << '\n';
else
OS << "<unknown>\n";
}
if (BB->getCFIState() >= 0)
OS << " CFI State : " << BB->getCFIState() << '\n';
if (opts::EnableBAT) {
OS << " Input offset: " << Twine::utohexstr(BB->getInputOffset())
<< "\n";
}
if (!BB->pred_empty()) {
OS << " Predecessors: ";
const char *Sep = "";
for (BinaryBasicBlock *Pred : BB->predecessors()) {
OS << Sep << Pred->getName();
Sep = ", ";
}
OS << '\n';
}
if (!BB->throw_empty()) {
OS << " Throwers: ";
const char *Sep = "";
for (BinaryBasicBlock *Throw : BB->throwers()) {
OS << Sep << Throw->getName();
Sep = ", ";
}
OS << '\n';
}
Offset = alignTo(Offset, BB->getAlignment());
// Note: offsets are imprecise since this is happening prior to relaxation.
Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this);
if (!BB->succ_empty()) {
OS << " Successors: ";
// For more than 2 successors, sort them based on frequency.
std::vector<uint64_t> Indices(BB->succ_size());
std::iota(Indices.begin(), Indices.end(), 0);
if (BB->succ_size() > 2 && BB->getKnownExecutionCount()) {
std::stable_sort(Indices.begin(), Indices.end(),
[&](const uint64_t A, const uint64_t B) {
return BB->BranchInfo[B] < BB->BranchInfo[A];
});
}
const char *Sep = "";
for (unsigned I = 0; I < Indices.size(); ++I) {
BinaryBasicBlock *Succ = BB->Successors[Indices[I]];
BinaryBasicBlock::BinaryBranchInfo &BI = BB->BranchInfo[Indices[I]];
OS << Sep << Succ->getName();
if (ExecutionCount != COUNT_NO_PROFILE &&
BI.MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) {
OS << " (mispreds: " << BI.MispredictedCount
<< ", count: " << BI.Count << ")";
} else if (ExecutionCount != COUNT_NO_PROFILE &&
BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE) {
OS << " (inferred count: " << BI.Count << ")";
}
Sep = ", ";
}
OS << '\n';
}
if (!BB->lp_empty()) {
OS << " Landing Pads: ";
const char *Sep = "";
for (BinaryBasicBlock *LP : BB->landing_pads()) {
OS << Sep << LP->getName();
if (ExecutionCount != COUNT_NO_PROFILE) {
OS << " (count: " << LP->getExecutionCount() << ")";
}
Sep = ", ";
}
OS << '\n';
}
// In CFG_Finalized state we can miscalculate CFI state at exit.
if (CurrentState == State::CFG) {
const int32_t CFIStateAtExit = BB->getCFIStateAtExit();
if (CFIStateAtExit >= 0)
OS << " CFI State: " << CFIStateAtExit << '\n';
}
OS << '\n';
}
// Dump new exception ranges for the function.
if (!CallSites.empty()) {
OS << "EH table:\n";
for (const CallSite &CSI : CallSites) {
OS << " [" << *CSI.Start << ", " << *CSI.End << ") landing pad : ";
if (CSI.LP)
OS << *CSI.LP;
else
OS << "0";
OS << ", action : " << CSI.Action << '\n';
}
OS << '\n';
}
// Print all jump tables.
for (const std::pair<const uint64_t, JumpTable *> &JTI : JumpTables)
JTI.second->print(OS);
OS << "DWARF CFI Instructions:\n";
if (OffsetToCFI.size()) {
// Pre-buildCFG information
for (const std::pair<const uint32_t, uint32_t> &Elmt : OffsetToCFI) {
OS << format(" %08x:\t", Elmt.first);
assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset");
BinaryContext::printCFI(OS, FrameInstructions[Elmt.second]);
OS << "\n";
}
} else {
// Post-buildCFG information
for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) {
const MCCFIInstruction &CFI = FrameInstructions[I];
OS << format(" %d:\t", I);
BinaryContext::printCFI(OS, CFI);
OS << "\n";
}
}
if (FrameInstructions.empty())
OS << " <empty>\n";
OS << "End of Function \"" << *this << "\"\n\n";
}
void BinaryFunction::printRelocations(raw_ostream &OS, uint64_t Offset,
uint64_t Size) const {
const char *Sep = " # Relocs: ";
auto RI = Relocations.lower_bound(Offset);
while (RI != Relocations.end() && RI->first < Offset + Size) {
OS << Sep << "(R: " << RI->second << ")";
Sep = ", ";
++RI;
}
}
namespace {
std::string mutateDWARFExpressionTargetReg(const MCCFIInstruction &Instr,
MCPhysReg NewReg) {
StringRef ExprBytes = Instr.getValues();
assert(ExprBytes.size() > 1 && "DWARF expression CFI is too short");
uint8_t Opcode = ExprBytes[0];
assert((Opcode == dwarf::DW_CFA_expression ||
Opcode == dwarf::DW_CFA_val_expression) &&
"invalid DWARF expression CFI");
const uint8_t *const Start =
reinterpret_cast<const uint8_t *>(ExprBytes.drop_front(1).data());
const uint8_t *const End =
reinterpret_cast<const uint8_t *>(Start + ExprBytes.size() - 1);
unsigned Size = 0;
decodeULEB128(Start, &Size, End);
assert(Size > 0 && "Invalid reg encoding for DWARF expression CFI");
SmallString<8> Tmp;
raw_svector_ostream OSE(Tmp);
encodeULEB128(NewReg, OSE);
return Twine(ExprBytes.slice(0, 1))
.concat(OSE.str())
.concat(ExprBytes.drop_front(1 + Size))
.str();
}
} // namespace
void BinaryFunction::mutateCFIRegisterFor(const MCInst &Instr,
MCPhysReg NewReg) {
const MCCFIInstruction *OldCFI = getCFIFor(Instr);
assert(OldCFI && "invalid CFI instr");
switch (OldCFI->getOperation()) {
default:
llvm_unreachable("Unexpected instruction");
case MCCFIInstruction::OpDefCfa:
setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, NewReg,
OldCFI->getOffset()));
break;
case MCCFIInstruction::OpDefCfaRegister:
setCFIFor(Instr, MCCFIInstruction::createDefCfaRegister(nullptr, NewReg));
break;
case MCCFIInstruction::OpOffset:
setCFIFor(Instr, MCCFIInstruction::createOffset(nullptr, NewReg,
OldCFI->getOffset()));
break;
case MCCFIInstruction::OpRegister:
setCFIFor(Instr, MCCFIInstruction::createRegister(nullptr, NewReg,
OldCFI->getRegister2()));
break;
case MCCFIInstruction::OpSameValue:
setCFIFor(Instr, MCCFIInstruction::createSameValue(nullptr, NewReg));
break;
case MCCFIInstruction::OpEscape:
setCFIFor(Instr,
MCCFIInstruction::createEscape(
nullptr,
StringRef(mutateDWARFExpressionTargetReg(*OldCFI, NewReg))));
break;
case MCCFIInstruction::OpRestore:
setCFIFor(Instr, MCCFIInstruction::createRestore(nullptr, NewReg));
break;
case MCCFIInstruction::OpUndefined:
setCFIFor(Instr, MCCFIInstruction::createUndefined(nullptr, NewReg));
break;
}
}
const MCCFIInstruction *BinaryFunction::mutateCFIOffsetFor(const MCInst &Instr,
int64_t NewOffset) {
const MCCFIInstruction *OldCFI = getCFIFor(Instr);
assert(OldCFI && "invalid CFI instr");
switch (OldCFI->getOperation()) {
default:
llvm_unreachable("Unexpected instruction");
case MCCFIInstruction::OpDefCfaOffset:
setCFIFor(Instr, MCCFIInstruction::cfiDefCfaOffset(nullptr, NewOffset));
break;
case MCCFIInstruction::OpAdjustCfaOffset:
setCFIFor(Instr,
MCCFIInstruction::createAdjustCfaOffset(nullptr, NewOffset));
break;
case MCCFIInstruction::OpDefCfa:
setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, OldCFI->getRegister(),
NewOffset));
break;
case MCCFIInstruction::OpOffset:
setCFIFor(Instr, MCCFIInstruction::createOffset(
nullptr, OldCFI->getRegister(), NewOffset));
break;
}
return getCFIFor(Instr);
}
IndirectBranchType
BinaryFunction::processIndirectBranch(MCInst &Instruction, unsigned Size,
uint64_t Offset,
uint64_t &TargetAddress) {
const unsigned PtrSize = BC.AsmInfo->getCodePointerSize();
// The instruction referencing memory used by the branch instruction.
// It could be the branch instruction itself or one of the instructions
// setting the value of the register used by the branch.
MCInst *MemLocInstr;
// Address of the table referenced by MemLocInstr. Could be either an
// array of function pointers, or a jump table.
uint64_t ArrayStart = 0;
unsigned BaseRegNum, IndexRegNum;
int64_t DispValue;
const MCExpr *DispExpr;
// In AArch, identify the instruction adding the PC-relative offset to
// jump table entries to correctly decode it.
MCInst *PCRelBaseInstr;
uint64_t PCRelAddr = 0;
auto Begin = Instructions.begin();
if (BC.isAArch64()) {
PreserveNops = BC.HasRelocations;
// Start at the last label as an approximation of the current basic block.
// This is a heuristic, since the full set of labels have yet to be
// determined
for (auto LI = Labels.rbegin(); LI != Labels.rend(); ++LI) {
auto II = Instructions.find(LI->first);
if (II != Instructions.end()) {
Begin = II;
break;
}
}
}
IndirectBranchType BranchType = BC.MIB->analyzeIndirectBranch(
Instruction, Begin, Instructions.end(), PtrSize, MemLocInstr, BaseRegNum,
IndexRegNum, DispValue, DispExpr, PCRelBaseInstr);
if (BranchType == IndirectBranchType::UNKNOWN && !MemLocInstr)
return BranchType;
if (MemLocInstr != &Instruction)
IndexRegNum = BC.MIB->getNoRegister();
if (BC.isAArch64()) {
const MCSymbol *Sym = BC.MIB->getTargetSymbol(*PCRelBaseInstr, 1);
assert(Sym && "Symbol extraction failed");
ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*Sym);
if (SymValueOrError) {
PCRelAddr = *SymValueOrError;
} else {
for (std::pair<const uint32_t, MCSymbol *> &Elmt : Labels) {
if (Elmt.second == Sym) {
PCRelAddr = Elmt.first + getAddress();
break;
}
}
}
uint64_t InstrAddr = 0;
for (auto II = Instructions.rbegin(); II != Instructions.rend(); ++II) {
if (&II->second == PCRelBaseInstr) {
InstrAddr = II->first + getAddress();
break;
}
}
assert(InstrAddr != 0 && "instruction not found");
// We do this to avoid spurious references to code locations outside this
// function (for example, if the indirect jump lives in the last basic
// block of the function, it will create a reference to the next function).
// This replaces a symbol reference with an immediate.
BC.MIB->replaceMemOperandDisp(*PCRelBaseInstr,
MCOperand::createImm(PCRelAddr - InstrAddr));
// FIXME: Disable full jump table processing for AArch64 until we have a
// proper way of determining the jump table limits.
return IndirectBranchType::UNKNOWN;
}
// RIP-relative addressing should be converted to symbol form by now
// in processed instructions (but not in jump).
if (DispExpr) {
const MCSymbol *TargetSym;
uint64_t TargetOffset;
std::tie(TargetSym, TargetOffset) = BC.MIB->getTargetSymbolInfo(DispExpr);
ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*TargetSym);
assert(SymValueOrError && "global symbol needs a value");
ArrayStart = *SymValueOrError + TargetOffset;
BaseRegNum = BC.MIB->getNoRegister();
if (BC.isAArch64()) {
ArrayStart &= ~0xFFFULL;
ArrayStart += DispValue & 0xFFFULL;
}
} else {
ArrayStart = static_cast<uint64_t>(DispValue);
}
if (BaseRegNum == BC.MRI->getProgramCounter())
ArrayStart += getAddress() + Offset + Size;
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x"
<< Twine::utohexstr(ArrayStart) << '\n');
ErrorOr<BinarySection &> Section = BC.getSectionForAddress(ArrayStart);
if (!Section) {
// No section - possibly an absolute address. Since we don't allow
// internal function addresses to escape the function scope - we
// consider it a tail call.
if (opts::Verbosity >= 1) {
errs() << "BOLT-WARNING: no section for address 0x"
<< Twine::utohexstr(ArrayStart) << " referenced from function "
<< *this << '\n';
}
return IndirectBranchType::POSSIBLE_TAIL_CALL;
}
if (Section->isVirtual()) {
// The contents are filled at runtime.
return IndirectBranchType::POSSIBLE_TAIL_CALL;
}
if (BranchType == IndirectBranchType::POSSIBLE_FIXED_BRANCH) {
ErrorOr<uint64_t> Value = BC.getPointerAtAddress(ArrayStart);
if (!Value)
return IndirectBranchType::UNKNOWN;
if (!BC.getSectionForAddress(ArrayStart)->isReadOnly())
return IndirectBranchType::UNKNOWN;
outs() << "BOLT-INFO: fixed indirect branch detected in " << *this
<< " at 0x" << Twine::utohexstr(getAddress() + Offset)
<< " referencing data at 0x" << Twine::utohexstr(ArrayStart)
<< " the destination value is 0x" << Twine::utohexstr(*Value)
<< '\n';
TargetAddress = *Value;
return BranchType;
}
// Check if there's already a jump table registered at this address.
MemoryContentsType MemType;
if (JumpTable *JT = BC.getJumpTableContainingAddress(ArrayStart)) {
switch (JT->Type) {
case JumpTable::JTT_NORMAL:
MemType = MemoryContentsType::POSSIBLE_JUMP_TABLE;
break;
case JumpTable::JTT_PIC:
MemType = MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE;
break;
}
} else {
MemType = BC.analyzeMemoryAt(ArrayStart, *this);
}
// Check that jump table type in instruction pattern matches memory contents.
JumpTable::JumpTableType JTType;
if (BranchType == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) {
if (MemType != MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE)
return IndirectBranchType::UNKNOWN;
JTType = JumpTable::JTT_PIC;
} else {
if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE)
return IndirectBranchType::UNKNOWN;
if (MemType == MemoryContentsType::UNKNOWN)
return IndirectBranchType::POSSIBLE_TAIL_CALL;
BranchType = IndirectBranchType::POSSIBLE_JUMP_TABLE;
JTType = JumpTable::JTT_NORMAL;
}
// Convert the instruction into jump table branch.
const MCSymbol *JTLabel = BC.getOrCreateJumpTable(*this, ArrayStart, JTType);
BC.MIB->replaceMemOperandDisp(*MemLocInstr, JTLabel, BC.Ctx.get());
BC.MIB->setJumpTable(Instruction, ArrayStart, IndexRegNum);
JTSites.emplace_back(Offset, ArrayStart);
return BranchType;
}
MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address,
bool CreatePastEnd) {
const uint64_t Offset = Address - getAddress();
if ((Offset == getSize()) && CreatePastEnd)
return getFunctionEndLabel();
auto LI = Labels.find(Offset);
if (LI != Labels.end())
return LI->second;
// For AArch64, check if this address is part of a constant island.
if (BC.isAArch64()) {
if (MCSymbol *IslandSym = getOrCreateIslandAccess(Address))
return IslandSym;
}
MCSymbol *Label = BC.Ctx->createNamedTempSymbol();
Labels[Offset] = Label;
return Label;
}
ErrorOr<ArrayRef<uint8_t>> BinaryFunction::getData() const {
BinarySection &Section = *getOriginSection();
assert(Section.containsRange(getAddress(), getMaxSize()) &&
"wrong section for function");
if (!Section.isText() || Section.isVirtual() || !Section.getSize())
return std::make_error_code(std::errc::bad_address);
StringRef SectionContents = Section.getContents();
assert(SectionContents.size() == Section.getSize() &&
"section size mismatch");
// Function offset from the section start.
uint64_t Offset = getAddress() - Section.getAddress();
auto *Bytes = reinterpret_cast<const uint8_t *>(SectionContents.data());
return ArrayRef<uint8_t>(Bytes + Offset, getMaxSize());
}
size_t BinaryFunction::getSizeOfDataInCodeAt(uint64_t Offset) const {
if (!Islands)
return 0;
if (Islands->DataOffsets.find(Offset) == Islands->DataOffsets.end())
return 0;
auto Iter = Islands->CodeOffsets.upper_bound(Offset);
if (Iter != Islands->CodeOffsets.end())
return *Iter - Offset;
return getSize() - Offset;
}
bool BinaryFunction::isZeroPaddingAt(uint64_t Offset) const {
ArrayRef<uint8_t> FunctionData = *getData();
uint64_t EndOfCode = getSize();
if (Islands) {
auto Iter = Islands->DataOffsets.upper_bound(Offset);
if (Iter != Islands->DataOffsets.end())
EndOfCode = *Iter;
}
for (uint64_t I = Offset; I < EndOfCode; ++I)
if (FunctionData[I] != 0)
return false;
return true;
}
bool BinaryFunction::disassemble() {
NamedRegionTimer T("disassemble", "Disassemble function", "buildfuncs",
"Build Binary Functions", opts::TimeBuild);
ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData();
assert(ErrorOrFunctionData && "function data is not available");
ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData;
assert(FunctionData.size() == getMaxSize() &&
"function size does not match raw data size");
auto &Ctx = BC.Ctx;
auto &MIB = BC.MIB;
// Insert a label at the beginning of the function. This will be our first
// basic block.
