1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
|
//===- bolt/Core/DebugData.cpp - Debugging information handling -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements functions and classes for handling debug info.
//
//===----------------------------------------------------------------------===//
#include "bolt/Core/DebugData.h"
#include "bolt/Core/BinaryContext.h"
#include "bolt/Utils/Utils.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCObjectStreamer.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/SHA1.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <limits>
#include <unordered_map>
#define DEBUG_TYPE "bolt-debug-info"
namespace opts {
extern llvm::cl::opt<unsigned> Verbosity;
} // namespace opts
namespace llvm {
class MCSymbol;
namespace bolt {
const DebugLineTableRowRef DebugLineTableRowRef::NULL_ROW{0, 0};
namespace {
LLVM_ATTRIBUTE_UNUSED
static void printLE64(const std::string &S) {
for (uint32_t I = 0, Size = S.size(); I < Size; ++I) {
errs() << Twine::utohexstr(S[I]);
errs() << Twine::utohexstr((int8_t)S[I]);
}
errs() << "\n";
}
// Writes address ranges to Writer as pairs of 64-bit (address, size).
// If RelativeRange is true, assumes the address range to be written must be of
// the form (begin address, range size), otherwise (begin address, end address).
// Terminates the list by writing a pair of two zeroes.
// Returns the number of written bytes.
uint64_t writeAddressRanges(raw_svector_ostream &Stream,
const DebugAddressRangesVector &AddressRanges,
const bool WriteRelativeRanges = false) {
for (const DebugAddressRange &Range : AddressRanges) {
support::endian::write(Stream, Range.LowPC, support::little);
support::endian::write(
Stream, WriteRelativeRanges ? Range.HighPC - Range.LowPC : Range.HighPC,
support::little);
}
// Finish with 0 entries.
support::endian::write(Stream, 0ULL, support::little);
support::endian::write(Stream, 0ULL, support::little);
return AddressRanges.size() * 16 + 16;
}
} // namespace
DebugRangesSectionWriter::DebugRangesSectionWriter() {
RangesBuffer = std::make_unique<DebugBufferVector>();
RangesStream = std::make_unique<raw_svector_ostream>(*RangesBuffer);
// Add an empty range as the first entry;
SectionOffset +=
writeAddressRanges(*RangesStream.get(), DebugAddressRangesVector{});
}
uint64_t DebugRangesSectionWriter::addRanges(
DebugAddressRangesVector &&Ranges,
std::map<DebugAddressRangesVector, uint64_t> &CachedRanges) {
if (Ranges.empty())
return getEmptyRangesOffset();
const auto RI = CachedRanges.find(Ranges);
if (RI != CachedRanges.end())
return RI->second;
const uint64_t EntryOffset = addRanges(Ranges);
CachedRanges.emplace(std::move(Ranges), EntryOffset);
return EntryOffset;
}
uint64_t
DebugRangesSectionWriter::addRanges(const DebugAddressRangesVector &Ranges) {
if (Ranges.empty())
return getEmptyRangesOffset();
// Reading the SectionOffset and updating it should be atomic to guarantee
// unique and correct offsets in patches.
std::lock_guard<std::mutex> Lock(WriterMutex);
const uint32_t EntryOffset = SectionOffset;
SectionOffset += writeAddressRanges(*RangesStream.get(), Ranges);
return EntryOffset;
}
uint64_t DebugRangesSectionWriter::getSectionOffset() {
std::lock_guard<std::mutex> Lock(WriterMutex);
return SectionOffset;
}
void DebugARangesSectionWriter::addCURanges(uint64_t CUOffset,
DebugAddressRangesVector &&Ranges) {
std::lock_guard<std::mutex> Lock(CUAddressRangesMutex);
CUAddressRanges.emplace(CUOffset, std::move(Ranges));
}
void DebugARangesSectionWriter::writeARangesSection(
raw_svector_ostream &RangesStream, const CUOffsetMap &CUMap) const {
// For reference on the format of the .debug_aranges section, see the DWARF4
// specification, section 6.1.4 Lookup by Address
// http://www.dwarfstd.org/doc/DWARF4.pdf
for (const auto &CUOffsetAddressRangesPair : CUAddressRanges) {
const uint64_t Offset = CUOffsetAddressRangesPair.first;
const DebugAddressRangesVector &AddressRanges =
CUOffsetAddressRangesPair.second;
// Emit header.
// Size of this set: 8 (size of the header) + 4 (padding after header)
// + 2*sizeof(uint64_t) bytes for each of the ranges, plus an extra
// pair of uint64_t's for the terminating, zero-length range.
// Does not include size field itself.
uint32_t Size = 8 + 4 + 2 * sizeof(uint64_t) * (AddressRanges.size() + 1);
// Header field #1: set size.
support::endian::write(RangesStream, Size, support::little);
// Header field #2: version number, 2 as per the specification.
support::endian::write(RangesStream, static_cast<uint16_t>(2),
support::little);
assert(CUMap.count(Offset) && "Original CU offset is not found in CU Map");
// Header field #3: debug info offset of the correspondent compile unit.
support::endian::write(
RangesStream, static_cast<uint32_t>(CUMap.find(Offset)->second.Offset),
support::little);
// Header field #4: address size.
// 8 since we only write ELF64 binaries for now.
RangesStream << char(8);
// Header field #5: segment size of target architecture.
