1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
|
//===- bolt/Passes/ExtTSPReorderAlgorithm.cpp - Order basic blocks --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// ExtTSP - layout of basic blocks with i-cache optimization.
//
// The algorithm is a greedy heuristic that works with chains (ordered lists)
// of basic blocks. Initially all chains are isolated basic blocks. On every
// iteration, we pick a pair of chains whose merging yields the biggest increase
// in the ExtTSP value, which models how i-cache "friendly" a specific chain is.
// A pair of chains giving the maximum gain is merged into a new chain. The
// procedure stops when there is only one chain left, or when merging does not
// increase ExtTSP. In the latter case, the remaining chains are sorted by
// density in decreasing order.
//
// An important aspect is the way two chains are merged. Unlike earlier
// algorithms (e.g., OptimizeCacheReorderAlgorithm or Pettis-Hansen), two
// chains, X and Y, are first split into three, X1, X2, and Y. Then we
// consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y,
// X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score.
// This improves the quality of the final result (the search space is larger)
// while keeping the implementation sufficiently fast.
//
// Reference:
// * A. Newell and S. Pupyrev, Improved Basic Block Reordering,
// IEEE Transactions on Computers, 2020
// https://arxiv.org/abs/1809.04676
//
//===----------------------------------------------------------------------===//
#include "bolt/Core/BinaryBasicBlock.h"
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Passes/ReorderAlgorithm.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
using namespace bolt;
namespace opts {
extern cl::OptionCategory BoltOptCategory;
extern cl::opt<bool> NoThreads;
cl::opt<unsigned>
ChainSplitThreshold("chain-split-threshold",
cl::desc("The maximum size of a chain to apply splitting"),
cl::init(128),
cl::ReallyHidden,
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
cl::opt<double>
ForwardWeight("forward-weight",
cl::desc("The weight of forward jumps for ExtTSP value"),
cl::init(0.1),
cl::ReallyHidden,
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
cl::opt<double>
BackwardWeight("backward-weight",
cl::desc("The weight of backward jumps for ExtTSP value"),
cl::init(0.1),
cl::ReallyHidden,
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
cl::opt<unsigned>
ForwardDistance("forward-distance",
cl::desc("The maximum distance (in bytes) of forward jumps for ExtTSP value"),
cl::init(1024),
cl::ReallyHidden,
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
cl::opt<unsigned>
BackwardDistance("backward-distance",
cl::desc("The maximum distance (in bytes) of backward jumps for ExtTSP value"),
cl::init(640),
cl::ReallyHidden,
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
}
namespace llvm {
namespace bolt {
// Epsilon for comparison of doubles
constexpr double EPS = 1e-8;
class Block;
class Chain;
class Edge;
// Calculate Ext-TSP value, which quantifies the expected number of i-cache
// misses for a given ordering of basic blocks
double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr,
uint64_t Count) {
assert(Count != BinaryBasicBlock::COUNT_NO_PROFILE);
// Fallthrough
if (SrcAddr + SrcSize == DstAddr) {
// Assume that FallthroughWeight = 1.0 after normalization
return static_cast<double>(Count);
}
// Forward
if (SrcAddr + SrcSize < DstAddr) {
const uint64_t Dist = DstAddr - (SrcAddr + SrcSize);
if (Dist <= opts::ForwardDistance) {
double Prob = 1.0 - static_cast<double>(Dist) / opts::ForwardDistance;
return opts::ForwardWeight * Prob * Count;
}
return 0;
}
// Backward
const uint64_t Dist = SrcAddr + SrcSize - DstAddr;
if (Dist <= opts::BackwardDistance) {
double Prob = 1.0 - static_cast<double>(Dist) / opts::BackwardDistance;
return opts::BackwardWeight * Prob * Count;
}
return 0;
}
using BlockPair = std::pair<Block *, Block *>;
using JumpList = std::vector<std::pair<BlockPair, uint64_t>>;
using BlockIter = std::vector<Block *>::const_iterator;
enum MergeTypeTy {
X_Y = 0,
X1_Y_X2 = 1,
Y_X2_X1 = 2,
X2_X1_Y = 3,
};
class MergeGainTy {
public:
explicit MergeGainTy() {}
explicit MergeGainTy(double Score, size_t MergeOffset, MergeTypeTy MergeType)
: Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {}
double score() const { return Score; }
size_t mergeOffset() const { return MergeOffset; }
MergeTypeTy mergeType() const { return MergeType; }
// returns 'true' iff Other is preferred over this
bool operator<(const MergeGainTy &Other) const {
return (Other.Score > EPS && Other.Score > Score + EPS);
}
private:
double Score{-1.0};
size_t MergeOffset{0};
MergeTypeTy MergeType{MergeTypeTy::X_Y};
};
// A node in CFG corresponding to a BinaryBasicBlock.