Labels[0] = Ctx->createNamedTempSymbol("BB0");
auto handlePCRelOperand = [&](MCInst &Instruction, uint64_t Address,
uint64_t Size) {
uint64_t TargetAddress = 0;
if (!MIB->evaluateMemOperandTarget(Instruction, TargetAddress, Address,
Size)) {
errs() << "BOLT-ERROR: PC-relative operand can't be evaluated:\n";
BC.InstPrinter->printInst(&Instruction, 0, "", *BC.STI, errs());
errs() << '\n';
Instruction.dump_pretty(errs(), BC.InstPrinter.get());
errs() << '\n';
errs() << "BOLT-ERROR: cannot handle PC-relative operand at 0x"
<< Twine::utohexstr(Address) << ". Skipping function " << *this
<< ".\n";
if (BC.HasRelocations)
exit(1);
IsSimple = false;
return;
}
if (TargetAddress == 0 && opts::Verbosity >= 1) {
outs() << "BOLT-INFO: PC-relative operand is zero in function " << *this
<< '\n';
}
const MCSymbol *TargetSymbol;
uint64_t TargetOffset;
std::tie(TargetSymbol, TargetOffset) =
BC.handleAddressRef(TargetAddress, *this, /*IsPCRel*/ true);
const MCExpr *Expr = MCSymbolRefExpr::create(
TargetSymbol, MCSymbolRefExpr::VK_None, *BC.Ctx);
if (TargetOffset) {
const MCConstantExpr *Offset =
MCConstantExpr::create(TargetOffset, *BC.Ctx);
Expr = MCBinaryExpr::createAdd(Expr, Offset, *BC.Ctx);
}
MIB->replaceMemOperandDisp(Instruction,
MCOperand::createExpr(BC.MIB->getTargetExprFor(
Instruction, Expr, *BC.Ctx, 0)));
};
// Used to fix the target of linker-generated AArch64 stubs with no relocation
// info
auto fixStubTarget = [&](MCInst &LoadLowBits, MCInst &LoadHiBits,
uint64_t Target) {
const MCSymbol *TargetSymbol;
uint64_t Addend = 0;
std::tie(TargetSymbol, Addend) = BC.handleAddressRef(Target, *this, true);
int64_t Val;
MIB->replaceImmWithSymbolRef(LoadHiBits, TargetSymbol, Addend, Ctx.get(),
Val, ELF::R_AARCH64_ADR_PREL_PG_HI21);
MIB->replaceImmWithSymbolRef(LoadLowBits, TargetSymbol, Addend, Ctx.get(),
Val, ELF::R_AARCH64_ADD_ABS_LO12_NC);
};
auto handleExternalReference = [&](MCInst &Instruction, uint64_t Size,
uint64_t Offset, uint64_t TargetAddress,
bool &IsCall) -> MCSymbol * {
const bool IsCondBranch = MIB->isConditionalBranch(Instruction);
const uint64_t AbsoluteInstrAddr = getAddress() + Offset;
MCSymbol *TargetSymbol = nullptr;
InterproceduralReferences.insert(TargetAddress);
if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !BC.HasRelocations) {
errs() << "BOLT-WARNING: relaxed tail call detected at 0x"
<< Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this
<< ". Code size will be increased.\n";
}
assert(!MIB->isTailCall(Instruction) &&
"synthetic tail call instruction found");
// This is a call regardless of the opcode.
// Assign proper opcode for tail calls, so that they could be
// treated as calls.
if (!IsCall) {
if (!MIB->convertJmpToTailCall(Instruction)) {
assert(IsCondBranch && "unknown tail call instruction");
if (opts::Verbosity >= 2) {
errs() << "BOLT-WARNING: conditional tail call detected in "
<< "function " << *this << " at 0x"
<< Twine::utohexstr(AbsoluteInstrAddr) << ".\n";
}
}
IsCall = true;
}
TargetSymbol = BC.getOrCreateGlobalSymbol(TargetAddress, "FUNCat");
if (opts::Verbosity >= 2 && TargetAddress == 0) {
// We actually see calls to address 0 in presence of weak
// symbols originating from libraries. This code is never meant
// to be executed.
outs() << "BOLT-INFO: Function " << *this
<< " has a call to address zero.\n";
}
return TargetSymbol;
};
auto handleIndirectBranch = [&](MCInst &Instruction, uint64_t Size,
uint64_t Offset) {
uint64_t IndirectTarget = 0;
IndirectBranchType Result =
processIndirectBranch(Instruction, Size, Offset, IndirectTarget);
switch (Result) {
default:
llvm_unreachable("unexpected result");
case IndirectBranchType::POSSIBLE_TAIL_CALL: {
bool Result = MIB->convertJmpToTailCall(Instruction);
(void)Result;
assert(Result);
break;
}
case IndirectBranchType::POSSIBLE_JUMP_TABLE:
case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE:
if (opts::JumpTables == JTS_NONE)
IsSimple = false;
break;
case IndirectBranchType::POSSIBLE_FIXED_BRANCH: {
if (containsAddress(IndirectTarget)) {
const MCSymbol *TargetSymbol = getOrCreateLocalLabel(IndirectTarget);
Instruction.clear();
MIB->createUncondBranch(Instruction, TargetSymbol, BC.Ctx.get());
TakenBranches.emplace_back(Offset, IndirectTarget - getAddress());
HasFixedIndirectBranch = true;
} else {
MIB->convertJmpToTailCall(Instruction);
InterproceduralReferences.insert(IndirectTarget);
}
break;
}
case IndirectBranchType::UNKNOWN:
// Keep processing. We'll do more checks and fixes in
// postProcessIndirectBranches().
UnknownIndirectBranchOffsets.emplace(Offset);
break;
}
};
// Check for linker veneers, which lack relocations and need manual
// adjustments.
auto handleAArch64IndirectCall = [&](MCInst &Instruction, uint64_t Offset) {
const uint64_t AbsoluteInstrAddr = getAddress() + Offset;
MCInst *TargetHiBits, *TargetLowBits;
uint64_t TargetAddress;
if (MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(),
AbsoluteInstrAddr, Instruction, TargetHiBits,
TargetLowBits, TargetAddress)) {
MIB->addAnnotation(Instruction, "AArch64Veneer", true);
uint8_t Counter = 0;
for (auto It = std::prev(Instructions.end()); Counter != 2;
--It, ++Counter) {
MIB->addAnnotation(It->second, "AArch64Veneer", true);
}
fixStubTarget(*TargetLowBits, *TargetHiBits, TargetAddress);
}
};
uint64_t Size = 0; // instruction size
for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) {
MCInst Instruction;
const uint64_t AbsoluteInstrAddr = getAddress() + Offset;
// Check for data inside code and ignore it
if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) {
Size = DataInCodeSize;
continue;
}
if (!BC.DisAsm->getInstruction(Instruction, Size,
FunctionData.slice(Offset),
AbsoluteInstrAddr, nulls())) {
// Functions with "soft" boundaries, e.g. coming from assembly source,
// can have 0-byte padding at the end.
if (isZeroPaddingAt(Offset))
break;
errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x"
<< Twine::utohexstr(Offset) << " (address 0x"
<< Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this
<< '\n';
// Some AVX-512 instructions could not be disassembled at all.
if (BC.HasRelocations && opts::TrapOnAVX512 && BC.isX86()) {
setTrapOnEntry();
BC.TrappedFunctions.push_back(this);
} else {
setIgnored();
}
break;
}
// Check integrity of LLVM assembler/disassembler.
if (opts::CheckEncoding && !BC.MIB->isBranch(Instruction) &&
!BC.MIB->isCall(Instruction) && !BC.MIB->isNoop(Instruction)) {
if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) {
errs() << "BOLT-WARNING: mismatching LLVM encoding detected in "
<< "function " << *this << " for instruction :\n";
BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr);
errs() << '\n';
}
}
// Special handling for AVX-512 instructions.
if (MIB->hasEVEXEncoding(Instruction)) {
if (BC.HasRelocations && opts::TrapOnAVX512) {
setTrapOnEntry();
BC.TrappedFunctions.push_back(this);
break;
}
// Check if our disassembly is correct and matches the assembler output.
if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) {
if (opts::Verbosity >= 1) {
errs() << "BOLT-WARNING: internal assembler/disassembler error "
"detected for AVX512 instruction:\n";
BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr);
errs() << " in function " << *this << '\n';
}
setIgnored();
break;
}
}
// Check if there's a relocation associated with this instruction.
bool UsedReloc = false;
for (auto Itr = Relocations.lower_bound(Offset),
ItrE = Relocations.lower_bound(Offset + Size);
Itr != ItrE; ++Itr) {
const Relocation &Relocation = Itr->second;
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: replacing immediate 0x"
<< Twine::utohexstr(Relocation.Value)
<< " with relocation"
" against "
<< Relocation.Symbol << "+" << Relocation.Addend
<< " in function " << *this
<< " for instruction at offset 0x"
<< Twine::utohexstr(Offset) << '\n');
// Process reference to the primary symbol.
if (!Relocation.isPCRelative())
BC.handleAddressRef(Relocation.Value - Relocation.Addend, *this,
/*IsPCRel*/ false);
int64_t Value = Relocation.Value;
const bool Result = BC.MIB->replaceImmWithSymbolRef(
Instruction, Relocation.Symbol, Relocation.Addend, Ctx.get(), Value,
Relocation.Type);
(void)Result;
assert(Result && "cannot replace immediate with relocation");
// For aarch, if we replaced an immediate with a symbol from a
// relocation, we mark it so we do not try to further process a
// pc-relative operand. All we need is the symbol.
if (BC.isAArch64())
UsedReloc = true;
// Make sure we replaced the correct immediate (instruction
// can have multiple immediate operands).
if (BC.isX86()) {
assert(truncateToSize(static_cast<uint64_t>(Value),
Relocation::getSizeForType(Relocation.Type)) ==
truncateToSize(Relocation.Value, Relocation::getSizeForType(
Relocation.Type)) &&
"immediate value mismatch in function");
}
}
if (MIB->isBranch(Instruction) || MIB->isCall(Instruction)) {
uint64_t TargetAddress = 0;
if (MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size,
TargetAddress)) {
// Check if the target is within the same function. Otherwise it's
// a call, possibly a tail call.
//
// If the target *is* the function address it could be either a branch
// or a recursive call.
bool IsCall = MIB->isCall(Instruction);
const bool IsCondBranch = MIB->isConditionalBranch(Instruction);
MCSymbol *TargetSymbol = nullptr;
if (BC.MIB->isUnsupportedBranch(Instruction.getOpcode())) {
setIgnored();
if (BinaryFunction *TargetFunc =
BC.getBinaryFunctionContainingAddress(TargetAddress))
TargetFunc->setIgnored();
}
if (IsCall && containsAddress(TargetAddress)) {
if (TargetAddress == getAddress()) {
// Recursive call.
TargetSymbol = getSymbol();
} else {
if (BC.isX86()) {
// Dangerous old-style x86 PIC code. We may need to freeze this
// function, so preserve the function as is for now.
PreserveNops = true;
} else {
errs() << "BOLT-WARNING: internal call detected at 0x"
<< Twine::utohexstr(AbsoluteInstrAddr) << " in function "
<< *this << ". Skipping.\n";
IsSimple = false;
}
}
}
if (!TargetSymbol) {
// Create either local label or external symbol.
if (containsAddress(TargetAddress)) {
TargetSymbol = getOrCreateLocalLabel(TargetAddress);
} else {
if (TargetAddress == getAddress() + getSize() &&
TargetAddress < getAddress() + getMaxSize()) {
// Result of __builtin_unreachable().
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x"
<< Twine::utohexstr(AbsoluteInstrAddr)
<< " in function " << *this
<< " : replacing with nop.\n");
BC.MIB->createNoop(Instruction);
if (IsCondBranch) {
// Register branch offset for profile validation.
IgnoredBranches.emplace_back(Offset, Offset + Size);
}
goto add_instruction;
}
// May update Instruction and IsCall
TargetSymbol = handleExternalReference(Instruction, Size, Offset,
TargetAddress, IsCall);
}
}
if (!IsCall) {
// Add taken branch info.
TakenBranches.emplace_back(Offset, TargetAddress - getAddress());
}
BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, &*Ctx);
// Mark CTC.
if (IsCondBranch && IsCall)
MIB->setConditionalTailCall(Instruction, TargetAddress);
} else {
// Could not evaluate branch. Should be an indirect call or an
// indirect branch. Bail out on the latter case.
if (MIB->isIndirectBranch(Instruction))
handleIndirectBranch(Instruction, Size, Offset);
// Indirect call. We only need to fix it if the operand is RIP-relative.
if (IsSimple && MIB->hasPCRelOperand(Instruction))
handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size);
if (BC.isAArch64())
handleAArch64IndirectCall(Instruction, Offset);
}
} else if (MIB->hasPCRelOperand(Instruction) && !UsedReloc) {
handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size);
}
add_instruction:
if (getDWARFLineTable()) {
Instruction.setLoc(findDebugLineInformationForInstructionAt(
AbsoluteInstrAddr, getDWARFUnit(), getDWARFLineTable()));
}
// Record offset of the instruction for profile matching.
if (BC.keepOffsetForInstruction(Instruction))
MIB->setOffset(Instruction, static_cast<uint32_t>(Offset));
if (BC.MIB->isNoop(Instruction)) {
// NOTE: disassembly loses the correct size information for noops.
// E.g. nopw 0x0(%rax,%rax,1) is 9 bytes, but re-encoded it's only
// 5 bytes. Preserve the size info using annotations.
MIB->addAnnotation(Instruction, "Size", static_cast<uint32_t>(Size));
}
addInstruction(Offset, std::move(Instruction));
}
clearList(Relocations);
if (!IsSimple) {
clearList(Instructions);
return false;
}
updateState(State::Disassembled);
return true;
}
bool BinaryFunction::scanExternalRefs() {
bool Success = true;
bool DisassemblyFailed = false;
// Ignore pseudo functions.
if (isPseudo())
return Success;
if (opts::NoScan) {
clearList(Relocations);
clearList(ExternallyReferencedOffsets);
return false;
}
// List of external references for this function.
std::vector<Relocation> FunctionRelocations;
static BinaryContext::IndependentCodeEmitter Emitter =
BC.createIndependentMCCodeEmitter();
ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData();
assert(ErrorOrFunctionData && "function data is not available");
ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData;
assert(FunctionData.size() == getMaxSize() &&
"function size does not match raw data size");
uint64_t Size = 0; // instruction size
for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) {
// Check for data inside code and ignore it
if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) {
Size = DataInCodeSize;
continue;
}
const uint64_t AbsoluteInstrAddr = getAddress() + Offset;
MCInst Instruction;
if (!BC.DisAsm->getInstruction(Instruction, Size,
FunctionData.slice(Offset),
AbsoluteInstrAddr, nulls())) {
if (opts::Verbosity >= 1 && !isZeroPaddingAt(Offset)) {
errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x"
<< Twine::utohexstr(Offset) << " (address 0x"
<< Twine::utohexstr(AbsoluteInstrAddr) << ") in function "
<< *this << '\n';
}
Success = false;
DisassemblyFailed = true;
break;
}
// Return true if we can skip handling the Target function reference.
auto ignoreFunctionRef = [&](const BinaryFunction &Target) {
if (&Target == this)
return true;
// Note that later we may decide not to emit Target function. In that
// case, we conservatively create references that will be ignored or
// resolved to the same function.
if (!BC.shouldEmit(Target))
return true;
return false;
};
// Return true if we can ignore reference to the symbol.
auto ignoreReference = [&](const MCSymbol *TargetSymbol) {
if (!TargetSymbol)
return true;
if (BC.forceSymbolRelocations(TargetSymbol->getName()))
return false;
BinaryFunction *TargetFunction = BC.getFunctionForSymbol(TargetSymbol);
if (!TargetFunction)
return true;
return ignoreFunctionRef(*TargetFunction);
};
// Detect if the instruction references an address.
// Without relocations, we can only trust PC-relative address modes.
uint64_t TargetAddress = 0;
bool IsPCRel = false;
bool IsBranch = false;
if (BC.MIB->hasPCRelOperand(Instruction)) {
if (BC.MIB->evaluateMemOperandTarget(Instruction, TargetAddress,
AbsoluteInstrAddr, Size)) {
IsPCRel = true;
}
} else if (BC.MIB->isCall(Instruction) || BC.MIB->isBranch(Instruction)) {
if (BC.MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size,
TargetAddress)) {
IsBranch = true;
}
}
MCSymbol *TargetSymbol = nullptr;
// Create an entry point at reference address if needed.