RangesStream << char(0);
// Padding before address table - 4 bytes in the 64-bit-pointer case.
support::endian::write(RangesStream, static_cast<uint32_t>(0),
support::little);
writeAddressRanges(RangesStream, AddressRanges, true);
}
}
DebugAddrWriter::DebugAddrWriter(BinaryContext *Bc) { BC = Bc; }
void DebugAddrWriter::AddressForDWOCU::dump() {
std::vector<IndexAddressPair> SortedMap(indexToAddressBegin(),
indexToAdddessEnd());
// Sorting address in increasing order of indices.
std::sort(SortedMap.begin(), SortedMap.end(),
[](const IndexAddressPair &A, const IndexAddressPair &B) {
return A.first < B.first;
});
for (auto &Pair : SortedMap)
dbgs() << Twine::utohexstr(Pair.second) << "\t" << Pair.first << "\n";
}
uint32_t DebugAddrWriter::getIndexFromAddress(uint64_t Address,
uint64_t DWOId) {
std::lock_guard<std::mutex> Lock(WriterMutex);
if (!AddressMaps.count(DWOId))
AddressMaps[DWOId] = AddressForDWOCU();
AddressForDWOCU &Map = AddressMaps[DWOId];
auto Entry = Map.find(Address);
if (Entry == Map.end()) {
auto Index = Map.getNextIndex();
Entry = Map.insert(Address, Index).first;
}
return Entry->second;
}
// Case1) Address is not in map insert in to AddresToIndex and IndexToAddres
// Case2) Address is in the map but Index is higher or equal. Need to update
// IndexToAddrss. Case3) Address is in the map but Index is lower. Need to
// update AddressToIndex and IndexToAddress
void DebugAddrWriter::addIndexAddress(uint64_t Address, uint32_t Index,
uint64_t DWOId) {
std::lock_guard<std::mutex> Lock(WriterMutex);
AddressForDWOCU &Map = AddressMaps[DWOId];
auto Entry = Map.find(Address);
if (Entry != Map.end()) {
if (Entry->second > Index)
Map.updateAddressToIndex(Address, Index);
Map.updateIndexToAddrss(Address, Index);
} else {
Map.insert(Address, Index);
}
}
AddressSectionBuffer DebugAddrWriter::finalize() {
// Need to layout all sections within .debug_addr
// Within each section sort Address by index.
AddressSectionBuffer Buffer;
raw_svector_ostream AddressStream(Buffer);
for (std::unique_ptr<DWARFUnit> &CU : BC->DwCtx->compile_units()) {
Optional<uint64_t> DWOId = CU->getDWOId();
// Handling the case wehre debug information is a mix of Debug fission and
// monolitic.
if (!DWOId)
continue;
auto AM = AddressMaps.find(*DWOId);
// Adding to map even if it did not contribute to .debug_addr.
// The Skeleton CU will still have DW_AT_GNU_addr_base.
DWOIdToOffsetMap[*DWOId] = Buffer.size();
// If does not exist this CUs DWO section didn't contribute to .debug_addr.
if (AM == AddressMaps.end())
continue;
std::vector<IndexAddressPair> SortedMap(AM->second.indexToAddressBegin(),
AM->second.indexToAdddessEnd());
// Sorting address in increasing order of indices.
std::sort(SortedMap.begin(), SortedMap.end(),
[](const IndexAddressPair &A, const IndexAddressPair &B) {
return A.first < B.first;
});
uint8_t AddrSize = CU->getAddressByteSize();
uint32_t Counter = 0;
auto WriteAddress = [&](uint64_t Address) -> void {
++Counter;
switch (AddrSize) {
default:
assert(false && "Address Size is invalid.");
break;
case 4:
support::endian::write(AddressStream, static_cast<uint32_t>(Address),
support::little);
break;
case 8:
support::endian::write(AddressStream, Address, support::little);
break;
}
};
for (const IndexAddressPair &Val : SortedMap) {
while (Val.first > Counter)
WriteAddress(0);
WriteAddress(Val.second);
}
}
return Buffer;
}
uint64_t DebugAddrWriter::getOffset(uint64_t DWOId) {
auto Iter = DWOIdToOffsetMap.find(DWOId);
assert(Iter != DWOIdToOffsetMap.end() &&
"Offset in to.debug_addr was not found for DWO ID.");
return Iter->second;
}
DebugLocWriter::DebugLocWriter(BinaryContext *BC) {
LocBuffer = std::make_unique<DebugBufferVector>();
LocStream = std::make_unique<raw_svector_ostream>(*LocBuffer);
}
void DebugLocWriter::addList(uint64_t AttrOffset,
DebugLocationsVector &&LocList) {
if (LocList.empty()) {
EmptyAttrLists.push_back(AttrOffset);
return;
}
// Since there is a separate DebugLocWriter for each thread,
// we don't need a lock to read the SectionOffset and update it.