// The class wraps several mutable fields utilized in the ExtTSP algorithm
class Block {
public:
Block(const Block &) = delete;
Block(Block &&) = default;
Block &operator=(const Block &) = delete;
Block &operator=(Block &&) = default;
// Corresponding basic block
BinaryBasicBlock *BB{nullptr};
// Current chain of the basic block
Chain *CurChain{nullptr};
// (Estimated) size of the block in the binary
uint64_t Size{0};
// Execution count of the block in the binary
uint64_t ExecutionCount{0};
// An original index of the node in CFG
size_t Index{0};
// The index of the block in the current chain
size_t CurIndex{0};
// An offset of the block in the current chain
mutable uint64_t EstimatedAddr{0};
// Fallthrough successor of the node in CFG
Block *FallthroughSucc{nullptr};
// Fallthrough predecessor of the node in CFG
Block *FallthroughPred{nullptr};
// Outgoing jumps from the block
std::vector<std::pair<Block *, uint64_t>> OutJumps;
// Incoming jumps to the block
std::vector<std::pair<Block *, uint64_t>> InJumps;
// Total execution count of incoming jumps
uint64_t InWeight{0};
// Total execution count of outgoing jumps
uint64_t OutWeight{0};
public:
explicit Block(BinaryBasicBlock *BB_, uint64_t Size_)
: BB(BB_), Size(Size_), ExecutionCount(BB_->getKnownExecutionCount()),
Index(BB->getLayoutIndex()) {}
bool adjacent(const Block *Other) const {
return hasOutJump(Other) || hasInJump(Other);
}
bool hasOutJump(const Block *Other) const {
for (std::pair<Block *, uint64_t> Jump : OutJumps) {
if (Jump.first == Other)
return true;
}
return false;
}
bool hasInJump(const Block *Other) const {
for (std::pair<Block *, uint64_t> Jump : InJumps) {
if (Jump.first == Other)
return true;
}
return false;
}
};
// A chain (ordered sequence) of CFG nodes (basic blocks)
class Chain {
public:
Chain(const Chain &) = delete;
Chain(Chain &&) = default;
Chain &operator=(const Chain &) = delete;
Chain &operator=(Chain &&) = default;
explicit Chain(size_t Id, Block *Block)
: Id(Id), IsEntry(Block->Index == 0),
ExecutionCount(Block->ExecutionCount), Size(Block->Size), Score(0),
Blocks(1, Block) {}
size_t id() const { return Id; }
uint64_t size() const { return Size; }
double density() const { return static_cast<double>(ExecutionCount) / Size; }
uint64_t executionCount() const { return ExecutionCount; }
bool isEntryPoint() const { return IsEntry; }
double score() const { return Score; }
void setScore(double NewScore) { Score = NewScore; }
const std::vector<Block *> &blocks() const { return Blocks; }
const std::vector<std::pair<Chain *, Edge *>> &edges() const { return Edges; }
Edge *getEdge(Chain *Other) const {
for (std::pair<Chain *, Edge *> It : Edges)
if (It.first == Other)
return It.second;
return nullptr;
}
void removeEdge(Chain *Other) {
auto It = Edges.begin();
while (It != Edges.end()) {
if (It->first == Other) {
Edges.erase(It);
return;
}
It++;
}
}
void addEdge(Chain *Other, Edge *Edge) { Edges.emplace_back(Other, Edge); }
void merge(Chain *Other, const std::vector<Block *> &MergedBlocks) {
Blocks = MergedBlocks;
IsEntry |= Other->IsEntry;
ExecutionCount += Other->ExecutionCount;
Size += Other->Size;
// Update block's chains
for (size_t Idx = 0; Idx < Blocks.size(); Idx++) {
Blocks[Idx]->CurChain = this;
Blocks[Idx]->CurIndex = Idx;
}
}
void mergeEdges(Chain *Other);
void clear() {
Blocks.clear();
Edges.clear();
}
private:
size_t Id;
bool IsEntry;
uint64_t ExecutionCount;
uint64_t Size;
// Cached ext-tsp score for the chain
double Score;
// Blocks of the chain
std::vector<Block *> Blocks;
// Adjacent chains and corresponding edges (lists of jumps)
std::vector<std::pair<Chain *, Edge *>> Edges;
};
// An edge in CFG reprsenting jumps between chains of BinaryBasicBlocks.