BinaryFunction *TargetFunction =
BC.getBinaryFunctionContainingAddress(TargetAddress);
if (TargetFunction && !ignoreFunctionRef(*TargetFunction)) {
const uint64_t FunctionOffset =
TargetAddress - TargetFunction->getAddress();
TargetSymbol = FunctionOffset
? TargetFunction->addEntryPointAtOffset(FunctionOffset)
: TargetFunction->getSymbol();
}
// Can't find more references and not creating relocations.
if (!BC.HasRelocations)
continue;
// Create a relocation against the TargetSymbol as the symbol might get
// moved.
if (TargetSymbol) {
if (IsBranch) {
BC.MIB->replaceBranchTarget(Instruction, TargetSymbol,
Emitter.LocalCtx.get());
} else if (IsPCRel) {
const MCExpr *Expr = MCSymbolRefExpr::create(
TargetSymbol, MCSymbolRefExpr::VK_None, *Emitter.LocalCtx.get());
BC.MIB->replaceMemOperandDisp(
Instruction, MCOperand::createExpr(BC.MIB->getTargetExprFor(
Instruction, Expr, *Emitter.LocalCtx.get(), 0)));
}
}
// Create more relocations based on input file relocations.
bool HasRel = false;
for (auto Itr = Relocations.lower_bound(Offset),
ItrE = Relocations.lower_bound(Offset + Size);
Itr != ItrE; ++Itr) {
Relocation &Relocation = Itr->second;
if (ignoreReference(Relocation.Symbol))
continue;
int64_t Value = Relocation.Value;
const bool Result = BC.MIB->replaceImmWithSymbolRef(
Instruction, Relocation.Symbol, Relocation.Addend,
Emitter.LocalCtx.get(), Value, Relocation.Type);
(void)Result;
assert(Result && "cannot replace immediate with relocation");
HasRel = true;
}
if (!TargetSymbol && !HasRel)
continue;
// Emit the instruction using temp emitter and generate relocations.
SmallString<256> Code;
SmallVector<MCFixup, 4> Fixups;
raw_svector_ostream VecOS(Code);
Emitter.MCE->encodeInstruction(Instruction, VecOS, Fixups, *BC.STI);
// Create relocation for every fixup.
for (const MCFixup &Fixup : Fixups) {
Optional<Relocation> Rel = BC.MIB->createRelocation(Fixup, *BC.MAB);
if (!Rel) {
Success = false;
continue;
}
if (Relocation::getSizeForType(Rel->Type) < 4) {
// If the instruction uses a short form, then we might not be able
// to handle the rewrite without relaxation, and hence cannot reliably
// create an external reference relocation.
Success = false;
continue;
}
Rel->Offset += getAddress() - getOriginSection()->getAddress() + Offset;
FunctionRelocations.push_back(*Rel);
}
if (!Success)
break;
}
// Add relocations unless disassembly failed for this function.
if (!DisassemblyFailed)
for (Relocation &Rel : FunctionRelocations)
getOriginSection()->addPendingRelocation(Rel);
// Inform BinaryContext that this function symbols will not be defined and
// relocations should not be created against them.
if (BC.HasRelocations) {
for (std::pair<const uint32_t, MCSymbol *> &LI : Labels)
BC.UndefinedSymbols.insert(LI.second);
if (FunctionEndLabel)
BC.UndefinedSymbols.insert(FunctionEndLabel);
}
clearList(Relocations);
clearList(ExternallyReferencedOffsets);
if (Success && BC.HasRelocations)
HasExternalRefRelocations = true;
if (opts::Verbosity >= 1 && !Success)
outs() << "BOLT-INFO: failed to scan refs for " << *this << '\n';
return Success;
}
void BinaryFunction::postProcessEntryPoints() {
if (!isSimple())
return;
for (auto &KV : Labels) {
MCSymbol *Label = KV.second;
if (!getSecondaryEntryPointSymbol(Label))
continue;
// In non-relocation mode there's potentially an external undetectable
// reference to the entry point and hence we cannot move this entry
// point. Optimizing without moving could be difficult.
if (!BC.HasRelocations)
setSimple(false);
const uint32_t Offset = KV.first;
// If we are at Offset 0 and there is no instruction associated with it,
// this means this is an empty function. Just ignore. If we find an
// instruction at this offset, this entry point is valid.
if (!Offset || getInstructionAtOffset(Offset))
continue;
// On AArch64 there are legitimate reasons to have references past the
// end of the function, e.g. jump tables.
if (BC.isAArch64() && Offset == getSize())
continue;
errs() << "BOLT-WARNING: reference in the middle of instruction "
"detected in function "
<< *this << " at offset 0x" << Twine::utohexstr(Offset) << '\n';
if (BC.HasRelocations)
setIgnored();
setSimple(false);
return;
}
}
void BinaryFunction::postProcessJumpTables() {
// Create labels for all entries.
for (auto &JTI : JumpTables) {
JumpTable &JT = *JTI.second;
if (JT.Type == JumpTable::JTT_PIC && opts::JumpTables == JTS_BASIC) {
opts::JumpTables = JTS_MOVE;
outs() << "BOLT-INFO: forcing -jump-tables=move as PIC jump table was "
"detected in function "
<< *this << '\n';
}
for (unsigned I = 0; I < JT.OffsetEntries.size(); ++I) {
MCSymbol *Label =
getOrCreateLocalLabel(getAddress() + JT.OffsetEntries[I],
/*CreatePastEnd*/ true);
JT.Entries.push_back(Label);
}
const uint64_t BDSize =
BC.getBinaryDataAtAddress(JT.getAddress())->getSize();
if (!BDSize) {
BC.setBinaryDataSize(JT.getAddress(), JT.getSize());
} else {
assert(BDSize >= JT.getSize() &&
"jump table cannot be larger than the containing object");
}
}
// Add TakenBranches from JumpTables.
//
// We want to do it after initial processing since we don't know jump tables'
// boundaries until we process them all.
for (auto &JTSite : JTSites) {
const uint64_t JTSiteOffset = JTSite.first;
const uint64_t JTAddress = JTSite.second;
const JumpTable *JT = getJumpTableContainingAddress(JTAddress);
assert(JT && "cannot find jump table for address");
uint64_t EntryOffset = JTAddress - JT->getAddress();
while (EntryOffset < JT->getSize()) {
uint64_t TargetOffset = JT->OffsetEntries[EntryOffset / JT->EntrySize];
if (TargetOffset < getSize()) {
TakenBranches.emplace_back(JTSiteOffset, TargetOffset);
if (opts::StrictMode)
registerReferencedOffset(TargetOffset);
}
EntryOffset += JT->EntrySize;
// A label at the next entry means the end of this jump table.
if (JT->Labels.count(EntryOffset))
break;
}
}
clearList(JTSites);
// Free memory used by jump table offsets.
for (auto &JTI : JumpTables) {
JumpTable &JT = *JTI.second;
clearList(JT.OffsetEntries);
}
// Conservatively populate all possible destinations for unknown indirect
// branches.
if (opts::StrictMode && hasInternalReference()) {
for (uint64_t Offset : UnknownIndirectBranchOffsets) {
for (uint64_t PossibleDestination : ExternallyReferencedOffsets) {
// Ignore __builtin_unreachable().
if (PossibleDestination == getSize())
continue;
TakenBranches.emplace_back(Offset, PossibleDestination);
}
}
}
// Remove duplicates branches. We can get a bunch of them from jump tables.
// Without doing jump table value profiling we don't have use for extra
// (duplicate) branches.
std::sort(TakenBranches.begin(), TakenBranches.end());
auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end());
TakenBranches.erase(NewEnd, TakenBranches.end());
}
bool BinaryFunction::postProcessIndirectBranches(
MCPlusBuilder::AllocatorIdTy AllocId) {
auto addUnknownControlFlow = [&](BinaryBasicBlock &BB) {
HasUnknownControlFlow = true;
BB.removeAllSuccessors();
for (uint64_t PossibleDestination : ExternallyReferencedOffsets)
if (BinaryBasicBlock *SuccBB = getBasicBlockAtOffset(PossibleDestination))
BB.addSuccessor(SuccBB);
};
uint64_t NumIndirectJumps = 0;
MCInst *LastIndirectJump = nullptr;
BinaryBasicBlock *LastIndirectJumpBB = nullptr;
uint64_t LastJT = 0;
uint16_t LastJTIndexReg = BC.MIB->getNoRegister();
for (BinaryBasicBlock *BB : layout()) {
for (MCInst &Instr : *BB) {
if (!BC.MIB->isIndirectBranch(Instr))
continue;
// If there's an indirect branch in a single-block function -
// it must be a tail call.
if (layout_size() == 1) {
BC.MIB->convertJmpToTailCall(Instr);
return true;
}
++NumIndirectJumps;
if (opts::StrictMode && !hasInternalReference()) {
BC.MIB->convertJmpToTailCall(Instr);
break;
}
// Validate the tail call or jump table assumptions now that we know
// basic block boundaries.
if (BC.MIB->isTailCall(Instr) || BC.MIB->getJumpTable(Instr)) {
const unsigned PtrSize = BC.AsmInfo->getCodePointerSize();
MCInst *MemLocInstr;
unsigned BaseRegNum, IndexRegNum;
int64_t DispValue;
const MCExpr *DispExpr;
MCInst *PCRelBaseInstr;
IndirectBranchType Type = BC.MIB->analyzeIndirectBranch(
Instr, BB->begin(), BB->end(), PtrSize, MemLocInstr, BaseRegNum,
IndexRegNum, DispValue, DispExpr, PCRelBaseInstr);
if (Type != IndirectBranchType::UNKNOWN || MemLocInstr != nullptr)
continue;
if (!opts::StrictMode)
return false;
if (BC.MIB->isTailCall(Instr)) {
BC.MIB->convertTailCallToJmp(Instr);
} else {
LastIndirectJump = &Instr;
LastIndirectJumpBB = BB;
LastJT = BC.MIB->getJumpTable(Instr);
LastJTIndexReg = BC.MIB->getJumpTableIndexReg(Instr);
BC.MIB->unsetJumpTable(Instr);
JumpTable *JT = BC.getJumpTableContainingAddress(LastJT);
if (JT->Type == JumpTable::JTT_NORMAL) {
// Invalidating the jump table may also invalidate other jump table
// boundaries. Until we have/need a support for this, mark the
// function as non-simple.
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejected jump table reference"
<< JT->getName() << " in " << *this << '\n');
return false;
}
}
addUnknownControlFlow(*BB);
continue;
}
// If this block contains an epilogue code and has an indirect branch,
// then most likely it's a tail call. Otherwise, we cannot tell for sure
// what it is and conservatively reject the function's CFG.
bool IsEpilogue = false;
for (const MCInst &Instr : *BB) {
if (BC.MIB->isLeave(Instr) || BC.MIB->isPop(Instr)) {
IsEpilogue = true;
break;
}
}
if (IsEpilogue) {
BC.MIB->convertJmpToTailCall(Instr);
BB->removeAllSuccessors();
continue;
}
if (opts::Verbosity >= 2) {
outs() << "BOLT-INFO: rejected potential indirect tail call in "
<< "function " << *this << " in basic block " << BB->getName()
<< ".\n";
LLVM_DEBUG(BC.printInstructions(dbgs(), BB->begin(), BB->end(),
BB->getOffset(), this, true));
}
if (!opts::StrictMode)
return false;
addUnknownControlFlow(*BB);
}
}
if (HasInternalLabelReference)
return false;
// If there's only one jump table, and one indirect jump, and no other
// references, then we should be able to derive the jump table even if we
// fail to match the pattern.
if (HasUnknownControlFlow && NumIndirectJumps == 1 &&
JumpTables.size() == 1 && LastIndirectJump) {
BC.MIB->setJumpTable(*LastIndirectJump, LastJT, LastJTIndexReg, AllocId);
HasUnknownControlFlow = false;
// re-populate successors based on the jump table.
std::set<const MCSymbol *> JTLabels;
LastIndirectJumpBB->removeAllSuccessors();
const JumpTable *JT = getJumpTableContainingAddress(LastJT);
for (const MCSymbol *Label : JT->Entries)
JTLabels.emplace(Label);
for (const MCSymbol *Label : JTLabels) {
BinaryBasicBlock *BB = getBasicBlockForLabel(Label);
// Ignore __builtin_unreachable()
if (!BB) {
assert(Label == getFunctionEndLabel() && "if no BB found, must be end");
continue;
}
LastIndirectJumpBB->addSuccessor(BB);
}
}
if (HasFixedIndirectBranch)
return false;
if (HasUnknownControlFlow && !BC.HasRelocations)
return false;
return true;
}
void BinaryFunction::recomputeLandingPads() {
updateBBIndices(0);
for (BinaryBasicBlock *BB : BasicBlocks) {
BB->LandingPads.clear();
BB->Throwers.clear();
}
for (BinaryBasicBlock *BB : BasicBlocks) {
std::unordered_set<const BinaryBasicBlock *> BBLandingPads;
for (MCInst &Instr : *BB) {
if (!BC.MIB->isInvoke(Instr))
continue;
const Optional<MCPlus::MCLandingPad> EHInfo = BC.MIB->getEHInfo(Instr);
if (!EHInfo || !EHInfo->first)
continue;
BinaryBasicBlock *LPBlock = getBasicBlockForLabel(EHInfo->first);
if (!BBLandingPads.count(LPBlock)) {
BBLandingPads.insert(LPBlock);
BB->LandingPads.emplace_back(LPBlock);
LPBlock->Throwers.emplace_back(BB);
}
}
}
}
bool BinaryFunction::buildCFG(MCPlusBuilder::AllocatorIdTy AllocatorId) {
auto &MIB = BC.MIB;
if (!isSimple()) {
assert(!BC.HasRelocations &&
"cannot process file with non-simple function in relocs mode");
return false;
}
if (CurrentState != State::Disassembled)
return false;
assert(BasicBlocks.empty() && "basic block list should be empty");
assert((Labels.find(0) != Labels.end()) &&
"first instruction should always have a label");
// Create basic blocks in the original layout order:
//
// * Every instruction with associated label marks
// the beginning of a basic block.
// * Conditional instruction marks the end of a basic block,
// except when the following instruction is an
// unconditional branch, and the unconditional branch is not
// a destination of another branch. In the latter case, the
// basic block will consist of a single unconditional branch
// (missed "double-jump" optimization).
//
// Created basic blocks are sorted in layout order since they are
// created in the same order as instructions, and instructions are
// sorted by offsets.
BinaryBasicBlock *InsertBB = nullptr;
BinaryBasicBlock *PrevBB = nullptr;
bool IsLastInstrNop = false;
// Offset of the last non-nop instruction.
uint64_t LastInstrOffset = 0;
auto addCFIPlaceholders = [this](uint64_t CFIOffset,
BinaryBasicBlock *InsertBB) {
for (auto FI = OffsetToCFI.lower_bound(CFIOffset),
FE = OffsetToCFI.upper_bound(CFIOffset);
FI != FE; ++FI) {
addCFIPseudo(InsertBB, InsertBB->end(), FI->second);
}
};
// For profiling purposes we need to save the offset of the last instruction
// in the basic block.
// NOTE: nops always have an Offset annotation. Annotate the last non-nop as
// older profiles ignored nops.
auto updateOffset = [&](uint64_t Offset) {
assert(PrevBB && PrevBB != InsertBB && "invalid previous block");
MCInst *LastNonNop = nullptr;
for (BinaryBasicBlock::reverse_iterator RII = PrevBB->getLastNonPseudo(),
E = PrevBB->rend();
RII != E; ++RII) {
if (!BC.MIB->isPseudo(*RII) && !BC.MIB->isNoop(*RII)) {
LastNonNop = &*RII;
break;
}
}
if (LastNonNop && !MIB->getOffset(*LastNonNop))
MIB->setOffset(*LastNonNop, static_cast<uint32_t>(Offset), AllocatorId);
};
for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) {
const uint32_t Offset = I->first;
MCInst &Instr = I->second;
auto LI = Labels.find(Offset);
if (LI != Labels.end()) {
// Always create new BB at branch destination.
PrevBB = InsertBB ? InsertBB : PrevBB;
InsertBB = addBasicBlock(LI->first, LI->second,
opts::PreserveBlocksAlignment && IsLastInstrNop);
if (PrevBB)
updateOffset(LastInstrOffset);
}
const uint64_t InstrInputAddr = I->first + Address;
bool IsSDTMarker =
MIB->isNoop(Instr) && BC.SDTMarkers.count(InstrInputAddr);
bool IsLKMarker = BC.LKMarkers.count(InstrInputAddr);
// Mark all nops with Offset for profile tracking purposes.
if (MIB->isNoop(Instr) || IsLKMarker) {
if (!MIB->getOffset(Instr))
MIB->setOffset(Instr, static_cast<uint32_t>(Offset), AllocatorId);
if (IsSDTMarker || IsLKMarker)
HasSDTMarker = true;
else
// Annotate ordinary nops, so we can safely delete them if required.