const uint32_t EntryOffset = SectionOffset;
for (const DebugLocationEntry &Entry : LocList) {
support::endian::write(*LocStream, static_cast<uint64_t>(Entry.LowPC),
support::little);
support::endian::write(*LocStream, static_cast<uint64_t>(Entry.HighPC),
support::little);
support::endian::write(*LocStream, static_cast<uint16_t>(Entry.Expr.size()),
support::little);
*LocStream << StringRef(reinterpret_cast<const char *>(Entry.Expr.data()),
Entry.Expr.size());
SectionOffset += 2 * 8 + 2 + Entry.Expr.size();
}
LocStream->write_zeros(16);
SectionOffset += 16;
LocListDebugInfoPatches.push_back({AttrOffset, EntryOffset});
}
void DebugLoclistWriter::addList(uint64_t AttrOffset,
DebugLocationsVector &&LocList) {
Patches.push_back({AttrOffset, std::move(LocList)});
}
std::unique_ptr<DebugBufferVector> DebugLocWriter::getBuffer() {
return std::move(LocBuffer);
}
// DWARF 4: 2.6.2
void DebugLocWriter::finalize(uint64_t SectionOffset,
SimpleBinaryPatcher &DebugInfoPatcher) {
for (const auto LocListDebugInfoPatchType : LocListDebugInfoPatches) {
uint64_t Offset = SectionOffset + LocListDebugInfoPatchType.LocListOffset;
DebugInfoPatcher.addLE32Patch(LocListDebugInfoPatchType.DebugInfoAttrOffset,
Offset);
}
for (uint64_t DebugInfoAttrOffset : EmptyAttrLists)
DebugInfoPatcher.addLE32Patch(DebugInfoAttrOffset,
DebugLocWriter::EmptyListOffset);
}
void DebugLoclistWriter::finalize(uint64_t SectionOffset,
SimpleBinaryPatcher &DebugInfoPatcher) {
for (LocPatch &Patch : Patches) {
if (Patch.LocList.empty()) {
DebugInfoPatcher.addLE32Patch(Patch.AttrOffset,
DebugLocWriter::EmptyListOffset);
continue;
}
const uint32_t EntryOffset = LocBuffer->size();
for (const DebugLocationEntry &Entry : Patch.LocList) {
support::endian::write(*LocStream,
static_cast<uint8_t>(dwarf::DW_LLE_startx_length),
support::little);
uint32_t Index = AddrWriter->getIndexFromAddress(Entry.LowPC, DWOId);
encodeULEB128(Index, *LocStream);
// TODO: Support DWARF5
support::endian::write(*LocStream,
static_cast<uint32_t>(Entry.HighPC - Entry.LowPC),
support::little);
support::endian::write(*LocStream,
static_cast<uint16_t>(Entry.Expr.size()),
support::little);
*LocStream << StringRef(reinterpret_cast<const char *>(Entry.Expr.data()),
Entry.Expr.size());
}
support::endian::write(*LocStream,
static_cast<uint8_t>(dwarf::DW_LLE_end_of_list),
support::little);
DebugInfoPatcher.addLE32Patch(Patch.AttrOffset, EntryOffset);
clearList(Patch.LocList);
}
clearList(Patches);
}
DebugAddrWriter *DebugLoclistWriter::AddrWriter = nullptr;
void DebugInfoBinaryPatcher::addUnitBaseOffsetLabel(uint64_t Offset) {
Offset -= DWPUnitOffset;
std::lock_guard<std::mutex> Lock(WriterMutex);
DebugPatches.emplace_back(new DWARFUnitOffsetBaseLabel(Offset));
}
void DebugInfoBinaryPatcher::addDestinationReferenceLabel(uint64_t Offset) {
Offset -= DWPUnitOffset;
std::lock_guard<std::mutex> Lock(WriterMutex);
auto RetVal = DestinationLabels.insert(Offset);
if (!RetVal.second)
return;
DebugPatches.emplace_back(new DestinationReferenceLabel(Offset));
}
void DebugInfoBinaryPatcher::addReferenceToPatch(uint64_t Offset,
uint32_t DestinationOffset,
uint32_t OldValueSize,
dwarf::Form Form) {
Offset -= DWPUnitOffset;
DestinationOffset -= DWPUnitOffset;
std::lock_guard<std::mutex> Lock(WriterMutex);
DebugPatches.emplace_back(
new DebugPatchReference(Offset, OldValueSize, DestinationOffset, Form));
}
void DebugInfoBinaryPatcher::addUDataPatch(uint64_t Offset, uint64_t NewValue,
uint32_t OldValueSize) {
Offset -= DWPUnitOffset;
std::lock_guard<std::mutex> Lock(WriterMutex);
DebugPatches.emplace_back(
new DebugPatchVariableSize(Offset, OldValueSize, NewValue));
}
void DebugInfoBinaryPatcher::addLE64Patch(uint64_t Offset, uint64_t NewValue) {
Offset -= DWPUnitOffset;
std::lock_guard<std::mutex> Lock(WriterMutex);
DebugPatches.emplace_back(new DebugPatch64(Offset, NewValue));
}
void DebugInfoBinaryPatcher::addLE32Patch(uint64_t Offset, uint32_t NewValue,
uint32_t OldValueSize) {
Offset -= DWPUnitOffset;
std::lock_guard<std::mutex> Lock(WriterMutex);
if (OldValueSize == 4)
DebugPatches.emplace_back(new DebugPatch32(Offset, NewValue));
else
DebugPatches.emplace_back(new DebugPatch64to32(Offset, NewValue));
}
void SimpleBinaryPatcher::addBinaryPatch(uint64_t Offset,
std::string &&NewValue,
uint32_t OldValueSize) {
Patches.emplace_back(Offset, std::move(NewValue));
}
void SimpleBinaryPatcher::addBytePatch(uint64_t Offset, uint8_t Value) {
auto Str = std::string(1, Value);
Patches.emplace_back(Offset, std::move(Str));
}
static std::string encodeLE(size_t ByteSize, uint64_t NewValue) {
std::string LE64(ByteSize, 0);
for (size_t I = 0; I < ByteSize; ++I) {
LE64[I] = NewValue & 0xff;
NewValue >>= 8;
}
return LE64;
}
void SimpleBinaryPatcher::addLEPatch(uint64_t Offset, uint64_t NewValue,
size_t ByteSize) {
Patches.emplace_back(Offset, encodeLE(ByteSize, NewValue));
}
void SimpleBinaryPatcher::addUDataPatch(uint64_t Offset, uint64_t Value,
uint32_t OldValueSize) {
std::string Buff;
raw_string_ostream OS(Buff);
encodeULEB128(Value, OS, OldValueSize);
Patches.emplace_back(Offset, std::move(Buff));
}
void SimpleBinaryPatcher::addLE64Patch(uint64_t Offset, uint64_t NewValue) {
addLEPatch(Offset, NewValue, 8);
}
void SimpleBinaryPatcher::addLE32Patch(uint64_t Offset, uint32_t NewValue,
uint32_t OldValueSize) {
addLEPatch(Offset, NewValue, 4);
}
std::string SimpleBinaryPatcher::patchBinary(StringRef BinaryContents) {
std::string BinaryContentsStr = std::string(BinaryContents);
for (const auto &Patch : Patches) {
uint32_t Offset = Patch.first;
const std::string &ByteSequence = Patch.second;
assert(Offset + ByteSequence.size() <= BinaryContents.size() &&
"Applied patch runs over binary size.");
for (uint64_t I = 0, Size = ByteSequence.size(); I < Size; ++I) {
BinaryContentsStr[Offset + I] = ByteSequence[I];
}
}
return BinaryContentsStr;
}
CUOffsetMap DebugInfoBinaryPatcher::computeNewOffsets(DWARFContext &DWCtx,
bool IsDWOContext) {
CUOffsetMap CUMap;
std::sort(DebugPatches.begin(), DebugPatches.end(),
[](const UniquePatchPtrType &V1, const UniquePatchPtrType &V2) {
return V1.get()->Offset < V2.get()->Offset;
});
DWARFUnitVector::compile_unit_range CompileUnits =
IsDWOContext ? DWCtx.dwo_compile_units() : DWCtx.compile_units();
for (const std::unique_ptr<DWARFUnit> &CU : CompileUnits)
CUMap[CU->getOffset()] = {static_cast<uint32_t>(CU->getOffset()),
static_cast<uint32_t>(CU->getLength())};
// Calculating changes in .debug_info size from Patches to build a map of old
// to updated reference destination offsets.