// When blocks are merged into chains, the edges are combined too so that
// there is always at most one edge between a pair of chains
class Edge {
public:
Edge(const Edge &) = delete;
Edge(Edge &&) = default;
Edge &operator=(const Edge &) = delete;
Edge &operator=(Edge &&) = default;
explicit Edge(Block *SrcBlock, Block *DstBlock, uint64_t EC)
: SrcChain(SrcBlock->CurChain), DstChain(DstBlock->CurChain),
Jumps(1, std::make_pair(std::make_pair(SrcBlock, DstBlock), EC)) {}
const JumpList &jumps() const { return Jumps; }
void changeEndpoint(Chain *From, Chain *To) {
if (From == SrcChain)
SrcChain = To;
if (From == DstChain)
DstChain = To;
}
void appendJump(Block *SrcBlock, Block *DstBlock, uint64_t EC) {
Jumps.emplace_back(std::make_pair(SrcBlock, DstBlock), EC);
}
void moveJumps(Edge *Other) {
Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end());
Other->Jumps.clear();
}
bool hasCachedMergeGain(Chain *Src, Chain *Dst) const {
return Src == SrcChain ? CacheValidForward : CacheValidBackward;
}
MergeGainTy getCachedMergeGain(Chain *Src, Chain *Dst) const {
return Src == SrcChain ? CachedGainForward : CachedGainBackward;
}
void setCachedMergeGain(Chain *Src, Chain *Dst, MergeGainTy MergeGain) {
if (Src == SrcChain) {
CachedGainForward = MergeGain;
CacheValidForward = true;
} else {
CachedGainBackward = MergeGain;
CacheValidBackward = true;
}
}
void invalidateCache() {
CacheValidForward = false;
CacheValidBackward = false;
}
private:
Chain *SrcChain{nullptr};
Chain *DstChain{nullptr};
// Original jumps in the binary with correspinding execution counts
JumpList Jumps;
// Cached ext-tsp value for merging the pair of chains
// Since the gain of merging (Src, Dst) and (Dst, Src) might be different,
// we store both values here
MergeGainTy CachedGainForward;
MergeGainTy CachedGainBackward;
// Whether the cached value must be recomputed
bool CacheValidForward{false};
bool CacheValidBackward{false};
};
void Chain::mergeEdges(Chain *Other) {
assert(this != Other && "cannot merge a chain with itself");
// Update edges adjacent to chain Other
for (auto EdgeIt : Other->Edges) {
Chain *const DstChain = EdgeIt.first;
Edge *const DstEdge = EdgeIt.second;
Chain *const TargetChain = DstChain == Other ? this : DstChain;
// Find the corresponding edge in the current chain
Edge *curEdge = getEdge(TargetChain);
if (curEdge == nullptr) {
DstEdge->changeEndpoint(Other, this);
this->addEdge(TargetChain, DstEdge);
if (DstChain != this && DstChain != Other)
DstChain->addEdge(this, DstEdge);
} else {
curEdge->moveJumps(DstEdge);
}
// Cleanup leftover edge
if (DstChain != Other)
DstChain->removeEdge(Other);
}
}
// A wrapper around three chains of basic blocks; it is used to avoid extra
// instantiation of the vectors.