MIB->addAnnotation(Instr, "NOP", static_cast<uint32_t>(1), AllocatorId);
}
if (!InsertBB) {
// It must be a fallthrough or unreachable code. Create a new block unless
// we see an unconditional branch following a conditional one. The latter
// should not be a conditional tail call.
assert(PrevBB && "no previous basic block for a fall through");
MCInst *PrevInstr = PrevBB->getLastNonPseudoInstr();
assert(PrevInstr && "no previous instruction for a fall through");
if (MIB->isUnconditionalBranch(Instr) &&
!MIB->isUnconditionalBranch(*PrevInstr) &&
!MIB->getConditionalTailCall(*PrevInstr) &&
!MIB->isReturn(*PrevInstr)) {
// Temporarily restore inserter basic block.
InsertBB = PrevBB;
} else {
MCSymbol *Label;
{
auto L = BC.scopeLock();
Label = BC.Ctx->createNamedTempSymbol("FT");
}
InsertBB = addBasicBlock(
Offset, Label, opts::PreserveBlocksAlignment && IsLastInstrNop);
updateOffset(LastInstrOffset);
}
}
if (Offset == 0) {
// Add associated CFI pseudos in the first offset (0)
addCFIPlaceholders(0, InsertBB);
}
const bool IsBlockEnd = MIB->isTerminator(Instr);
IsLastInstrNop = MIB->isNoop(Instr);
if (!IsLastInstrNop)
LastInstrOffset = Offset;
InsertBB->addInstruction(std::move(Instr));
// Add associated CFI instrs. We always add the CFI instruction that is
// located immediately after this instruction, since the next CFI
// instruction reflects the change in state caused by this instruction.
auto NextInstr = std::next(I);
uint64_t CFIOffset;
if (NextInstr != E)
CFIOffset = NextInstr->first;
else
CFIOffset = getSize();
// Note: this potentially invalidates instruction pointers/iterators.
addCFIPlaceholders(CFIOffset, InsertBB);
if (IsBlockEnd) {
PrevBB = InsertBB;
InsertBB = nullptr;
}
}
if (BasicBlocks.empty()) {
setSimple(false);
return false;
}
// Intermediate dump.
LLVM_DEBUG(print(dbgs(), "after creating basic blocks"));
// TODO: handle properly calls to no-return functions,
// e.g. exit(3), etc. Otherwise we'll see a false fall-through
// blocks.
for (std::pair<uint32_t, uint32_t> &Branch : TakenBranches) {
LLVM_DEBUG(dbgs() << "registering branch [0x"
<< Twine::utohexstr(Branch.first) << "] -> [0x"
<< Twine::utohexstr(Branch.second) << "]\n");
BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first);
BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second);
if (!FromBB || !ToBB) {
if (!FromBB)
errs() << "BOLT-ERROR: cannot find BB containing the branch.\n";
if (!ToBB)
errs() << "BOLT-ERROR: cannot find BB containing branch destination.\n";
BC.exitWithBugReport("disassembly failed - inconsistent branch found.",
*this);
}
FromBB->addSuccessor(ToBB);
}
// Add fall-through branches.
PrevBB = nullptr;
bool IsPrevFT = false; // Is previous block a fall-through.
for (BinaryBasicBlock *BB : BasicBlocks) {
if (IsPrevFT)
PrevBB->addSuccessor(BB);
if (BB->empty()) {
IsPrevFT = true;
PrevBB = BB;
continue;
}
MCInst *LastInstr = BB->getLastNonPseudoInstr();
assert(LastInstr &&
"should have non-pseudo instruction in non-empty block");
if (BB->succ_size() == 0) {
// Since there's no existing successors, we know the last instruction is
// not a conditional branch. Thus if it's a terminator, it shouldn't be a
// fall-through.
//
// Conditional tail call is a special case since we don't add a taken
// branch successor for it.
IsPrevFT = !MIB->isTerminator(*LastInstr) ||
MIB->getConditionalTailCall(*LastInstr);
} else if (BB->succ_size() == 1) {
IsPrevFT = MIB->isConditionalBranch(*LastInstr);
} else {
IsPrevFT = false;
}
PrevBB = BB;
}
// Assign landing pads and throwers info.
recomputeLandingPads();
// Assign CFI information to each BB entry.
annotateCFIState();
// Annotate invoke instructions with GNU_args_size data.
propagateGnuArgsSizeInfo(AllocatorId);
// Set the basic block layout to the original order and set end offsets.
PrevBB = nullptr;
for (BinaryBasicBlock *BB : BasicBlocks) {
BasicBlocksLayout.emplace_back(BB);
if (PrevBB)
PrevBB->setEndOffset(BB->getOffset());
PrevBB = BB;
}
PrevBB->setEndOffset(getSize());
updateLayoutIndices();
normalizeCFIState();
// Clean-up memory taken by intermediate structures.
//
// NB: don't clear Labels list as we may need them if we mark the function
// as non-simple later in the process of discovering extra entry points.
clearList(Instructions);
clearList(OffsetToCFI);
clearList(TakenBranches);
// Update the state.
CurrentState = State::CFG;
// Make any necessary adjustments for indirect branches.
if (!postProcessIndirectBranches(AllocatorId)) {
if (opts::Verbosity) {
errs() << "BOLT-WARNING: failed to post-process indirect branches for "
<< *this << '\n';
}
// In relocation mode we want to keep processing the function but avoid
// optimizing it.
setSimple(false);
}
clearList(ExternallyReferencedOffsets);
clearList(UnknownIndirectBranchOffsets);
return true;
}
void BinaryFunction::postProcessCFG() {
if (isSimple() && !BasicBlocks.empty()) {
// Convert conditional tail call branches to conditional branches that jump
// to a tail call.
removeConditionalTailCalls();
postProcessProfile();
// Eliminate inconsistencies between branch instructions and CFG.
postProcessBranches();
}
calculateMacroOpFusionStats();
// The final cleanup of intermediate structures.
clearList(IgnoredBranches);
// Remove "Offset" annotations, unless we need an address-translation table
// later. This has no cost, since annotations are allocated by a bumpptr
// allocator and won't be released anyway until late in the pipeline.
if (!requiresAddressTranslation() && !opts::Instrument) {
for (BinaryBasicBlock *BB : layout())
for (MCInst &Inst : *BB)
BC.MIB->clearOffset(Inst);
}
assert((!isSimple() || validateCFG()) &&
"invalid CFG detected after post-processing");
}
void BinaryFunction::calculateMacroOpFusionStats() {
if (!getBinaryContext().isX86())
return;
for (BinaryBasicBlock *BB : layout()) {
auto II = BB->getMacroOpFusionPair();
if (II == BB->end())
continue;
// Check offset of the second instruction.
// FIXME: arch-specific.
const uint32_t Offset = BC.MIB->getOffsetWithDefault(*std::next(II), 0);
if (!Offset || (getAddress() + Offset) % 64)
continue;
LLVM_DEBUG(dbgs() << "\nmissed macro-op fusion at address 0x"
<< Twine::utohexstr(getAddress() + Offset)
<< " in function " << *this << "; executed "
<< BB->getKnownExecutionCount() << " times.\n");
++BC.MissedMacroFusionPairs;
BC.MissedMacroFusionExecCount += BB->getKnownExecutionCount();
}
}
void BinaryFunction::removeTagsFromProfile() {
for (BinaryBasicBlock *BB : BasicBlocks) {
if (BB->ExecutionCount == BinaryBasicBlock::COUNT_NO_PROFILE)
BB->ExecutionCount = 0;
for (BinaryBasicBlock::BinaryBranchInfo &BI : BB->branch_info()) {
if (BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
BI.MispredictedCount != BinaryBasicBlock::COUNT_NO_PROFILE)
continue;
BI.Count = 0;
BI.MispredictedCount = 0;
}
}
}
void BinaryFunction::removeConditionalTailCalls() {
// Blocks to be appended at the end.
std::vector<std::unique_ptr<BinaryBasicBlock>> NewBlocks;
for (auto BBI = begin(); BBI != end(); ++BBI) {
BinaryBasicBlock &BB = *BBI;
MCInst *CTCInstr = BB.getLastNonPseudoInstr();
if (!CTCInstr)
continue;
Optional<uint64_t> TargetAddressOrNone =
BC.MIB->getConditionalTailCall(*CTCInstr);
if (!TargetAddressOrNone)
continue;
// Gather all necessary information about CTC instruction before
// annotations are destroyed.
const int32_t CFIStateBeforeCTC = BB.getCFIStateAtInstr(CTCInstr);
uint64_t CTCTakenCount = BinaryBasicBlock::COUNT_NO_PROFILE;
uint64_t CTCMispredCount = BinaryBasicBlock::COUNT_NO_PROFILE;
if (hasValidProfile()) {
CTCTakenCount = BC.MIB->getAnnotationWithDefault<uint64_t>(
*CTCInstr, "CTCTakenCount");
CTCMispredCount = BC.MIB->getAnnotationWithDefault<uint64_t>(
*CTCInstr, "CTCMispredCount");
}
// Assert that the tail call does not throw.
assert(!BC.MIB->getEHInfo(*CTCInstr) &&
"found tail call with associated landing pad");
// Create a basic block with an unconditional tail call instruction using
// the same destination.
const MCSymbol *CTCTargetLabel = BC.MIB->getTargetSymbol(*CTCInstr);
assert(CTCTargetLabel && "symbol expected for conditional tail call");
MCInst TailCallInstr;
BC.MIB->createTailCall(TailCallInstr, CTCTargetLabel, BC.Ctx.get());
// Link new BBs to the original input offset of the BB where the CTC
// is, so we can map samples recorded in new BBs back to the original BB
// seem in the input binary (if using BAT)
std::unique_ptr<BinaryBasicBlock> TailCallBB = createBasicBlock(
BB.getInputOffset(), BC.Ctx->createNamedTempSymbol("TC"));
TailCallBB->addInstruction(TailCallInstr);
TailCallBB->setCFIState(CFIStateBeforeCTC);
// Add CFG edge with profile info from BB to TailCallBB.
BB.addSuccessor(TailCallBB.get(), CTCTakenCount, CTCMispredCount);
// Add execution count for the block.
TailCallBB->setExecutionCount(CTCTakenCount);
BC.MIB->convertTailCallToJmp(*CTCInstr);
BC.MIB->replaceBranchTarget(*CTCInstr, TailCallBB->getLabel(),
BC.Ctx.get());
// Add basic block to the list that will be added to the end.
NewBlocks.emplace_back(std::move(TailCallBB));
// Swap edges as the TailCallBB corresponds to the taken branch.
BB.swapConditionalSuccessors();
// This branch is no longer a conditional tail call.
BC.MIB->unsetConditionalTailCall(*CTCInstr);
}
insertBasicBlocks(std::prev(end()), std::move(NewBlocks),
/* UpdateLayout */ true,
/* UpdateCFIState */ false);
}
uint64_t BinaryFunction::getFunctionScore() const {
if (FunctionScore != -1)
return FunctionScore;
if (!isSimple() || !hasValidProfile()) {
FunctionScore = 0;
return FunctionScore;
}
uint64_t TotalScore = 0ULL;
for (BinaryBasicBlock *BB : layout()) {
uint64_t BBExecCount = BB->getExecutionCount();
if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE)
continue;
TotalScore += BBExecCount;
}
FunctionScore = TotalScore;
return FunctionScore;
}
void BinaryFunction::annotateCFIState() {
assert(CurrentState == State::Disassembled && "unexpected function state");
assert(!BasicBlocks.empty() && "basic block list should not be empty");
// This is an index of the last processed CFI in FDE CFI program.
uint32_t State = 0;
// This is an index of RememberState CFI reflecting effective state right
// after execution of RestoreState CFI.
//
// It differs from State iff the CFI at (State-1)
// was RestoreState (modulo GNU_args_size CFIs, which are ignored).
//
// This allows us to generate shorter replay sequences when producing new
// CFI programs.
uint32_t EffectiveState = 0;
// For tracking RememberState/RestoreState sequences.
std::stack<uint32_t> StateStack;
for (BinaryBasicBlock *BB : BasicBlocks) {
BB->setCFIState(EffectiveState);
for (const MCInst &Instr : *BB) {
const MCCFIInstruction *CFI = getCFIFor(Instr);
if (!CFI)
continue;
++State;
switch (CFI->getOperation()) {
case MCCFIInstruction::OpRememberState:
StateStack.push(EffectiveState);
EffectiveState = State;
break;
case MCCFIInstruction::OpRestoreState:
assert(!StateStack.empty() && "corrupt CFI stack");
EffectiveState = StateStack.top();
StateStack.pop();
break;
case MCCFIInstruction::OpGnuArgsSize:
// OpGnuArgsSize CFIs do not affect the CFI state.
break;
default:
// Any other CFI updates the state.
EffectiveState = State;
break;
}
}
}
assert(StateStack.empty() && "corrupt CFI stack");
}
namespace {
/// Our full interpretation of a DWARF CFI machine state at a given point
struct CFISnapshot {
/// CFA register number and offset defining the canonical frame at this
/// point, or the number of a rule (CFI state) that computes it with a
/// DWARF expression. This number will be negative if it refers to a CFI
/// located in the CIE instead of the FDE.
uint32_t CFAReg;
int32_t CFAOffset;
int32_t CFARule;
/// Mapping of rules (CFI states) that define the location of each
/// register. If absent, no rule defining the location of such register
/// was ever read. This number will be negative if it refers to a CFI
/// located in the CIE instead of the FDE.
DenseMap<int32_t, int32_t> RegRule;
/// References to CIE, FDE and expanded instructions after a restore state
const BinaryFunction::CFIInstrMapType &CIE;
const BinaryFunction::CFIInstrMapType &FDE;
const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents;
/// Current FDE CFI number representing the state where the snapshot is at
int32_t CurState;
/// Used when we don't have information about which state/rule to apply
/// to recover the location of either the CFA or a specific register
constexpr static int32_t UNKNOWN = std::numeric_limits<int32_t>::min();
private:
/// Update our snapshot by executing a single CFI
void update(const MCCFIInstruction &Instr, int32_t RuleNumber) {
switch (Instr.getOperation()) {
case MCCFIInstruction::OpSameValue:
case MCCFIInstruction::OpRelOffset:
case MCCFIInstruction::OpOffset:
case MCCFIInstruction::OpRestore:
case MCCFIInstruction::OpUndefined:
case MCCFIInstruction::OpRegister:
RegRule[Instr.getRegister()] = RuleNumber;
break;
case MCCFIInstruction::OpDefCfaRegister:
CFAReg = Instr.getRegister();
CFARule = UNKNOWN;
break;
case MCCFIInstruction::OpDefCfaOffset:
CFAOffset = Instr.getOffset();
CFARule = UNKNOWN;
break;
case MCCFIInstruction::OpDefCfa:
CFAReg = Instr.getRegister();
CFAOffset = Instr.getOffset();
CFARule = UNKNOWN;
break;
case MCCFIInstruction::OpEscape: {
Optional<uint8_t> Reg = readDWARFExpressionTargetReg(Instr.getValues());
// Handle DW_CFA_def_cfa_expression
if (!Reg) {
CFARule = RuleNumber;
break;
}
RegRule[*Reg] = RuleNumber;
break;
}
case MCCFIInstruction::OpAdjustCfaOffset:
case MCCFIInstruction::OpWindowSave:
case MCCFIInstruction::OpNegateRAState:
case MCCFIInstruction::OpLLVMDefAspaceCfa:
llvm_unreachable("unsupported CFI opcode");
break;
case MCCFIInstruction::OpRememberState:
case MCCFIInstruction::OpRestoreState:
case MCCFIInstruction::OpGnuArgsSize:
// do not affect CFI state
break;
}
}
public:
/// Advance state reading FDE CFI instructions up to State number
void advanceTo(int32_t State) {
for (int32_t I = CurState, E = State; I != E; ++I) {
const MCCFIInstruction &Instr = FDE[I];
if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) {
update(Instr, I);
continue;
}
// If restore state instruction, fetch the equivalent CFIs that have
// the same effect of this restore. This is used to ensure remember-
// restore pairs are completely removed.