uint32_t PreviousOffset = 0;
int32_t PreviousChangeInSize = 0;
for (UniquePatchPtrType &PatchBase : DebugPatches) {
Patch *P = PatchBase.get();
switch (P->Kind) {
default:
continue;
case DebugPatchKind::PatchValue64to32: {
PreviousChangeInSize -= 4;
break;
}
case DebugPatchKind::PatchValueVariable: {
DebugPatchVariableSize *DPV =
reinterpret_cast<DebugPatchVariableSize *>(P);
std::string Temp;
raw_string_ostream OS(Temp);
encodeULEB128(DPV->Value, OS);
PreviousChangeInSize += Temp.size() - DPV->OldValueSize;
break;
}
case DebugPatchKind::DestinationReferenceLabel: {
DestinationReferenceLabel *DRL =
reinterpret_cast<DestinationReferenceLabel *>(P);
OldToNewOffset[DRL->Offset] =
DRL->Offset + ChangeInSize + PreviousChangeInSize;
break;
}
case DebugPatchKind::ReferencePatchValue: {
// This doesn't look to be a common case, so will always encode as 4 bytes
// to reduce algorithmic complexity.
DebugPatchReference *RDP = reinterpret_cast<DebugPatchReference *>(P);
if (RDP->PatchInfo.IndirectRelative) {
PreviousChangeInSize += 4 - RDP->PatchInfo.OldValueSize;
assert(RDP->PatchInfo.OldValueSize <= 4 &&
"Variable encoding reference greater than 4 bytes.");
}
break;
}
case DebugPatchKind::DWARFUnitOffsetBaseLabel: {
DWARFUnitOffsetBaseLabel *BaseLabel =
reinterpret_cast<DWARFUnitOffsetBaseLabel *>(P);
uint32_t CUOffset = BaseLabel->Offset;
ChangeInSize += PreviousChangeInSize;
uint32_t CUOffsetUpdate = CUOffset + ChangeInSize;
CUMap[CUOffset].Offset = CUOffsetUpdate;
CUMap[PreviousOffset].Length += PreviousChangeInSize;
PreviousChangeInSize = 0;
PreviousOffset = CUOffset;
}
}
}
CUMap[PreviousOffset].Length += PreviousChangeInSize;
return CUMap;
}
std::string DebugInfoBinaryPatcher::patchBinary(StringRef BinaryContents) {
std::string NewBinaryContents;
NewBinaryContents.reserve(BinaryContents.size() + ChangeInSize);
uint32_t StartOffset = 0;
uint32_t DwarfUnitBaseOffset = 0;
uint32_t OldValueSize = 0;
uint32_t Offset = 0;
std::string ByteSequence;
std::vector<std::pair<uint32_t, uint32_t>> LengthPatches;
// Wasting one entry to avoid checks for first.
LengthPatches.push_back({0, 0});
// Applying all the patches replacing current entry.
// This might change the size of .debug_info section.
for (const UniquePatchPtrType &PatchBase : DebugPatches) {
Patch *P = PatchBase.get();
switch (P->Kind) {
default:
continue;
case DebugPatchKind::ReferencePatchValue: {
DebugPatchReference *RDP = reinterpret_cast<DebugPatchReference *>(P);
uint32_t DestinationOffset = RDP->DestinationOffset;
assert(OldToNewOffset.count(DestinationOffset) &&
"Destination Offset for reference not updated.");
uint32_t UpdatedOffset = OldToNewOffset[DestinationOffset];
Offset = RDP->Offset;
OldValueSize = RDP->PatchInfo.OldValueSize;
if (RDP->PatchInfo.DirectRelative) {
UpdatedOffset -= DwarfUnitBaseOffset;
ByteSequence = encodeLE(OldValueSize, UpdatedOffset);
// In theory reference for DW_FORM_ref{1,2,4,8} can be right on the edge
// and overflow if later debug information grows.