class MergedChain {
public:
MergedChain(BlockIter Begin1, BlockIter End1, BlockIter Begin2 = BlockIter(),
BlockIter End2 = BlockIter(), BlockIter Begin3 = BlockIter(),
BlockIter End3 = BlockIter())
: Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3),
End3(End3) {}
template <typename F> void forEach(const F &Func) const {
for (auto It = Begin1; It != End1; It++)
Func(*It);
for (auto It = Begin2; It != End2; It++)
Func(*It);
for (auto It = Begin3; It != End3; It++)
Func(*It);
}
std::vector<Block *> getBlocks() const {
std::vector<Block *> Result;
Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) +
std::distance(Begin3, End3));
Result.insert(Result.end(), Begin1, End1);
Result.insert(Result.end(), Begin2, End2);
Result.insert(Result.end(), Begin3, End3);
return Result;
}
const Block *getFirstBlock() const { return *Begin1; }
private:
BlockIter Begin1;
BlockIter End1;
BlockIter Begin2;
BlockIter End2;
BlockIter Begin3;
BlockIter End3;
};
/// Deterministically compare pairs of chains
bool compareChainPairs(const Chain *A1, const Chain *B1, const Chain *A2,
const Chain *B2) {
const uint64_t Samples1 = A1->executionCount() + B1->executionCount();
const uint64_t Samples2 = A2->executionCount() + B2->executionCount();
if (Samples1 != Samples2)
return Samples1 < Samples2;
// Making the order deterministic
if (A1 != A2)
return A1->id() < A2->id();
return B1->id() < B2->id();
}
class ExtTSP {
public:
ExtTSP(const BinaryFunction &BF) : BF(BF) { initialize(); }
/// Run the algorithm and return an ordering of basic block
void run(BinaryFunction::BasicBlockOrderType &Order) {
// Pass 1: Merge blocks with their fallthrough successors
mergeFallthroughs();
// Pass 2: Merge pairs of chains while improving the ExtTSP objective
mergeChainPairs();
// Pass 3: Merge cold blocks to reduce code size
mergeColdChains();
// Collect blocks from all chains
concatChains(Order);
}
private:
/// Initialize algorithm's data structures
void initialize() {
// Create a separate MCCodeEmitter to allow lock-free execution
BinaryContext::IndependentCodeEmitter Emitter;
if (!opts::NoThreads)
Emitter = BF.getBinaryContext().createIndependentMCCodeEmitter();
// Initialize CFG nodes
AllBlocks.reserve(BF.layout_size());
size_t LayoutIndex = 0;
for (BinaryBasicBlock *BB : BF.layout()) {
BB->setLayoutIndex(LayoutIndex++);
uint64_t Size =
std::max<uint64_t>(BB->estimateSize(Emitter.MCE.get()), 1);
AllBlocks.emplace_back(BB, Size);
}
// Initialize edges for the blocks and compute their total in/out weights
size_t NumEdges = 0;
for (Block &Block : AllBlocks) {
auto BI = Block.BB->branch_info_begin();
for (BinaryBasicBlock *SuccBB : Block.BB->successors()) {
assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
"missing profile for a jump");
if (SuccBB != Block.BB && BI->Count > 0) {
class Block &SuccBlock = AllBlocks[SuccBB->getLayoutIndex()];
uint64_t Count = BI->Count;
SuccBlock.InWeight += Count;
SuccBlock.InJumps.emplace_back(&Block, Count);
Block.OutWeight += Count;
Block.OutJumps.emplace_back(&SuccBlock, Count);
NumEdges++;
}
++BI;
}
}
// Initialize execution count for every basic block, which is the
// maximum over the sums of all in and out edge weights.
// Also execution count of the entry point is set to at least 1
for (Block &Block : AllBlocks) {
size_t Index = Block.Index;
Block.ExecutionCount = std::max(Block.ExecutionCount, Block.InWeight);
Block.ExecutionCount = std::max(Block.ExecutionCount, Block.OutWeight);
if (Index == 0 && Block.ExecutionCount == 0)
Block.ExecutionCount = 1;
}
// Initialize chains
AllChains.reserve(BF.layout_size());
HotChains.reserve(BF.layout_size());
for (Block &Block : AllBlocks) {
AllChains.emplace_back(Block.Index, &Block);
Block.CurChain = &AllChains.back();
if (Block.ExecutionCount > 0)
HotChains.push_back(&AllChains.back());
}
// Initialize edges
AllEdges.reserve(NumEdges);
for (Block &Block : AllBlocks) {
for (std::pair<class Block *, uint64_t> &Jump : Block.OutJumps) {
class Block *const SuccBlock = Jump.first;
Edge *CurEdge = Block.CurChain->getEdge(SuccBlock->CurChain);