auto Iter = FrameRestoreEquivalents.find(I);
if (Iter == FrameRestoreEquivalents.end())
continue;
for (int32_t RuleNumber : Iter->second)
update(FDE[RuleNumber], RuleNumber);
}
assert(((CFAReg != (uint32_t)UNKNOWN && CFAOffset != UNKNOWN) ||
CFARule != UNKNOWN) &&
"CIE did not define default CFA?");
CurState = State;
}
/// Interpret all CIE and FDE instructions up until CFI State number and
/// populate this snapshot
CFISnapshot(
const BinaryFunction::CFIInstrMapType &CIE,
const BinaryFunction::CFIInstrMapType &FDE,
const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents,
int32_t State)
: CIE(CIE), FDE(FDE), FrameRestoreEquivalents(FrameRestoreEquivalents) {
CFAReg = UNKNOWN;
CFAOffset = UNKNOWN;
CFARule = UNKNOWN;
CurState = 0;
for (int32_t I = 0, E = CIE.size(); I != E; ++I) {
const MCCFIInstruction &Instr = CIE[I];
update(Instr, -I);
}
advanceTo(State);
}
};
/// A CFI snapshot with the capability of checking if incremental additions to
/// it are redundant. This is used to ensure we do not emit two CFI instructions
/// back-to-back that are doing the same state change, or to avoid emitting a
/// CFI at all when the state at that point would not be modified after that CFI
struct CFISnapshotDiff : public CFISnapshot {
bool RestoredCFAReg{false};
bool RestoredCFAOffset{false};
DenseMap<int32_t, bool> RestoredRegs;
CFISnapshotDiff(const CFISnapshot &S) : CFISnapshot(S) {}
CFISnapshotDiff(
const BinaryFunction::CFIInstrMapType &CIE,
const BinaryFunction::CFIInstrMapType &FDE,
const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents,
int32_t State)
: CFISnapshot(CIE, FDE, FrameRestoreEquivalents, State) {}
/// Return true if applying Instr to this state is redundant and can be
/// dismissed.
bool isRedundant(const MCCFIInstruction &Instr) {
switch (Instr.getOperation()) {
case MCCFIInstruction::OpSameValue:
case MCCFIInstruction::OpRelOffset:
case MCCFIInstruction::OpOffset:
case MCCFIInstruction::OpRestore:
case MCCFIInstruction::OpUndefined:
case MCCFIInstruction::OpRegister:
case MCCFIInstruction::OpEscape: {
uint32_t Reg;
if (Instr.getOperation() != MCCFIInstruction::OpEscape) {
Reg = Instr.getRegister();
} else {
Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues());
// Handle DW_CFA_def_cfa_expression
if (!R) {
if (RestoredCFAReg && RestoredCFAOffset)
return true;
RestoredCFAReg = true;
RestoredCFAOffset = true;
return false;
}
Reg = *R;
}
if (RestoredRegs[Reg])
return true;
RestoredRegs[Reg] = true;
const int32_t CurRegRule =
RegRule.find(Reg) != RegRule.end() ? RegRule[Reg] : UNKNOWN;
if (CurRegRule == UNKNOWN) {
if (Instr.getOperation() == MCCFIInstruction::OpRestore ||
Instr.getOperation() == MCCFIInstruction::OpSameValue)
return true;
return false;
}
const MCCFIInstruction &LastDef =
CurRegRule < 0 ? CIE[-CurRegRule] : FDE[CurRegRule];
return LastDef == Instr;
}
case MCCFIInstruction::OpDefCfaRegister:
if (RestoredCFAReg)
return true;
RestoredCFAReg = true;
return CFAReg == Instr.getRegister();
case MCCFIInstruction::OpDefCfaOffset:
if (RestoredCFAOffset)
return true;
RestoredCFAOffset = true;
return CFAOffset == Instr.getOffset();
case MCCFIInstruction::OpDefCfa:
if (RestoredCFAReg && RestoredCFAOffset)
return true;
RestoredCFAReg = true;
RestoredCFAOffset = true;
return CFAReg == Instr.getRegister() && CFAOffset == Instr.getOffset();
case MCCFIInstruction::OpAdjustCfaOffset:
case MCCFIInstruction::OpWindowSave:
case MCCFIInstruction::OpNegateRAState:
case MCCFIInstruction::OpLLVMDefAspaceCfa:
llvm_unreachable("unsupported CFI opcode");
return false;
case MCCFIInstruction::OpRememberState:
case MCCFIInstruction::OpRestoreState:
case MCCFIInstruction::OpGnuArgsSize:
// do not affect CFI state
return true;
}
return false;
}
};
} // end anonymous namespace
bool BinaryFunction::replayCFIInstrs(int32_t FromState, int32_t ToState,
BinaryBasicBlock *InBB,
BinaryBasicBlock::iterator InsertIt) {
if (FromState == ToState)
return true;
assert(FromState < ToState && "can only replay CFIs forward");
CFISnapshotDiff CFIDiff(CIEFrameInstructions, FrameInstructions,
FrameRestoreEquivalents, FromState);
std::vector<uint32_t> NewCFIs;
for (int32_t CurState = FromState; CurState < ToState; ++CurState) {
MCCFIInstruction *Instr = &FrameInstructions[CurState];
if (Instr->getOperation() == MCCFIInstruction::OpRestoreState) {
auto Iter = FrameRestoreEquivalents.find(CurState);
assert(Iter != FrameRestoreEquivalents.end());
NewCFIs.insert(NewCFIs.end(), Iter->second.begin(), Iter->second.end());
// RestoreState / Remember will be filtered out later by CFISnapshotDiff,
// so we might as well fall-through here.
}
NewCFIs.push_back(CurState);
continue;
}
// Replay instructions while avoiding duplicates
for (auto I = NewCFIs.rbegin(), E = NewCFIs.rend(); I != E; ++I) {
if (CFIDiff.isRedundant(FrameInstructions[*I]))
continue;
InsertIt = addCFIPseudo(InBB, InsertIt, *I);
}
return true;
}
SmallVector<int32_t, 4>
BinaryFunction::unwindCFIState(int32_t FromState, int32_t ToState,
BinaryBasicBlock *InBB,
BinaryBasicBlock::iterator &InsertIt) {
SmallVector<int32_t, 4> NewStates;
CFISnapshot ToCFITable(CIEFrameInstructions, FrameInstructions,
FrameRestoreEquivalents, ToState);
CFISnapshotDiff FromCFITable(ToCFITable);
FromCFITable.advanceTo(FromState);
auto undoStateDefCfa = [&]() {
if (ToCFITable.CFARule == CFISnapshot::UNKNOWN) {
FrameInstructions.emplace_back(MCCFIInstruction::cfiDefCfa(
nullptr, ToCFITable.CFAReg, ToCFITable.CFAOffset));
if (FromCFITable.isRedundant(FrameInstructions.back())) {
FrameInstructions.pop_back();
return;
}
NewStates.push_back(FrameInstructions.size() - 1);
InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1);
++InsertIt;
} else if (ToCFITable.CFARule < 0) {
if (FromCFITable.isRedundant(CIEFrameInstructions[-ToCFITable.CFARule]))
return;
NewStates.push_back(FrameInstructions.size());
InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size());
++InsertIt;
FrameInstructions.emplace_back(CIEFrameInstructions[-ToCFITable.CFARule]);
} else if (!FromCFITable.isRedundant(
FrameInstructions[ToCFITable.CFARule])) {
NewStates.push_back(ToCFITable.CFARule);
InsertIt = addCFIPseudo(InBB, InsertIt, ToCFITable.CFARule);
++InsertIt;
}
};
auto undoState = [&](const MCCFIInstruction &Instr) {
switch (Instr.getOperation()) {
case MCCFIInstruction::OpRememberState:
case MCCFIInstruction::OpRestoreState:
break;
case MCCFIInstruction::OpSameValue:
case MCCFIInstruction::OpRelOffset:
case MCCFIInstruction::OpOffset:
case MCCFIInstruction::OpRestore:
case MCCFIInstruction::OpUndefined:
case MCCFIInstruction::OpEscape:
case MCCFIInstruction::OpRegister: {
uint32_t Reg;
if (Instr.getOperation() != MCCFIInstruction::OpEscape) {
Reg = Instr.getRegister();
} else {
Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues());
// Handle DW_CFA_def_cfa_expression
if (!R) {
undoStateDefCfa();
return;
}
Reg = *R;
}
if (ToCFITable.RegRule.find(Reg) == ToCFITable.RegRule.end()) {
FrameInstructions.emplace_back(
MCCFIInstruction::createRestore(nullptr, Reg));
if (FromCFITable.isRedundant(FrameInstructions.back())) {
FrameInstructions.pop_back();
break;
}
NewStates.push_back(FrameInstructions.size() - 1);
InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1);
++InsertIt;
break;
}
const int32_t Rule = ToCFITable.RegRule[Reg];
if (Rule < 0) {
if (FromCFITable.isRedundant(CIEFrameInstructions[-Rule]))
break;
NewStates.push_back(FrameInstructions.size());
InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size());
++InsertIt;
FrameInstructions.emplace_back(CIEFrameInstructions[-Rule]);
break;
}
if (FromCFITable.isRedundant(FrameInstructions[Rule]))
break;
NewStates.push_back(Rule);
InsertIt = addCFIPseudo(InBB, InsertIt, Rule);
++InsertIt;
break;
}
case MCCFIInstruction::OpDefCfaRegister:
case MCCFIInstruction::OpDefCfaOffset:
case MCCFIInstruction::OpDefCfa:
undoStateDefCfa();
break;
case MCCFIInstruction::OpAdjustCfaOffset:
case MCCFIInstruction::OpWindowSave:
case MCCFIInstruction::OpNegateRAState:
case MCCFIInstruction::OpLLVMDefAspaceCfa:
llvm_unreachable("unsupported CFI opcode");
break;
case MCCFIInstruction::OpGnuArgsSize:
// do not affect CFI state
break;
}
};
// Undo all modifications from ToState to FromState
for (int32_t I = ToState, E = FromState; I != E; ++I) {
const MCCFIInstruction &Instr = FrameInstructions[I];
if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) {
undoState(Instr);
continue;
}
auto Iter = FrameRestoreEquivalents.find(I);
if (Iter == FrameRestoreEquivalents.end())
continue;
for (int32_t State : Iter->second)
undoState(FrameInstructions[State]);
}
return NewStates;
}
void BinaryFunction::normalizeCFIState() {
// Reordering blocks with remember-restore state instructions can be specially
// tricky. When rewriting the CFI, we omit remember-restore state instructions
// entirely. For restore state, we build a map expanding each restore to the
// equivalent unwindCFIState sequence required at that point to achieve the
// same effect of the restore. All remember state are then just ignored.
std::stack<int32_t> Stack;
for (BinaryBasicBlock *CurBB : BasicBlocksLayout) {
for (auto II = CurBB->begin(); II != CurBB->end(); ++II) {
if (const MCCFIInstruction *CFI = getCFIFor(*II)) {
if (CFI->getOperation() == MCCFIInstruction::OpRememberState) {
Stack.push(II->getOperand(0).getImm());
continue;
}
if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) {
const int32_t RememberState = Stack.top();
const int32_t CurState = II->getOperand(0).getImm();
FrameRestoreEquivalents[CurState] =
unwindCFIState(CurState, RememberState, CurBB, II);
Stack.pop();
}
}
}
}
}
bool BinaryFunction::finalizeCFIState() {
LLVM_DEBUG(
dbgs() << "Trying to fix CFI states for each BB after reordering.\n");
LLVM_DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this
<< ": ");
int32_t State = 0;
bool SeenCold = false;
const char *Sep = "";
(void)Sep;
for (BinaryBasicBlock *BB : BasicBlocksLayout) {
const int32_t CFIStateAtExit = BB->getCFIStateAtExit();
// Hot-cold border: check if this is the first BB to be allocated in a cold
// region (with a different FDE). If yes, we need to reset the CFI state.
if (!SeenCold && BB->isCold()) {
State = 0;
SeenCold = true;
}
// We need to recover the correct state if it doesn't match expected
// state at BB entry point.
if (BB->getCFIState() < State) {
// In this case, State is currently higher than what this BB expect it
// to be. To solve this, we need to insert CFI instructions to undo
// the effect of all CFI from BB's state to current State.
auto InsertIt = BB->begin();
unwindCFIState(State, BB->getCFIState(), BB, InsertIt);
} else if (BB->getCFIState() > State) {
// If BB's CFI state is greater than State, it means we are behind in the
// state. Just emit all instructions to reach this state at the
// beginning of this BB. If this sequence of instructions involve
// remember state or restore state, bail out.
if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin()))
return false;
}
State = CFIStateAtExit;
LLVM_DEBUG(dbgs() << Sep << State; Sep = ", ");
}
LLVM_DEBUG(dbgs() << "\n");
for (BinaryBasicBlock *BB : BasicBlocksLayout) {
for (auto II = BB->begin(); II != BB->end();) {
const MCCFIInstruction *CFI = getCFIFor(*II);
if (CFI && (CFI->getOperation() == MCCFIInstruction::OpRememberState ||
CFI->getOperation() == MCCFIInstruction::OpRestoreState)) {
II = BB->eraseInstruction(II);
} else {
++II;
}
}
}
return true;
}
bool BinaryFunction::requiresAddressTranslation() const {
return opts::EnableBAT || hasSDTMarker() || hasPseudoProbe();
}
uint64_t BinaryFunction::getInstructionCount() const {
uint64_t Count = 0;
for (BinaryBasicBlock *const &Block : BasicBlocksLayout)
Count += Block->getNumNonPseudos();
return Count;
}
bool BinaryFunction::hasLayoutChanged() const { return ModifiedLayout; }
uint64_t BinaryFunction::getEditDistance() const {
return ComputeEditDistance<BinaryBasicBlock *>(BasicBlocksPreviousLayout,
BasicBlocksLayout);
}
void BinaryFunction::clearDisasmState() {
clearList(Instructions);
clearList(IgnoredBranches);
clearList(TakenBranches);
clearList(InterproceduralReferences);
if (BC.HasRelocations) {
for (std::pair<const uint32_t, MCSymbol *> &LI : Labels)
BC.UndefinedSymbols.insert(LI.second);
if (FunctionEndLabel)
BC.UndefinedSymbols.insert(FunctionEndLabel);
}
}
void BinaryFunction::setTrapOnEntry() {
clearDisasmState();
auto addTrapAtOffset = [&](uint64_t Offset) {
MCInst TrapInstr;
BC.MIB->createTrap(TrapInstr);
addInstruction(Offset, std::move(TrapInstr));
};
addTrapAtOffset(0);
for (const std::pair<const uint32_t, MCSymbol *> &KV : getLabels())
if (getSecondaryEntryPointSymbol(KV.second))
addTrapAtOffset(KV.first);
TrapsOnEntry = true;
}
void BinaryFunction::setIgnored() {
if (opts::processAllFunctions()) {
// We can accept ignored functions before they've been disassembled.
// In that case, they would still get disassembled and emited, but not
// optimized.
assert(CurrentState == State::Empty &&
"cannot ignore non-empty functions in current mode");
IsIgnored = true;
return;
}
clearDisasmState();
// Clear CFG state too.
if (hasCFG()) {
releaseCFG();
for (BinaryBasicBlock *BB : BasicBlocks)
delete BB;
clearList(BasicBlocks);
for (BinaryBasicBlock *BB : DeletedBasicBlocks)
delete BB;
clearList(DeletedBasicBlocks);
clearList(BasicBlocksLayout);
clearList(BasicBlocksPreviousLayout);
}
CurrentState = State::Empty;
IsIgnored = true;
IsSimple = false;
LLVM_DEBUG(dbgs() << "Ignoring " << getPrintName() << '\n');
}
void BinaryFunction::duplicateConstantIslands() {
assert(Islands && "function expected to have constant islands");
for (BinaryBasicBlock *BB : layout()) {
if (!BB->isCold())
continue;
for (MCInst &Inst : *BB) {
int OpNum = 0;
for (MCOperand &Operand : Inst) {
if (!Operand.isExpr()) {
++OpNum;
continue;
}
const MCSymbol *Symbol = BC.MIB->getTargetSymbol(Inst, OpNum);
// Check if this is an island symbol
if (!Islands->Symbols.count(Symbol) &&
!Islands->ProxySymbols.count(Symbol))
continue;
// Create cold symbol, if missing
auto ISym = Islands->ColdSymbols.find(Symbol);
MCSymbol *ColdSymbol;
if (ISym != Islands->ColdSymbols.end()) {
ColdSymbol = ISym->second;
} else {
ColdSymbol = BC.Ctx->getOrCreateSymbol(Symbol->getName() + ".cold");
Islands->ColdSymbols[Symbol] = ColdSymbol;
// Check if this is a proxy island symbol and update owner proxy map
if (Islands->ProxySymbols.count(Symbol)) {
BinaryFunction *Owner = Islands->ProxySymbols[Symbol];
auto IProxiedSym = Owner->Islands->Proxies[this].find(Symbol);
Owner->Islands->ColdProxies[this][IProxiedSym->second] = ColdSymbol;
}
}
// Update instruction reference
Operand = MCOperand::createExpr(BC.MIB->getTargetExprFor(
Inst,
MCSymbolRefExpr::create(ColdSymbol, MCSymbolRefExpr::VK_None,
*BC.Ctx),
*BC.Ctx, 0));
++OpNum;
}
}
}
}
namespace {
#ifndef MAX_PATH
#define MAX_PATH 255
#endif
std::string constructFilename(std::string Filename, std::string Annotation,
std::string Suffix) {
std::replace(Filename.begin(), Filename.end(), '/', '-');
if (!Annotation.empty())
Annotation.insert(0, "-");
if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) {
assert(Suffix.size() + Annotation.size() <= MAX_PATH);
if (opts::Verbosity >= 1) {
errs() << "BOLT-WARNING: Filename \"" << Filename << Annotation << Suffix
<< "\" exceeds the " << MAX_PATH << " size limit, truncating.\n";
}
Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size()));
}
Filename += Annotation;
Filename += Suffix;
return Filename;
}
std::string formatEscapes(const std::string &Str) {
std::string Result;
for (unsigned I = 0; I < Str.size(); ++I) {
char C = Str[I];
switch (C) {
case '\n':
Result += " ";
break;
case '"':
break;
default:
Result += C;
break;
}
}
return Result;
}
} // namespace
void BinaryFunction::dumpGraph(raw_ostream &OS) const {
OS << "strict digraph \"" << getPrintName() << "\" {\n";
uint64_t Offset = Address;
for (BinaryBasicBlock *BB : BasicBlocks) {
auto LayoutPos =
std::find(BasicBlocksLayout.begin(), BasicBlocksLayout.end(), BB);
unsigned Layout = LayoutPos - BasicBlocksLayout.begin();
const char *ColdStr = BB->isCold() ? " (cold)" : "";
OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u:CFI:%u)\"]\n",
BB->getName().data(), BB->getName().data(), ColdStr,
(BB->ExecutionCount != BinaryBasicBlock::COUNT_NO_PROFILE
? BB->ExecutionCount
: 0),
BB->getOffset(), getIndex(BB), Layout, BB->getCFIState());
OS << format("\"%s\" [shape=box]\n", BB->getName().data());
if (opts::DotToolTipCode) {
std::string Str;
raw_string_ostream CS(Str);
Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this);
const std::string Code = formatEscapes(CS.str());
OS << format("\"%s\" [tooltip=\"%s\"]\n", BB->getName().data(),
Code.c_str());
}
// analyzeBranch is just used to get the names of the branch
// opcodes.