if (ByteSequence.size() > OldValueSize)
errs() << "BOLT-ERROR: Relative reference of size "
<< Twine::utohexstr(OldValueSize)
<< " overflows with the new encoding.\n";
} else if (RDP->PatchInfo.DirectAbsolute) {
ByteSequence = encodeLE(OldValueSize, UpdatedOffset);
} else if (RDP->PatchInfo.IndirectRelative) {
UpdatedOffset -= DwarfUnitBaseOffset;
ByteSequence.clear();
raw_string_ostream OS(ByteSequence);
encodeULEB128(UpdatedOffset, OS, 4);
} else {
llvm_unreachable("Invalid Reference form.");
}
break;
}
case DebugPatchKind::PatchValue32: {
DebugPatch32 *P32 = reinterpret_cast<DebugPatch32 *>(P);
Offset = P32->Offset;
OldValueSize = 4;
ByteSequence = encodeLE(4, P32->Value);
break;
}
case DebugPatchKind::PatchValue64to32: {
DebugPatch64to32 *P64to32 = reinterpret_cast<DebugPatch64to32 *>(P);
Offset = P64to32->Offset;
OldValueSize = 8;
ByteSequence = encodeLE(4, P64to32->Value);
break;
}
case DebugPatchKind::PatchValueVariable: {
DebugPatchVariableSize *PV =
reinterpret_cast<DebugPatchVariableSize *>(P);
Offset = PV->Offset;
OldValueSize = PV->OldValueSize;
ByteSequence.clear();
raw_string_ostream OS(ByteSequence);
encodeULEB128(PV->Value, OS);
break;
}
case DebugPatchKind::PatchValue64: {
DebugPatch64 *P64 = reinterpret_cast<DebugPatch64 *>(P);
Offset = P64->Offset;
OldValueSize = 8;
ByteSequence = encodeLE(8, P64->Value);
break;
}
case DebugPatchKind::DWARFUnitOffsetBaseLabel: {
DWARFUnitOffsetBaseLabel *BaseLabel =
reinterpret_cast<DWARFUnitOffsetBaseLabel *>(P);
Offset = BaseLabel->Offset;
OldValueSize = 0;
ByteSequence.clear();
auto &Patch = LengthPatches.back();
// Length to copy between last patch entry and next compile unit.
uint32_t RemainingLength = Offset - StartOffset;
uint32_t NewCUOffset = NewBinaryContents.size() + RemainingLength;
DwarfUnitBaseOffset = NewCUOffset;
// Length of previous CU = This CU Offset - sizeof(length) - last CU
// Offset.
Patch.second = NewCUOffset - 4 - Patch.first;
LengthPatches.push_back({NewCUOffset, 0});
break;
}
}
assert(Offset + ByteSequence.size() <= BinaryContents.size() &&
"Applied patch runs over binary size.");
uint32_t Length = Offset - StartOffset;
NewBinaryContents.append(BinaryContents.substr(StartOffset, Length).data(),
Length);
NewBinaryContents.append(ByteSequence.data(), ByteSequence.size());
StartOffset = Offset + OldValueSize;
}
uint32_t Length = BinaryContents.size() - StartOffset;
NewBinaryContents.append(BinaryContents.substr(StartOffset, Length).data(),
Length);
DebugPatches.clear();
// Patching lengths of CUs
auto &Patch = LengthPatches.back();
Patch.second = NewBinaryContents.size() - 4 - Patch.first;
for (uint32_t J = 1, Size = LengthPatches.size(); J < Size; ++J) {
const auto &Patch = LengthPatches[J];
ByteSequence = encodeLE(4, Patch.second);
Offset = Patch.first;
for (uint64_t I = 0, Size = ByteSequence.size(); I < Size; ++I)
NewBinaryContents[Offset + I] = ByteSequence[I];
}
return NewBinaryContents;
}
void DebugStrWriter::create() {
StrBuffer = std::make_unique<DebugStrBufferVector>();
StrStream = std::make_unique<raw_svector_ostream>(*StrBuffer);
}
void DebugStrWriter::initialize() {
auto StrSection = BC->DwCtx->getDWARFObj().getStrSection();
(*StrStream) << StrSection;
}
uint32_t DebugStrWriter::addString(StringRef Str) {
std::lock_guard<std::mutex> Lock(WriterMutex);
if (StrBuffer->empty())
initialize();
auto Offset = StrBuffer->size();
(*StrStream) << Str;
StrStream->write_zeros(1);
return Offset;
}
void DebugAbbrevWriter::addUnitAbbreviations(DWARFUnit &Unit) {
const DWARFAbbreviationDeclarationSet *Abbrevs = Unit.getAbbreviations();
if (!Abbrevs)
return;
const PatchesTy &UnitPatches = Patches[&Unit];
// We are duplicating abbrev sections, to handle the case where for one CU we
// modify it, but for another we don't.
auto UnitDataPtr = std::make_unique<AbbrevData>();
AbbrevData &UnitData = *UnitDataPtr.get();
UnitData.Buffer = std::make_unique<DebugBufferVector>();
UnitData.Stream = std::make_unique<raw_svector_ostream>(*UnitData.Buffer);
raw_svector_ostream &OS = *UnitData.Stream.get();
// Returns true if AbbrevData is re-used, false otherwise.
auto hashAndAddAbbrev = [&](StringRef AbbrevData) -> bool {
llvm::SHA1 Hasher;
Hasher.update(AbbrevData);
StringRef Key = Hasher.final();
auto Iter = AbbrevDataCache.find(Key);
if (Iter != AbbrevDataCache.end()) {
UnitsAbbrevData[&Unit] = Iter->second.get();
return true;
}
AbbrevDataCache[Key] = std::move(UnitDataPtr);
UnitsAbbrevData[&Unit] = &UnitData;
return false;
};
// Take a fast path if there are no patches to apply. Simply copy the original
// contents.
if (UnitPatches.empty()) {
StringRef AbbrevSectionContents =
Unit.isDWOUnit() ? Unit.getContext().getDWARFObj().getAbbrevDWOSection()
: Unit.getContext().getDWARFObj().getAbbrevSection();
StringRef AbbrevContents;
const DWARFUnitIndex &CUIndex = Unit.getContext().getCUIndex();
if (!CUIndex.getRows().empty()) {
// Handle DWP section contribution.
const DWARFUnitIndex::Entry *DWOEntry =
CUIndex.getFromHash(*Unit.getDWOId());
if (!DWOEntry)
return;
const DWARFUnitIndex::Entry::SectionContribution *DWOContrubution =
DWOEntry->getContribution(DWARFSectionKind::DW_SECT_ABBREV);
AbbrevContents = AbbrevSectionContents.substr(DWOContrubution->Offset,
DWOContrubution->Length);
} else if (!Unit.isDWOUnit()) {
const uint64_t StartOffset = Unit.getAbbreviationsOffset();
// We know where the unit's abbreviation set starts, but not where it ends
// as such data is not readily available. Hence, we have to build a sorted
// list of start addresses and find the next starting address to determine
// the set boundaries.
//
// FIXME: if we had a full access to DWARFDebugAbbrev::AbbrDeclSets
// we wouldn't have to build our own sorted list for the quick lookup.
if (AbbrevSetOffsets.empty()) {
for_each(
*Unit.getContext().getDebugAbbrev(),
[&](const std::pair<uint64_t, DWARFAbbreviationDeclarationSet> &P) {
AbbrevSetOffsets.push_back(P.first);
});
sort(AbbrevSetOffsets);
}
auto It = upper_bound(AbbrevSetOffsets, StartOffset);
const uint64_t EndOffset =
It == AbbrevSetOffsets.end() ? AbbrevSectionContents.size() : *It;
AbbrevContents = AbbrevSectionContents.slice(StartOffset, EndOffset);
} else {
// For DWO unit outside of DWP, we expect the entire section to hold
// abbreviations for this unit only.
AbbrevContents = AbbrevSectionContents;
}
if (!hashAndAddAbbrev(AbbrevContents)) {
OS.reserveExtraSpace(AbbrevContents.size());
OS << AbbrevContents;
}
return;
}
for (auto I = Abbrevs->begin(), E = Abbrevs->end(); I != E; ++I) {
const DWARFAbbreviationDeclaration &Abbrev = *I;
auto Patch = UnitPatches.find(&Abbrev);
encodeULEB128(Abbrev.getCode(), OS);
encodeULEB128(Abbrev.getTag(), OS);
encodeULEB128(Abbrev.hasChildren(), OS);
for (const DWARFAbbreviationDeclaration::AttributeSpec &AttrSpec :
Abbrev.attributes()) {
if (Patch != UnitPatches.end()) {
bool Patched = false;
// Patches added later take a precedence over earlier ones.
for (auto I = Patch->second.rbegin(), E = Patch->second.rend(); I != E;
++I) {
if (I->OldAttr != AttrSpec.Attr)
continue;
encodeULEB128(I->NewAttr, OS);
encodeULEB128(I->NewAttrForm, OS);
Patched = true;
break;
}
if (Patched)
continue;
}
encodeULEB128(AttrSpec.Attr, OS);
encodeULEB128(AttrSpec.Form, OS);
if (AttrSpec.isImplicitConst())
encodeSLEB128(AttrSpec.getImplicitConstValue(), OS);
}
encodeULEB128(0, OS);
encodeULEB128(0, OS);
}
encodeULEB128(0, OS);
hashAndAddAbbrev(OS.str());
}
std::unique_ptr<DebugBufferVector> DebugAbbrevWriter::finalize() {
// Used to create determinism for writing out abbrevs.
std::vector<AbbrevData *> Abbrevs;
if (DWOId) {
// We expect abbrev_offset to always be zero for DWO units as there
// should be one CU per DWO, and TUs should share the same abbreviation
// set with the CU.
// For DWP AbbreviationsOffset is an Abbrev contribution in the DWP file, so
// can be none zero. Thus we are skipping the check for DWP.
bool IsDWP = !Context.getCUIndex().getRows().empty();
if (!IsDWP) {
for (const std::unique_ptr<DWARFUnit> &Unit : Context.dwo_units()) {
if (Unit->getAbbreviationsOffset() != 0) {
errs() << "BOLT-ERROR: detected DWO unit with non-zero abbr_offset. "
"Unable to update debug info.\n";
exit(1);
}
}
}
DWARFUnit *Unit = Context.getDWOCompileUnitForHash(*DWOId);
// Issue abbreviations for the DWO CU only.
addUnitAbbreviations(*Unit);
AbbrevData *Abbrev = UnitsAbbrevData[Unit];
Abbrevs.push_back(Abbrev);
} else {
Abbrevs.reserve(Context.getNumCompileUnits() + Context.getNumTypeUnits());
std::unordered_set<AbbrevData *> ProcessedAbbrevs;
// Add abbreviations from compile and type non-DWO units.
for (const std::unique_ptr<DWARFUnit> &Unit : Context.normal_units()) {
addUnitAbbreviations(*Unit);
AbbrevData *Abbrev = UnitsAbbrevData[Unit.get()];
if (!ProcessedAbbrevs.insert(Abbrev).second)
continue;
Abbrevs.push_back(Abbrev);
}
}
DebugBufferVector ReturnBuffer;
// Pre-calculate the total size of abbrev section.