const MCSymbol *TBB = nullptr;
const MCSymbol *FBB = nullptr;
MCInst *CondBranch = nullptr;
MCInst *UncondBranch = nullptr;
const bool Success = BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch);
const MCInst *LastInstr = BB->getLastNonPseudoInstr();
const bool IsJumpTable = LastInstr && BC.MIB->getJumpTable(*LastInstr);
auto BI = BB->branch_info_begin();
for (BinaryBasicBlock *Succ : BB->successors()) {
std::string Branch;
if (Success) {
if (Succ == BB->getConditionalSuccessor(true)) {
Branch = CondBranch ? std::string(BC.InstPrinter->getOpcodeName(
CondBranch->getOpcode()))
: "TB";
} else if (Succ == BB->getConditionalSuccessor(false)) {
Branch = UncondBranch ? std::string(BC.InstPrinter->getOpcodeName(
UncondBranch->getOpcode()))
: "FB";
} else {
Branch = "FT";
}
}
if (IsJumpTable)
Branch = "JT";
OS << format("\"%s\" -> \"%s\" [label=\"%s", BB->getName().data(),
Succ->getName().data(), Branch.c_str());
if (BB->getExecutionCount() != COUNT_NO_PROFILE &&
BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) {
OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")";
} else if (ExecutionCount != COUNT_NO_PROFILE &&
BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) {
OS << "\\n(IC:" << BI->Count << ")";
}
OS << "\"]\n";
++BI;
}
for (BinaryBasicBlock *LP : BB->landing_pads()) {
OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n",
BB->getName().data(), LP->getName().data());
}
}
OS << "}\n";
}
void BinaryFunction::viewGraph() const {
SmallString<MAX_PATH> Filename;
if (std::error_code EC =
sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) {
errs() << "BOLT-ERROR: " << EC.message() << ", unable to create "
<< " bolt-cfg-XXXXX.dot temporary file.\n";
return;
}
dumpGraphToFile(std::string(Filename));
if (DisplayGraph(Filename))
errs() << "BOLT-ERROR: Can't display " << Filename << " with graphviz.\n";
if (std::error_code EC = sys::fs::remove(Filename)) {
errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove "
<< Filename << "\n";
}
}
void BinaryFunction::dumpGraphForPass(std::string Annotation) const {
std::string Filename = constructFilename(getPrintName(), Annotation, ".dot");
outs() << "BOLT-DEBUG: Dumping CFG to " << Filename << "\n";
dumpGraphToFile(Filename);
}
void BinaryFunction::dumpGraphToFile(std::string Filename) const {
std::error_code EC;
raw_fd_ostream of(Filename, EC, sys::fs::OF_None);
if (EC) {
if (opts::Verbosity >= 1) {
errs() << "BOLT-WARNING: " << EC.message() << ", unable to open "
<< Filename << " for output.\n";
}
return;
}
dumpGraph(of);
}
bool BinaryFunction::validateCFG() const {
bool Valid = true;
for (BinaryBasicBlock *BB : BasicBlocks)
Valid &= BB->validateSuccessorInvariants();
if (!Valid)
return Valid;
// Make sure all blocks in CFG are valid.
auto validateBlock = [this](const BinaryBasicBlock *BB, StringRef Desc) {
if (!BB->isValid()) {
errs() << "BOLT-ERROR: deleted " << Desc << " " << BB->getName()
<< " detected in:\n";
this->dump();
return false;
}
return true;
};
for (const BinaryBasicBlock *BB : BasicBlocks) {
if (!validateBlock(BB, "block"))
return false;
for (const BinaryBasicBlock *PredBB : BB->predecessors())
if (!validateBlock(PredBB, "predecessor"))
return false;
for (const BinaryBasicBlock *SuccBB : BB->successors())
if (!validateBlock(SuccBB, "successor"))
return false;
for (const BinaryBasicBlock *LP : BB->landing_pads())
if (!validateBlock(LP, "landing pad"))
return false;
for (const BinaryBasicBlock *Thrower : BB->throwers())
if (!validateBlock(Thrower, "thrower"))
return false;
}
for (const BinaryBasicBlock *BB : BasicBlocks) {
std::unordered_set<const BinaryBasicBlock *> BBLandingPads;
for (const BinaryBasicBlock *LP : BB->landing_pads()) {
if (BBLandingPads.count(LP)) {
errs() << "BOLT-ERROR: duplicate landing pad detected in"
<< BB->getName() << " in function " << *this << '\n';
return false;
}
BBLandingPads.insert(LP);
}
std::unordered_set<const BinaryBasicBlock *> BBThrowers;
for (const BinaryBasicBlock *Thrower : BB->throwers()) {
if (BBThrowers.count(Thrower)) {
errs() << "BOLT-ERROR: duplicate thrower detected in" << BB->getName()
<< " in function " << *this << '\n';
return false;
}
BBThrowers.insert(Thrower);
}
for (const BinaryBasicBlock *LPBlock : BB->landing_pads()) {
if (std::find(LPBlock->throw_begin(), LPBlock->throw_end(), BB) ==
LPBlock->throw_end()) {
errs() << "BOLT-ERROR: inconsistent landing pad detected in " << *this
<< ": " << BB->getName() << " is in LandingPads but not in "
<< LPBlock->getName() << " Throwers\n";
return false;
}
}
for (const BinaryBasicBlock *Thrower : BB->throwers()) {
if (std::find(Thrower->lp_begin(), Thrower->lp_end(), BB) ==
Thrower->lp_end()) {
errs() << "BOLT-ERROR: inconsistent thrower detected in " << *this
<< ": " << BB->getName() << " is in Throwers list but not in "
<< Thrower->getName() << " LandingPads\n";
return false;
}
}
}
return Valid;
}
void BinaryFunction::fixBranches() {
auto &MIB = BC.MIB;
MCContext *Ctx = BC.Ctx.get();
for (unsigned I = 0, E = BasicBlocksLayout.size(); I != E; ++I) {
BinaryBasicBlock *BB = BasicBlocksLayout[I];
const MCSymbol *TBB = nullptr;
const MCSymbol *FBB = nullptr;
MCInst *CondBranch = nullptr;
MCInst *UncondBranch = nullptr;
if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch))
continue;
// We will create unconditional branch with correct destination if needed.
if (UncondBranch)
BB->eraseInstruction(BB->findInstruction(UncondBranch));
// Basic block that follows the current one in the final layout.
const BinaryBasicBlock *NextBB = nullptr;
if (I + 1 != E && BB->isCold() == BasicBlocksLayout[I + 1]->isCold())
NextBB = BasicBlocksLayout[I + 1];
if (BB->succ_size() == 1) {
// __builtin_unreachable() could create a conditional branch that
// falls-through into the next function - hence the block will have only
// one valid successor. Since behaviour is undefined - we replace
// the conditional branch with an unconditional if required.
if (CondBranch)
BB->eraseInstruction(BB->findInstruction(CondBranch));
if (BB->getSuccessor() == NextBB)
continue;
BB->addBranchInstruction(BB->getSuccessor());
} else if (BB->succ_size() == 2) {
assert(CondBranch && "conditional branch expected");
const BinaryBasicBlock *TSuccessor = BB->getConditionalSuccessor(true);
const BinaryBasicBlock *FSuccessor = BB->getConditionalSuccessor(false);
// Check whether we support reversing this branch direction
const bool IsSupported =
!MIB->isUnsupportedBranch(CondBranch->getOpcode());
if (NextBB && NextBB == TSuccessor && IsSupported) {
std::swap(TSuccessor, FSuccessor);
{
auto L = BC.scopeLock();
MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx);
}
BB->swapConditionalSuccessors();
} else {
auto L = BC.scopeLock();
MIB->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx);
}
if (TSuccessor == FSuccessor)
BB->removeDuplicateConditionalSuccessor(CondBranch);
if (!NextBB ||
((NextBB != TSuccessor || !IsSupported) && NextBB != FSuccessor)) {
// If one of the branches is guaranteed to be "long" while the other
// could be "short", then prioritize short for "taken". This will
// generate a sequence 1 byte shorter on x86.
if (IsSupported && BC.isX86() &&
TSuccessor->isCold() != FSuccessor->isCold() &&
BB->isCold() != TSuccessor->isCold()) {
std::swap(TSuccessor, FSuccessor);
{
auto L = BC.scopeLock();
MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(),
Ctx);
}
BB->swapConditionalSuccessors();
}
BB->addBranchInstruction(FSuccessor);
}
}
// Cases where the number of successors is 0 (block ends with a
// terminator) or more than 2 (switch table) don't require branch
// instruction adjustments.
}
assert((!isSimple() || validateCFG()) &&
"Invalid CFG detected after fixing branches");
}
void BinaryFunction::propagateGnuArgsSizeInfo(
MCPlusBuilder::AllocatorIdTy AllocId) {
assert(CurrentState == State::Disassembled && "unexpected function state");
if (!hasEHRanges() || !usesGnuArgsSize())
return;
// The current value of DW_CFA_GNU_args_size affects all following
// invoke instructions until the next CFI overrides it.
// It is important to iterate basic blocks in the original order when
// assigning the value.
uint64_t CurrentGnuArgsSize = 0;
for (BinaryBasicBlock *BB : BasicBlocks) {
for (auto II = BB->begin(); II != BB->end();) {
MCInst &Instr = *II;
if (BC.MIB->isCFI(Instr)) {
const MCCFIInstruction *CFI = getCFIFor(Instr);
if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) {
CurrentGnuArgsSize = CFI->getOffset();
// Delete DW_CFA_GNU_args_size instructions and only regenerate
// during the final code emission. The information is embedded
// inside call instructions.
II = BB->erasePseudoInstruction(II);
continue;
}
} else if (BC.MIB->isInvoke(Instr)) {
// Add the value of GNU_args_size as an extra operand to invokes.
BC.MIB->addGnuArgsSize(Instr, CurrentGnuArgsSize, AllocId);
}
++II;
}
}
}
void BinaryFunction::postProcessBranches() {
if (!isSimple())
return;
for (BinaryBasicBlock *BB : BasicBlocksLayout) {
auto LastInstrRI = BB->getLastNonPseudo();
if (BB->succ_size() == 1) {
if (LastInstrRI != BB->rend() &&
BC.MIB->isConditionalBranch(*LastInstrRI)) {
// __builtin_unreachable() could create a conditional branch that
// falls-through into the next function - hence the block will have only
// one valid successor. Such behaviour is undefined and thus we remove
// the conditional branch while leaving a valid successor.
BB->eraseInstruction(std::prev(LastInstrRI.base()));
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in "
<< BB->getName() << " in function " << *this << '\n');
}
} else if (BB->succ_size() == 0) {
// Ignore unreachable basic blocks.
if (BB->pred_size() == 0 || BB->isLandingPad())
continue;
// If it's the basic block that does not end up with a terminator - we
// insert a return instruction unless it's a call instruction.
if (LastInstrRI == BB->rend()) {
LLVM_DEBUG(
dbgs() << "BOLT-DEBUG: at least one instruction expected in BB "
<< BB->getName() << " in function " << *this << '\n');
continue;
}
if (!BC.MIB->isTerminator(*LastInstrRI) &&
!BC.MIB->isCall(*LastInstrRI)) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block "
<< BB->getName() << " in function " << *this << '\n');
MCInst ReturnInstr;
BC.MIB->createReturn(ReturnInstr);
BB->addInstruction(ReturnInstr);
}
}
}
assert(validateCFG() && "invalid CFG");
}
MCSymbol *BinaryFunction::addEntryPointAtOffset(uint64_t Offset) {
assert(Offset && "cannot add primary entry point");
assert(CurrentState == State::Empty || CurrentState == State::Disassembled);
const uint64_t EntryPointAddress = getAddress() + Offset;
MCSymbol *LocalSymbol = getOrCreateLocalLabel(EntryPointAddress);
MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(LocalSymbol);
if (EntrySymbol)
return EntrySymbol;
if (BinaryData *EntryBD = BC.getBinaryDataAtAddress(EntryPointAddress)) {
EntrySymbol = EntryBD->getSymbol();
} else {
EntrySymbol = BC.getOrCreateGlobalSymbol(
EntryPointAddress, Twine("__ENTRY_") + getOneName() + "@");
}
SecondaryEntryPoints[LocalSymbol] = EntrySymbol;
BC.setSymbolToFunctionMap(EntrySymbol, this);
return EntrySymbol;
}
MCSymbol *BinaryFunction::addEntryPoint(const BinaryBasicBlock &BB) {
assert(CurrentState == State::CFG &&
"basic block can be added as an entry only in a function with CFG");
if (&BB == BasicBlocks.front())
return getSymbol();
MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(BB);
if (EntrySymbol)
return EntrySymbol;
EntrySymbol =
BC.Ctx->getOrCreateSymbol("__ENTRY_" + BB.getLabel()->getName());
SecondaryEntryPoints[BB.getLabel()] = EntrySymbol;
BC.setSymbolToFunctionMap(EntrySymbol, this);
return EntrySymbol;
}
MCSymbol *BinaryFunction::getSymbolForEntryID(uint64_t EntryID) {
if (EntryID == 0)
return getSymbol();
if (!isMultiEntry())
return nullptr;
uint64_t NumEntries = 0;
if (hasCFG()) {
for (BinaryBasicBlock *BB : BasicBlocks) {
MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB);
if (!EntrySymbol)
continue;
if (NumEntries == EntryID)
return EntrySymbol;
++NumEntries;
}
} else {
for (std::pair<const uint32_t, MCSymbol *> &KV : Labels) {
MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second);
if (!EntrySymbol)
continue;
if (NumEntries == EntryID)
return EntrySymbol;
++NumEntries;
}
}
return nullptr;
}
uint64_t BinaryFunction::getEntryIDForSymbol(const MCSymbol *Symbol) const {
if (!isMultiEntry())
return 0;
for (const MCSymbol *FunctionSymbol : getSymbols())
if (FunctionSymbol == Symbol)
return 0;
// Check all secondary entries available as either basic blocks or lables.
uint64_t NumEntries = 0;
for (const BinaryBasicBlock *BB : BasicBlocks) {
MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB);
if (!EntrySymbol)
continue;
if (EntrySymbol == Symbol)
return NumEntries;
++NumEntries;
}
NumEntries = 0;
for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) {
MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second);
if (!EntrySymbol)
continue;
if (EntrySymbol == Symbol)
return NumEntries;
++NumEntries;
}
llvm_unreachable("symbol not found");
}
bool BinaryFunction::forEachEntryPoint(EntryPointCallbackTy Callback) const {
bool Status = Callback(0, getSymbol());
if (!isMultiEntry())
return Status;
for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) {
if (!Status)
break;
MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second);
if (!EntrySymbol)
continue;
Status = Callback(KV.first, EntrySymbol);
}
return Status;
}
BinaryFunction::BasicBlockOrderType BinaryFunction::dfs() const {
BasicBlockOrderType DFS;
unsigned Index = 0;
std::stack<BinaryBasicBlock *> Stack;
// Push entry points to the stack in reverse order.