uint64_t Size = 0;
for (const AbbrevData *UnitData : Abbrevs)
Size += UnitData->Buffer->size();
ReturnBuffer.reserve(Size);
uint64_t Pos = 0;
for (AbbrevData *UnitData : Abbrevs) {
ReturnBuffer.append(*UnitData->Buffer);
UnitData->Offset = Pos;
Pos += UnitData->Buffer->size();
UnitData->Buffer.reset();
UnitData->Stream.reset();
}
return std::make_unique<DebugBufferVector>(ReturnBuffer);
}
static void emitDwarfSetLineAddrAbs(MCStreamer &OS,
MCDwarfLineTableParams Params,
int64_t LineDelta, uint64_t Address,
int PointerSize) {
// emit the sequence to set the address
OS.emitIntValue(dwarf::DW_LNS_extended_op, 1);
OS.emitULEB128IntValue(PointerSize + 1);
OS.emitIntValue(dwarf::DW_LNE_set_address, 1);
OS.emitIntValue(Address, PointerSize);
// emit the sequence for the LineDelta (from 1) and a zero address delta.
MCDwarfLineAddr::Emit(&OS, Params, LineDelta, 0);
}
static inline void emitBinaryDwarfLineTable(
MCStreamer *MCOS, MCDwarfLineTableParams Params,
const DWARFDebugLine::LineTable *Table,
const std::vector<DwarfLineTable::RowSequence> &InputSequences) {
if (InputSequences.empty())
return;
constexpr uint64_t InvalidAddress = UINT64_MAX;
unsigned FileNum = 1;
unsigned LastLine = 1;
unsigned Column = 0;
unsigned Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
unsigned Isa = 0;
unsigned Discriminator = 0;
uint64_t LastAddress = InvalidAddress;
uint64_t PrevEndOfSequence = InvalidAddress;
const MCAsmInfo *AsmInfo = MCOS->getContext().getAsmInfo();
auto emitEndOfSequence = [&](uint64_t Address) {
MCDwarfLineAddr::Emit(MCOS, Params, INT64_MAX, Address - LastAddress);
FileNum = 1;
LastLine = 1;
Column = 0;
Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
Isa = 0;
Discriminator = 0;
LastAddress = InvalidAddress;
};
for (const DwarfLineTable::RowSequence &Sequence : InputSequences) {
const uint64_t SequenceStart =
Table->Rows[Sequence.FirstIndex].Address.Address;
// Check if we need to mark the end of the sequence.
if (PrevEndOfSequence != InvalidAddress && LastAddress != InvalidAddress &&
PrevEndOfSequence != SequenceStart) {
emitEndOfSequence(PrevEndOfSequence);
}
for (uint32_t RowIndex = Sequence.FirstIndex;
RowIndex <= Sequence.LastIndex; ++RowIndex) {
const DWARFDebugLine::Row &Row = Table->Rows[RowIndex];
int64_t LineDelta = static_cast<int64_t>(Row.Line) - LastLine;
const uint64_t Address = Row.Address.Address;
if (FileNum != Row.File) {
FileNum = Row.File;
MCOS->emitInt8(dwarf::DW_LNS_set_file);
MCOS->emitULEB128IntValue(FileNum);
}
if (Column != Row.Column) {
Column = Row.Column;
MCOS->emitInt8(dwarf::DW_LNS_set_column);
MCOS->emitULEB128IntValue(Column);
}
if (Discriminator != Row.Discriminator &&
MCOS->getContext().getDwarfVersion() >= 4) {
Discriminator = Row.Discriminator;
unsigned Size = getULEB128Size(Discriminator);
MCOS->emitInt8(dwarf::DW_LNS_extended_op);
MCOS->emitULEB128IntValue(Size + 1);
MCOS->emitInt8(dwarf::DW_LNE_set_discriminator);
MCOS->emitULEB128IntValue(Discriminator);
}
if (Isa != Row.Isa) {
Isa = Row.Isa;
MCOS->emitInt8(dwarf::DW_LNS_set_isa);
MCOS->emitULEB128IntValue(Isa);
}
if (Row.IsStmt != Flags) {
Flags = Row.IsStmt;
MCOS->emitInt8(dwarf::DW_LNS_negate_stmt);
}
if (Row.BasicBlock)
MCOS->emitInt8(dwarf::DW_LNS_set_basic_block);
if (Row.PrologueEnd)
MCOS->emitInt8(dwarf::DW_LNS_set_prologue_end);
if (Row.EpilogueBegin)
MCOS->emitInt8(dwarf::DW_LNS_set_epilogue_begin);
// The end of the sequence is not normal in the middle of the input
// sequence, but could happen, e.g. for assembly code.
if (Row.EndSequence) {
emitEndOfSequence(Address);
} else {
if (LastAddress == InvalidAddress)
emitDwarfSetLineAddrAbs(*MCOS, Params, LineDelta, Address,
AsmInfo->getCodePointerSize());
else
MCDwarfLineAddr::Emit(MCOS, Params, LineDelta, Address - LastAddress);
LastAddress = Address;
LastLine = Row.Line;
}
Discriminator = 0;
}
PrevEndOfSequence = Sequence.EndAddress;
}
// Finish with the end of the sequence.
if (LastAddress != InvalidAddress)
emitEndOfSequence(PrevEndOfSequence);
}
// This function is similar to the one from MCDwarfLineTable, except it handles
// end-of-sequence entries differently by utilizing line entries with
// DWARF2_FLAG_END_SEQUENCE flag.
static inline void emitDwarfLineTable(
MCStreamer *MCOS, MCSection *Section,
const MCLineSection::MCDwarfLineEntryCollection &LineEntries) {
unsigned FileNum = 1;
unsigned LastLine = 1;
unsigned Column = 0;
unsigned Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
unsigned Isa = 0;
unsigned Discriminator = 0;
MCSymbol *LastLabel = nullptr;
const MCAsmInfo *AsmInfo = MCOS->getContext().getAsmInfo();
// Loop through each MCDwarfLineEntry and encode the dwarf line number table.