//
// NB: we rely on the original order of entries to match.
for (auto BBI = layout_rbegin(); BBI != layout_rend(); ++BBI) {
BinaryBasicBlock *BB = *BBI;
if (isEntryPoint(*BB))
Stack.push(BB);
BB->setLayoutIndex(BinaryBasicBlock::InvalidIndex);
}
while (!Stack.empty()) {
BinaryBasicBlock *BB = Stack.top();
Stack.pop();
if (BB->getLayoutIndex() != BinaryBasicBlock::InvalidIndex)
continue;
BB->setLayoutIndex(Index++);
DFS.push_back(BB);
for (BinaryBasicBlock *SuccBB : BB->landing_pads()) {
Stack.push(SuccBB);
}
const MCSymbol *TBB = nullptr;
const MCSymbol *FBB = nullptr;
MCInst *CondBranch = nullptr;
MCInst *UncondBranch = nullptr;
if (BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch) && CondBranch &&
BB->succ_size() == 2) {
if (BC.MIB->getCanonicalBranchCondCode(BC.MIB->getCondCode(
*CondBranch)) == BC.MIB->getCondCode(*CondBranch)) {
Stack.push(BB->getConditionalSuccessor(true));
Stack.push(BB->getConditionalSuccessor(false));
} else {
Stack.push(BB->getConditionalSuccessor(false));
Stack.push(BB->getConditionalSuccessor(true));
}
} else {
for (BinaryBasicBlock *SuccBB : BB->successors()) {
Stack.push(SuccBB);
}
}
}
return DFS;
}
size_t BinaryFunction::computeHash(bool UseDFS,
OperandHashFuncTy OperandHashFunc) const {
if (size() == 0)
return 0;
assert(hasCFG() && "function is expected to have CFG");
const BasicBlockOrderType &Order = UseDFS ? dfs() : BasicBlocksLayout;
// The hash is computed by creating a string of all instruction opcodes and
// possibly their operands and then hashing that string with std::hash.
std::string HashString;
for (const BinaryBasicBlock *BB : Order) {
for (const MCInst &Inst : *BB) {
unsigned Opcode = Inst.getOpcode();
if (BC.MIB->isPseudo(Inst))
continue;
// Ignore unconditional jumps since we check CFG consistency by processing
// basic blocks in order and do not rely on branches to be in-sync with
// CFG. Note that we still use condition code of conditional jumps.
if (BC.MIB->isUnconditionalBranch(Inst))
continue;
if (Opcode == 0)
HashString.push_back(0);
while (Opcode) {
uint8_t LSB = Opcode & 0xff;
HashString.push_back(LSB);
Opcode = Opcode >> 8;
}
for (unsigned I = 0, E = MCPlus::getNumPrimeOperands(Inst); I != E; ++I)
HashString.append(OperandHashFunc(Inst.getOperand(I)));
}
}
return Hash = std::hash<std::string>{}(HashString);
}
void BinaryFunction::insertBasicBlocks(
BinaryBasicBlock *Start,
std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs,
const bool UpdateLayout, const bool UpdateCFIState,
const bool RecomputeLandingPads) {
const int64_t StartIndex = Start ? getIndex(Start) : -1LL;
const size_t NumNewBlocks = NewBBs.size();
BasicBlocks.insert(BasicBlocks.begin() + (StartIndex + 1), NumNewBlocks,
nullptr);
int64_t I = StartIndex + 1;
for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) {
assert(!BasicBlocks[I]);
BasicBlocks[I++] = BB.release();
}
if (RecomputeLandingPads)
recomputeLandingPads();
else
updateBBIndices(0);
if (UpdateLayout)
updateLayout(Start, NumNewBlocks);
if (UpdateCFIState)
updateCFIState(Start, NumNewBlocks);
}
BinaryFunction::iterator BinaryFunction::insertBasicBlocks(
BinaryFunction::iterator StartBB,
std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs,
const bool UpdateLayout, const bool UpdateCFIState,
const bool RecomputeLandingPads) {
const unsigned StartIndex = getIndex(&*StartBB);
const size_t NumNewBlocks = NewBBs.size();
BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1, NumNewBlocks,
nullptr);
auto RetIter = BasicBlocks.begin() + StartIndex + 1;
unsigned I = StartIndex + 1;
for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) {
assert(!BasicBlocks[I]);
BasicBlocks[I++] = BB.release();
}
if (RecomputeLandingPads)
recomputeLandingPads();
else
updateBBIndices(0);
if (UpdateLayout)
updateLayout(*std::prev(RetIter), NumNewBlocks);
if (UpdateCFIState)
updateCFIState(*std::prev(RetIter), NumNewBlocks);
return RetIter;
}
void BinaryFunction::updateBBIndices(const unsigned StartIndex) {
for (unsigned I = StartIndex; I < BasicBlocks.size(); ++I)
BasicBlocks[I]->Index = I;
}
void BinaryFunction::updateCFIState(BinaryBasicBlock *Start,
const unsigned NumNewBlocks) {
const int32_t CFIState = Start->getCFIStateAtExit();
const unsigned StartIndex = getIndex(Start) + 1;
for (unsigned I = 0; I < NumNewBlocks; ++I)
BasicBlocks[StartIndex + I]->setCFIState(CFIState);
}
void BinaryFunction::updateLayout(BinaryBasicBlock *Start,
const unsigned NumNewBlocks) {
// If start not provided insert new blocks at the beginning
if (!Start) {
BasicBlocksLayout.insert(layout_begin(), BasicBlocks.begin(),
BasicBlocks.begin() + NumNewBlocks);
updateLayoutIndices();
return;
}
// Insert new blocks in the layout immediately after Start.
auto Pos = std::find(layout_begin(), layout_end(), Start);
assert(Pos != layout_end());
BasicBlockListType::iterator Begin =
std::next(BasicBlocks.begin(), getIndex(Start) + 1);
BasicBlockListType::iterator End =
std::next(BasicBlocks.begin(), getIndex(Start) + NumNewBlocks + 1);
BasicBlocksLayout.insert(Pos + 1, Begin, End);
updateLayoutIndices();
}
bool BinaryFunction::checkForAmbiguousJumpTables() {
SmallSet<uint64_t, 4> JumpTables;
for (BinaryBasicBlock *&BB : BasicBlocks) {
for (MCInst &Inst : *BB) {
if (!BC.MIB->isIndirectBranch(Inst))
continue;
uint64_t JTAddress = BC.MIB->getJumpTable(Inst);
if (!JTAddress)
continue;
// This address can be inside another jump table, but we only consider
// it ambiguous when the same start address is used, not the same JT
// object.
if (!JumpTables.count(JTAddress)) {
JumpTables.insert(JTAddress);
continue;
}
return true;
}
}
return false;
}
void BinaryFunction::disambiguateJumpTables(
MCPlusBuilder::AllocatorIdTy AllocId) {
assert((opts::JumpTables != JTS_BASIC && isSimple()) || !BC.HasRelocations);
SmallPtrSet<JumpTable *, 4> JumpTables;
for (BinaryBasicBlock *&BB : BasicBlocks) {
for (MCInst &Inst : *BB) {
if (!BC.MIB->isIndirectBranch(Inst))
continue;
JumpTable *JT = getJumpTable(Inst);
if (!JT)
continue;
auto Iter = JumpTables.find(JT);
if (Iter == JumpTables.end()) {
JumpTables.insert(JT);
continue;
}
// This instruction is an indirect jump using a jump table, but it is
// using the same jump table of another jump. Try all our tricks to
// extract the jump table symbol and make it point to a new, duplicated JT
MCPhysReg BaseReg1;
uint64_t Scale;
const MCSymbol *Target;
// In case we match if our first matcher, first instruction is the one to
// patch
MCInst *JTLoadInst = &Inst;
// Try a standard indirect jump matcher, scale 8
std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher =
BC.MIB->matchIndJmp(BC.MIB->matchReg(BaseReg1),
BC.MIB->matchImm(Scale), BC.MIB->matchReg(),
/*Offset=*/BC.MIB->matchSymbol(Target));
if (!IndJmpMatcher->match(
*BC.MRI, *BC.MIB,
MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) ||
BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) {
MCPhysReg BaseReg2;
uint64_t Offset;
// Standard JT matching failed. Trying now:
// movq "jt.2397/1"(,%rax,8), %rax
// jmpq *%rax
std::unique_ptr<MCPlusBuilder::MCInstMatcher> LoadMatcherOwner =
BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg1),
BC.MIB->matchImm(Scale), BC.MIB->matchReg(),
/*Offset=*/BC.MIB->matchSymbol(Target));
MCPlusBuilder::MCInstMatcher *LoadMatcher = LoadMatcherOwner.get();
std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher2 =
BC.MIB->matchIndJmp(std::move(LoadMatcherOwner));
if (!IndJmpMatcher2->match(
*BC.MRI, *BC.MIB,
MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) ||
BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) {
// JT matching failed. Trying now:
// PIC-style matcher, scale 4
// addq %rdx, %rsi
// addq %rdx, %rdi
// leaq DATAat0x402450(%rip), %r11
// movslq (%r11,%rdx,4), %rcx
// addq %r11, %rcx
// jmpq *%rcx # JUMPTABLE @0x402450
std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICIndJmpMatcher =
BC.MIB->matchIndJmp(BC.MIB->matchAdd(
BC.MIB->matchReg(BaseReg1),
BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg2),
BC.MIB->matchImm(Scale), BC.MIB->matchReg(),
BC.MIB->matchImm(Offset))));
std::unique_ptr<MCPlusBuilder::MCInstMatcher> LEAMatcherOwner =
BC.MIB->matchLoadAddr(BC.MIB->matchSymbol(Target));
MCPlusBuilder::MCInstMatcher *LEAMatcher = LEAMatcherOwner.get();
std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICBaseAddrMatcher =
BC.MIB->matchIndJmp(BC.MIB->matchAdd(std::move(LEAMatcherOwner),
BC.MIB->matchAnyOperand()));
if (!PICIndJmpMatcher->match(
*BC.MRI, *BC.MIB,
MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) ||
Scale != 4 || BaseReg1 != BaseReg2 || Offset != 0 ||
!PICBaseAddrMatcher->match(
*BC.MRI, *BC.MIB,
MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1)) {
llvm_unreachable("Failed to extract jump table base");
continue;
}
// Matched PIC, identify the instruction with the reference to the JT
JTLoadInst = LEAMatcher->CurInst;
} else {
// Matched non-PIC
JTLoadInst = LoadMatcher->CurInst;
}
}
uint64_t NewJumpTableID = 0;
const MCSymbol *NewJTLabel;
std::tie(NewJumpTableID, NewJTLabel) =
BC.duplicateJumpTable(*this, JT, Target);
{
auto L = BC.scopeLock();
BC.MIB->replaceMemOperandDisp(*JTLoadInst, NewJTLabel, BC.Ctx.get());
}
// We use a unique ID with the high bit set as address for this "injected"
// jump table (not originally in the input binary).
BC.MIB->setJumpTable(Inst, NewJumpTableID, 0, AllocId);
}
}
}
bool BinaryFunction::replaceJumpTableEntryIn(BinaryBasicBlock *BB,
BinaryBasicBlock *OldDest,
BinaryBasicBlock *NewDest) {
MCInst *Instr = BB->getLastNonPseudoInstr();
if (!Instr || !BC.MIB->isIndirectBranch(*Instr))
return false;
uint64_t JTAddress = BC.MIB->getJumpTable(*Instr);
assert(JTAddress && "Invalid jump table address");
JumpTable *JT = getJumpTableContainingAddress(JTAddress);
assert(JT && "No jump table structure for this indirect branch");
bool Patched = JT->replaceDestination(JTAddress, OldDest->getLabel(),
NewDest->getLabel());
(void)Patched;
assert(Patched && "Invalid entry to be replaced in jump table");
return true;
}
BinaryBasicBlock *BinaryFunction::splitEdge(BinaryBasicBlock *From,
BinaryBasicBlock *To) {
// Create intermediate BB
MCSymbol *Tmp;
{
auto L = BC.scopeLock();
Tmp = BC.Ctx->createNamedTempSymbol("SplitEdge");
}
// Link new BBs to the original input offset of the From BB, so we can map
// samples recorded in new BBs back to the original BB seem in the input
// binary (if using BAT)
std::unique_ptr<BinaryBasicBlock> NewBB =
createBasicBlock(From->getInputOffset(), Tmp);
BinaryBasicBlock *NewBBPtr = NewBB.get();
// Update "From" BB
auto I = From->succ_begin();
auto BI = From->branch_info_begin();
for (; I != From->succ_end(); ++I) {
if (*I == To)
break;
++BI;
}
assert(I != From->succ_end() && "Invalid CFG edge in splitEdge!");
uint64_t OrigCount = BI->Count;
uint64_t OrigMispreds = BI->MispredictedCount;
replaceJumpTableEntryIn(From, To, NewBBPtr);
From->replaceSuccessor(To, NewBBPtr, OrigCount, OrigMispreds);
NewBB->addSuccessor(To, OrigCount, OrigMispreds);
NewBB->setExecutionCount(OrigCount);
NewBB->setIsCold(From->isCold());
// Update CFI and BB layout with new intermediate BB
std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs;
NewBBs.emplace_back(std::move(NewBB));
insertBasicBlocks(From, std::move(NewBBs), true, true,
/*RecomputeLandingPads=*/false);
return NewBBPtr;
}
void BinaryFunction::deleteConservativeEdges() {
// Our goal is to aggressively remove edges from the CFG that we believe are
// wrong. This is used for instrumentation, where it is safe to remove
// fallthrough edges because we won't reorder blocks.
for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) {
BinaryBasicBlock *BB = *I;
if (BB->succ_size() != 1 || BB->size() == 0)
continue;
auto NextBB = std::next(I);
MCInst *Last = BB->getLastNonPseudoInstr();
// Fallthrough is a landing pad? Delete this edge (as long as we don't
// have a direct jump to it)
if ((*BB->succ_begin())->isLandingPad() && NextBB != E &&
*BB->succ_begin() == *NextBB && Last && !BC.MIB->isBranch(*Last)) {
BB->removeAllSuccessors();
continue;
}
// Look for suspicious calls at the end of BB where gcc may optimize it and
// remove the jump to the epilogue when it knows the call won't return.
if (!Last || !BC.MIB->isCall(*Last))
continue;
const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(*Last);
if (!CalleeSymbol)
continue;
StringRef CalleeName = CalleeSymbol->getName();
if (CalleeName != "__cxa_throw@PLT" && CalleeName != "_Unwind_Resume@PLT" &&
CalleeName != "__cxa_rethrow@PLT" && CalleeName != "exit@PLT" &&
CalleeName != "abort@PLT")
continue;
BB->removeAllSuccessors();
}
}
bool BinaryFunction::isDataMarker(const SymbolRef &Symbol,
uint64_t SymbolSize) const {
// For aarch64, the ABI defines mapping symbols so we identify data in the
// code section (see IHI0056B). $d identifies a symbol starting data contents.
if (BC.isAArch64() && Symbol.getType() &&
cantFail(Symbol.getType()) == SymbolRef::ST_Unknown && SymbolSize == 0 &&
Symbol.getName() &&
(cantFail(Symbol.getName()) == "$d" ||
cantFail(Symbol.getName()).startswith("$d.")))
return true;
return false;
}
bool BinaryFunction::isCodeMarker(const SymbolRef &Symbol,
uint64_t SymbolSize) const {
// For aarch64, the ABI defines mapping symbols so we identify data in the
// code section (see IHI0056B). $x identifies a symbol starting code or the
// end of a data chunk inside code.
if (BC.isAArch64() && Symbol.getType() &&
cantFail(Symbol.getType()) == SymbolRef::ST_Unknown && SymbolSize == 0 &&
Symbol.getName() &&
(cantFail(Symbol.getName()) == "$x" ||
cantFail(Symbol.getName()).startswith("$x.")))
return true;
return false;
}
bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol,
uint64_t SymbolSize) const {
// If this symbol is in a different section from the one where the
// function symbol is, don't consider it as valid.
if (!getOriginSection()->containsAddress(
cantFail(Symbol.getAddress(), "cannot get symbol address")))
return false;
// Some symbols are tolerated inside function bodies, others are not.
// The real function boundaries may not be known at this point.
if (isDataMarker(Symbol, SymbolSize) || isCodeMarker(Symbol, SymbolSize))
return true;
// It's okay to have a zero-sized symbol in the middle of non-zero-sized
// function.
if (SymbolSize == 0 && containsAddress(cantFail(Symbol.getAddress())))
return true;
if (cantFail(Symbol.getType()) != SymbolRef::ST_Unknown)
return false;
if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global)
return false;
return true;
}
void BinaryFunction::adjustExecutionCount(uint64_t Count) {
if (getKnownExecutionCount() == 0 || Count == 0)
return;
if (ExecutionCount < Count)
Count = ExecutionCount;
double AdjustmentRatio = ((double)ExecutionCount - Count) / ExecutionCount;
if (AdjustmentRatio < 0.0)
AdjustmentRatio = 0.0;
for (BinaryBasicBlock *&BB : layout())
BB->adjustExecutionCount(AdjustmentRatio);
ExecutionCount -= Count;
}
BinaryFunction::~BinaryFunction() {
for (BinaryBasicBlock *BB : BasicBlocks)
delete BB;
for (BinaryBasicBlock *BB : DeletedBasicBlocks)
delete BB;
}
void BinaryFunction::calculateLoopInfo() {
// Discover loops.
BinaryDominatorTree DomTree;
DomTree.recalculate(*this);
BLI.reset(new BinaryLoopInfo());
BLI->analyze(DomTree);
// Traverse discovered loops and add depth and profile information.
std::stack<BinaryLoop *> St;
for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) {
St.push(*I);
++BLI->OuterLoops;
}
while (!St.empty()) {
BinaryLoop *L = St.top();
St.pop();
++BLI->TotalLoops;
BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth);
// Add nested loops in the stack.
for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
St.push(*I);
// Skip if no valid profile is found.
if (!hasValidProfile()) {
L->EntryCount = COUNT_NO_PROFILE;
L->ExitCount = COUNT_NO_PROFILE;
L->TotalBackEdgeCount = COUNT_NO_PROFILE;
continue;
}
// Compute back edge count.
SmallVector<BinaryBasicBlock *, 1> Latches;
L->getLoopLatches(Latches);
for (BinaryBasicBlock *Latch : Latches) {
auto BI = Latch->branch_info_begin();
for (BinaryBasicBlock *Succ : Latch->successors()) {
if (Succ == L->getHeader()) {
assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
"profile data not found");
L->TotalBackEdgeCount += BI->Count;
}
++BI;
}
}
// Compute entry count.
L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount;
// Compute exit count.
SmallVector<BinaryLoop::Edge, 1> ExitEdges;
L->getExitEdges(ExitEdges);
for (BinaryLoop::Edge &Exit : ExitEdges) {
const BinaryBasicBlock *Exiting = Exit.first;
const BinaryBasicBlock *ExitTarget = Exit.second;
auto BI = Exiting->branch_info_begin();
for (BinaryBasicBlock *Succ : Exiting->successors()) {
if (Succ == ExitTarget) {
assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
"profile data not found");
L->ExitCount += BI->Count;
}
++BI;
}
}
}
}
void BinaryFunction::updateOutputValues(const MCAsmLayout &Layout) {
if (!isEmitted()) {
assert(!isInjected() && "injected function should be emitted");
setOutputAddress(getAddress());
setOutputSize(getSize());
return;
}
const uint64_t BaseAddress = getCodeSection()->getOutputAddress();
ErrorOr<BinarySection &> ColdSection = getColdCodeSection();
const uint64_t ColdBaseAddress =
isSplit() ? ColdSection->getOutputAddress() : 0;
if (BC.HasRelocations || isInjected()) {
const uint64_t StartOffset = Layout.getSymbolOffset(*getSymbol());
const uint64_t EndOffset = Layout.getSymbolOffset(*getFunctionEndLabel());
setOutputAddress(BaseAddress + StartOffset);
setOutputSize(EndOffset - StartOffset);
if (hasConstantIsland()) {
const uint64_t DataOffset =
Layout.getSymbolOffset(*getFunctionConstantIslandLabel());
setOutputDataAddress(BaseAddress + DataOffset);
}
if (isSplit()) {
const MCSymbol *ColdStartSymbol = getColdSymbol();
assert(ColdStartSymbol && ColdStartSymbol->isDefined() &&
"split function should have defined cold symbol");
const MCSymbol *ColdEndSymbol = getFunctionColdEndLabel();
assert(ColdEndSymbol && ColdEndSymbol->isDefined() &&
"split function should have defined cold end symbol");
const uint64_t ColdStartOffset = Layout.getSymbolOffset(*ColdStartSymbol);
const uint64_t ColdEndOffset = Layout.getSymbolOffset(*ColdEndSymbol);
cold().setAddress(ColdBaseAddress + ColdStartOffset);
cold().setImageSize(ColdEndOffset - ColdStartOffset);
if (hasConstantIsland()) {
const uint64_t DataOffset =
Layout.getSymbolOffset(*getFunctionColdConstantIslandLabel());
setOutputColdDataAddress(ColdBaseAddress + DataOffset);
}
}
} else {
setOutputAddress(getAddress());
setOutputSize(Layout.getSymbolOffset(*getFunctionEndLabel()));
}
// Update basic block output ranges for the debug info, if we have
// secondary entry points in the symbol table to update or if writing BAT.
if (!opts::UpdateDebugSections && !isMultiEntry() &&
!requiresAddressTranslation())
return;
// Output ranges should match the input if the body hasn't changed.
if (!isSimple() && !BC.HasRelocations)
return;
// AArch64 may have functions that only contains a constant island (no code).
if (layout_begin() == layout_end())
return;
BinaryBasicBlock *PrevBB = nullptr;
for (auto BBI = layout_begin(), BBE = layout_end(); BBI != BBE; ++BBI) {
BinaryBasicBlock *BB = *BBI;
assert(BB->getLabel()->isDefined() && "symbol should be defined");
const uint64_t BBBaseAddress = BB->isCold() ? ColdBaseAddress : BaseAddress;
if (!BC.HasRelocations) {
if (BB->isCold()) {
assert(BBBaseAddress == cold().getAddress());
} else {
assert(BBBaseAddress == getOutputAddress());
}
}
const uint64_t BBOffset = Layout.getSymbolOffset(*BB->getLabel());
const uint64_t BBAddress = BBBaseAddress + BBOffset;
BB->setOutputStartAddress(BBAddress);
if (PrevBB) {
uint64_t PrevBBEndAddress = BBAddress;
if (BB->isCold() != PrevBB->isCold())
PrevBBEndAddress = getOutputAddress() + getOutputSize();
PrevBB->setOutputEndAddress(PrevBBEndAddress);
}
PrevBB = BB;
BB->updateOutputValues(Layout);
}
PrevBB->setOutputEndAddress(PrevBB->isCold()
? cold().getAddress() + cold().getImageSize()
: getOutputAddress() + getOutputSize());
}
DebugAddressRangesVector BinaryFunction::getOutputAddressRanges() const {
DebugAddressRangesVector OutputRanges;
if (isFolded())
return OutputRanges;
if (IsFragment)
return OutputRanges;
OutputRanges.emplace_back(getOutputAddress(),
getOutputAddress() + getOutputSize());
if (isSplit()) {
assert(isEmitted() && "split function should be emitted");
OutputRanges.emplace_back(cold().getAddress(),
cold().getAddress() + cold().getImageSize());
}
if (isSimple())
return OutputRanges;
for (BinaryFunction *Frag : Fragments) {
assert(!Frag->isSimple() &&
"fragment of non-simple function should also be non-simple");
OutputRanges.emplace_back(Frag->getOutputAddress(),
Frag->getOutputAddress() + Frag->getOutputSize());
}
return OutputRanges;
}
uint64_t BinaryFunction::translateInputToOutputAddress(uint64_t Address) const {
if (isFolded())
return 0;
// If the function hasn't changed return the same address.
if (!isEmitted())
return Address;
if (Address < getAddress())
return 0;
// Check if the address is associated with an instruction that is tracked
// by address translation.
auto KV = InputOffsetToAddressMap.find(Address - getAddress());
if (KV != InputOffsetToAddressMap.end())
return KV->second;
// FIXME: #18950828 - we rely on relative offsets inside basic blocks to stay
// intact. Instead we can use pseudo instructions and/or annotations.
const uint64_t Offset = Address - getAddress();
const BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset);
if (!BB) {
// Special case for address immediately past the end of the function.
if (Offset == getSize())
return getOutputAddress() + getOutputSize();
return 0;
}
return std::min(BB->getOutputAddressRange().first + Offset - BB->getOffset(),
BB->getOutputAddressRange().second);
}
DebugAddressRangesVector BinaryFunction::translateInputToOutputRanges(
const DWARFAddressRangesVector &InputRanges) const {
DebugAddressRangesVector OutputRanges;
if (isFolded())
return OutputRanges;
// If the function hasn't changed return the same ranges.
if (!isEmitted()) {
OutputRanges.resize(InputRanges.size());
std::transform(InputRanges.begin(), InputRanges.end(), OutputRanges.begin(),
[](const DWARFAddressRange &Range) {
return DebugAddressRange(Range.LowPC, Range.HighPC);
});
return OutputRanges;
}
// Even though we will merge ranges in a post-processing pass, we attempt to
// merge them in a main processing loop as it improves the processing time.
uint64_t PrevEndAddress = 0;
for (const DWARFAddressRange &Range : InputRanges) {
if (!containsAddress(Range.LowPC)) {
LLVM_DEBUG(
dbgs() << "BOLT-DEBUG: invalid debug address range detected for "
<< *this << " : [0x" << Twine::utohexstr(Range.LowPC) << ", 0x"
<< Twine::utohexstr(Range.HighPC) << "]\n");
PrevEndAddress = 0;
continue;
}
uint64_t InputOffset = Range.LowPC - getAddress();
const uint64_t InputEndOffset =
std::min(Range.HighPC - getAddress(), getSize());
auto BBI = std::upper_bound(
BasicBlockOffsets.begin(), BasicBlockOffsets.end(),
BasicBlockOffset(InputOffset, nullptr), CompareBasicBlockOffsets());
--BBI;
do {
const BinaryBasicBlock *BB = BBI->second;
if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) {
LLVM_DEBUG(
dbgs() << "BOLT-DEBUG: invalid debug address range detected for "
<< *this << " : [0x" << Twine::utohexstr(Range.LowPC)
<< ", 0x" << Twine::utohexstr(Range.HighPC) << "]\n");
PrevEndAddress = 0;
break;
}
// Skip the range if the block was deleted.
if (const uint64_t OutputStart = BB->getOutputAddressRange().first) {
const uint64_t StartAddress =
OutputStart + InputOffset - BB->getOffset();
uint64_t EndAddress = BB->getOutputAddressRange().second;
if (InputEndOffset < BB->getEndOffset())
EndAddress = StartAddress + InputEndOffset - InputOffset;
if (StartAddress == PrevEndAddress) {
OutputRanges.back().HighPC =
std::max(OutputRanges.back().HighPC, EndAddress);
} else {
OutputRanges.emplace_back(StartAddress,
std::max(StartAddress, EndAddress));
}
PrevEndAddress = OutputRanges.back().HighPC;
}
InputOffset = BB->getEndOffset();
++BBI;
} while (InputOffset < InputEndOffset);
}
// Post-processing pass to sort and merge ranges.
std::sort(OutputRanges.begin(), OutputRanges.end());
DebugAddressRangesVector MergedRanges;
PrevEndAddress = 0;
for (const DebugAddressRange &Range : OutputRanges) {
if (Range.LowPC <= PrevEndAddress) {
MergedRanges.back().HighPC =
std::max(MergedRanges.back().HighPC, Range.HighPC);
} else {
MergedRanges.emplace_back(Range.LowPC, Range.HighPC);
}
PrevEndAddress = MergedRanges.back().HighPC;
}
return MergedRanges;
}
MCInst *BinaryFunction::getInstructionAtOffset(uint64_t Offset) {
if (CurrentState == State::Disassembled) {
auto II = Instructions.find(Offset);
return (II == Instructions.end()) ? nullptr : &II->second;
} else if (CurrentState == State::CFG) {
BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset);
if (!BB)
return nullptr;
for (MCInst &Inst : *BB) {
constexpr uint32_t InvalidOffset = std::numeric_limits<uint32_t>::max();
if (Offset == BC.MIB->getOffsetWithDefault(Inst, InvalidOffset))
return &Inst;
}
if (MCInst *LastInstr = BB->getLastNonPseudoInstr()) {
const uint32_t Size =
BC.MIB->getAnnotationWithDefault<uint32_t>(*LastInstr, "Size");
if (BB->getEndOffset() - Offset == Size)
return LastInstr;
}
return nullptr;
} else {
llvm_unreachable("invalid CFG state to use getInstructionAtOffset()");
}
}
DebugLocationsVector BinaryFunction::translateInputToOutputLocationList(
const DebugLocationsVector &InputLL) const {
DebugLocationsVector OutputLL;
if (isFolded())
return OutputLL;
// If the function hasn't changed - there's nothing to update.
if (!isEmitted())
return InputLL;
uint64_t PrevEndAddress = 0;
SmallVectorImpl<uint8_t> *PrevExpr = nullptr;
for (const DebugLocationEntry &Entry : InputLL) {
const uint64_t Start = Entry.LowPC;
const uint64_t End = Entry.HighPC;
if (!containsAddress(Start)) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected "
"for "
<< *this << " : [0x" << Twine::utohexstr(Start)
<< ", 0x" << Twine::utohexstr(End) << "]\n");
continue;
}
uint64_t InputOffset = Start - getAddress();
const uint64_t InputEndOffset = std::min(End - getAddress(), getSize());
auto BBI = std::upper_bound(
BasicBlockOffsets.begin(), BasicBlockOffsets.end(),
BasicBlockOffset(InputOffset, nullptr), CompareBasicBlockOffsets());
--BBI;
do {
const BinaryBasicBlock *BB = BBI->second;
if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected "
"for "
<< *this << " : [0x" << Twine::utohexstr(Start)
<< ", 0x" << Twine::utohexstr(End) << "]\n");
PrevEndAddress = 0;
break;
}
// Skip the range if the block was deleted.
if (const uint64_t OutputStart = BB->getOutputAddressRange().first) {
const uint64_t StartAddress =
OutputStart + InputOffset - BB->getOffset();
uint64_t EndAddress = BB->getOutputAddressRange().second;
if (InputEndOffset < BB->getEndOffset())
EndAddress = StartAddress + InputEndOffset - InputOffset;
if (StartAddress == PrevEndAddress && Entry.Expr == *PrevExpr) {
OutputLL.back().HighPC = std::max(OutputLL.back().HighPC, EndAddress);
} else {
OutputLL.emplace_back(DebugLocationEntry{
StartAddress, std::max(StartAddress, EndAddress), Entry.Expr});
}
PrevEndAddress = OutputLL.back().HighPC;
PrevExpr = &OutputLL.back().Expr;
}
++BBI;
InputOffset = BB->getEndOffset();
} while (InputOffset < InputEndOffset);
}
// Sort and merge adjacent entries with identical location.
std::stable_sort(
OutputLL.begin(), OutputLL.end(),
[](const DebugLocationEntry &A, const DebugLocationEntry &B) {
return A.LowPC < B.LowPC;
});
DebugLocationsVector MergedLL;
PrevEndAddress = 0;
PrevExpr = nullptr;
for (const DebugLocationEntry &Entry : OutputLL) {
if (Entry.LowPC <= PrevEndAddress && *PrevExpr == Entry.Expr) {
MergedLL.back().HighPC = std::max(Entry.HighPC, MergedLL.back().HighPC);
} else {
const uint64_t Begin = std::max(Entry.LowPC, PrevEndAddress);
const uint64_t End = std::max(Begin, Entry.HighPC);
MergedLL.emplace_back(DebugLocationEntry{Begin, End, Entry.Expr});
}
PrevEndAddress = MergedLL.back().HighPC;
PrevExpr = &MergedLL.back().Expr;
}
return MergedLL;
}
void BinaryFunction::printLoopInfo(raw_ostream &OS) const {
OS << "Loop Info for Function \"" << *this << "\"";
if (hasValidProfile())
OS << " (count: " << getExecutionCount() << ")";
OS << "\n";
std::stack<BinaryLoop *> St;
for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I)
St.push(*I);
while (!St.empty()) {
BinaryLoop *L = St.top();
St.pop();
for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
St.push(*I);
if (!hasValidProfile())
continue;
OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer")
<< " loop header: " << L->getHeader()->getName();
OS << "\n";
OS << "Loop basic blocks: ";
const char *Sep = "";
for (auto BI = L->block_begin(), BE = L->block_end(); BI != BE; ++BI) {
OS << Sep << (*BI)->getName();
Sep = ", ";
}
OS << "\n";
if (hasValidProfile()) {
OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n";
OS << "Loop entry count: " << L->EntryCount << "\n";
OS << "Loop exit count: " << L->ExitCount << "\n";
if (L->EntryCount > 0) {
OS << "Average iters per entry: "
<< format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount)
<< "\n";
}
}
OS << "----\n";
}
OS << "Total number of loops: " << BLI->TotalLoops << "\n";
OS << "Number of outer loops: " << BLI->OuterLoops << "\n";
OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n";
}
bool BinaryFunction::isAArch64Veneer() const {
if (BasicBlocks.size() != 1)
return false;
BinaryBasicBlock &BB = **BasicBlocks.begin();
if (BB.size() != 3)
return false;
for (MCInst &Inst : BB)
if (!BC.MIB->hasAnnotation(Inst, "AArch64Veneer"))
return false;
return true;
}
} // namespace bolt
} // namespace llvm
|