for (const MCDwarfLineEntry &LineEntry : LineEntries) {
if (LineEntry.getFlags() & DWARF2_FLAG_END_SEQUENCE) {
MCOS->emitDwarfAdvanceLineAddr(INT64_MAX, LastLabel, LineEntry.getLabel(),
AsmInfo->getCodePointerSize());
FileNum = 1;
LastLine = 1;
Column = 0;
Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
Isa = 0;
Discriminator = 0;
LastLabel = nullptr;
continue;
}
int64_t LineDelta = static_cast<int64_t>(LineEntry.getLine()) - LastLine;
if (FileNum != LineEntry.getFileNum()) {
FileNum = LineEntry.getFileNum();
MCOS->emitInt8(dwarf::DW_LNS_set_file);
MCOS->emitULEB128IntValue(FileNum);
}
if (Column != LineEntry.getColumn()) {
Column = LineEntry.getColumn();
MCOS->emitInt8(dwarf::DW_LNS_set_column);
MCOS->emitULEB128IntValue(Column);
}
if (Discriminator != LineEntry.getDiscriminator() &&
MCOS->getContext().getDwarfVersion() >= 4) {
Discriminator = LineEntry.getDiscriminator();
unsigned Size = getULEB128Size(Discriminator);
MCOS->emitInt8(dwarf::DW_LNS_extended_op);
MCOS->emitULEB128IntValue(Size + 1);
MCOS->emitInt8(dwarf::DW_LNE_set_discriminator);
MCOS->emitULEB128IntValue(Discriminator);
}
if (Isa != LineEntry.getIsa()) {
Isa = LineEntry.getIsa();
MCOS->emitInt8(dwarf::DW_LNS_set_isa);
MCOS->emitULEB128IntValue(Isa);
}
if ((LineEntry.getFlags() ^ Flags) & DWARF2_FLAG_IS_STMT) {
Flags = LineEntry.getFlags();
MCOS->emitInt8(dwarf::DW_LNS_negate_stmt);
}
if (LineEntry.getFlags() & DWARF2_FLAG_BASIC_BLOCK)
MCOS->emitInt8(dwarf::DW_LNS_set_basic_block);
if (LineEntry.getFlags() & DWARF2_FLAG_PROLOGUE_END)
MCOS->emitInt8(dwarf::DW_LNS_set_prologue_end);
if (LineEntry.getFlags() & DWARF2_FLAG_EPILOGUE_BEGIN)
MCOS->emitInt8(dwarf::DW_LNS_set_epilogue_begin);
MCSymbol *Label = LineEntry.getLabel();
// At this point we want to emit/create the sequence to encode the delta
// in line numbers and the increment of the address from the previous
// Label and the current Label.
MCOS->emitDwarfAdvanceLineAddr(LineDelta, LastLabel, Label,
AsmInfo->getCodePointerSize());
Discriminator = 0;
LastLine = LineEntry.getLine();
LastLabel = Label;
}
assert(LastLabel == nullptr && "end of sequence expected");
}
void DwarfLineTable::emitCU(MCStreamer *MCOS, MCDwarfLineTableParams Params,
Optional<MCDwarfLineStr> &LineStr,
BinaryContext &BC) const {
if (!RawData.empty()) {
assert(MCLineSections.getMCLineEntries().empty() &&
InputSequences.empty() &&
"cannot combine raw data with new line entries");
MCOS->emitLabel(getLabel());
MCOS->emitBytes(RawData);
// Emit fake relocation for RuntimeDyld to always allocate the section.
//
// FIXME: remove this once RuntimeDyld stops skipping allocatable sections
// without relocations.
MCOS->emitRelocDirective(
*MCConstantExpr::create(0, *BC.Ctx), "BFD_RELOC_NONE",
MCSymbolRefExpr::create(getLabel(), *BC.Ctx), SMLoc(), *BC.STI);
return;
}
MCSymbol *LineEndSym = Header.Emit(MCOS, Params, LineStr).second;
// Put out the line tables.
for (const auto &LineSec : MCLineSections.getMCLineEntries())
emitDwarfLineTable(MCOS, LineSec.first, LineSec.second);
// Emit line tables for the original code.
emitBinaryDwarfLineTable(MCOS, Params, InputTable, InputSequences);
// This is the end of the section, so set the value of the symbol at the end
// of this section (that was used in a previous expression).
MCOS->emitLabel(LineEndSym);
}
void DwarfLineTable::emit(BinaryContext &BC, MCStreamer &Streamer) {
MCAssembler &Assembler =
static_cast<MCObjectStreamer *>(&Streamer)->getAssembler();
MCDwarfLineTableParams Params = Assembler.getDWARFLinetableParams();
auto &LineTables = BC.getDwarfLineTables();
// Bail out early so we don't switch to the debug_line section needlessly and
// in doing so create an unnecessary (if empty) section.
if (LineTables.empty())
return;
// In a v5 non-split line table, put the strings in a separate section.
Optional<MCDwarfLineStr> LineStr(None);
if (BC.Ctx->getDwarfVersion() >= 5)
LineStr = MCDwarfLineStr(*BC.Ctx);
// Switch to the section where the table will be emitted into.
Streamer.SwitchSection(BC.MOFI->getDwarfLineSection());
// Handle the rest of the Compile Units.
for (auto &CUIDTablePair : LineTables) {
CUIDTablePair.second.emitCU(&Streamer, Params, LineStr, BC);
}
}
} // namespace bolt
} // namespace llvm
|