// this edge is already present in the graph
if (CurEdge != nullptr) {
assert(SuccBlock->CurChain->getEdge(Block.CurChain) != nullptr);
CurEdge->appendJump(&Block, SuccBlock, Jump.second);
continue;
}
// this is a new edge
AllEdges.emplace_back(&Block, SuccBlock, Jump.second);
Block.CurChain->addEdge(SuccBlock->CurChain, &AllEdges.back());
SuccBlock->CurChain->addEdge(Block.CurChain, &AllEdges.back());
}
}
assert(AllEdges.size() <= NumEdges && "Incorrect number of created edges");
}
/// For a pair of blocks, A and B, block B is the fallthrough successor of A,
/// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps
/// to B are from A. Such blocks should be adjacent in an optimal ordering;
/// the method finds and merges such pairs of blocks
void mergeFallthroughs() {
// Find fallthroughs based on edge weights
for (Block &Block : AllBlocks) {
if (Block.BB->succ_size() == 1 &&
Block.BB->getSuccessor()->pred_size() == 1 &&
Block.BB->getSuccessor()->getLayoutIndex() != 0) {
size_t SuccIndex = Block.BB->getSuccessor()->getLayoutIndex();
Block.FallthroughSucc = &AllBlocks[SuccIndex];
AllBlocks[SuccIndex].FallthroughPred = &Block;
continue;
}
if (Block.OutWeight == 0)
continue;
for (std::pair<class Block *, uint64_t> &Edge : Block.OutJumps) {
class Block *const SuccBlock = Edge.first;
// Successor cannot be the first BB, which is pinned
if (Block.OutWeight == Edge.second &&
SuccBlock->InWeight == Edge.second && SuccBlock->Index != 0) {
Block.FallthroughSucc = SuccBlock;
SuccBlock->FallthroughPred = &Block;
break;
}
}
}
// There might be 'cycles' in the fallthrough dependencies (since profile
// data isn't 100% accurate).
// Break the cycles by choosing the block with smallest index as the tail
for (Block &Block : AllBlocks) {
if (Block.FallthroughSucc == nullptr || Block.FallthroughPred == nullptr)
continue;
class Block *SuccBlock = Block.FallthroughSucc;
while (SuccBlock != nullptr && SuccBlock != &Block)
SuccBlock = SuccBlock->FallthroughSucc;
if (SuccBlock == nullptr)
continue;
// break the cycle
AllBlocks[Block.FallthroughPred->Index].FallthroughSucc = nullptr;
Block.FallthroughPred = nullptr;
}
// Merge blocks with their fallthrough successors
for (Block &Block : AllBlocks) {
if (Block.FallthroughPred == nullptr &&
Block.FallthroughSucc != nullptr) {
class Block *CurBlock = &Block;
while (CurBlock->FallthroughSucc != nullptr) {
class Block *const NextBlock = CurBlock->FallthroughSucc;
mergeChains(Block.CurChain, NextBlock->CurChain, 0, MergeTypeTy::X_Y);
CurBlock = NextBlock;
}
}
}
}
/// Merge pairs of chains while improving the ExtTSP objective
void mergeChainPairs() {
while (HotChains.size() > 1) {
Chain *BestChainPred = nullptr;
Chain *BestChainSucc = nullptr;
auto BestGain = MergeGainTy();
// Iterate over all pairs of chains
for (Chain *ChainPred : HotChains) {
// Get candidates for merging with the current chain
for (auto EdgeIter : ChainPred->edges()) {
Chain *ChainSucc = EdgeIter.first;
Edge *ChainEdge = EdgeIter.second;
// Ignore loop edges
if (ChainPred == ChainSucc)
continue;
// Compute the gain of merging the two chains
MergeGainTy CurGain = mergeGain(ChainPred, ChainSucc, ChainEdge);
if (CurGain.score() <= EPS)
continue;
if (BestGain < CurGain ||
(std::abs(CurGain.score() - BestGain.score()) < EPS &&
compareChainPairs(ChainPred, ChainSucc, BestChainPred,
BestChainSucc))) {
BestGain = CurGain;
BestChainPred = ChainPred;
BestChainSucc = ChainSucc;
}
}
}
// Stop merging when there is no improvement
if (BestGain.score() <= EPS)
break;
// Merge the best pair of chains
mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(),
BestGain.mergeType());
}
}
/// Merge cold blocks to reduce code size
void mergeColdChains() {
for (BinaryBasicBlock *SrcBB : BF.layout()) {
// Iterating in reverse order to make sure original fallthrough jumps are
// merged first
for (auto Itr = SrcBB->succ_rbegin(); Itr != SrcBB->succ_rend(); ++Itr) {
BinaryBasicBlock *DstBB = *Itr;
size_t SrcIndex = SrcBB->getLayoutIndex();
size_t DstIndex = DstBB->getLayoutIndex();
Chain *SrcChain = AllBlocks[SrcIndex].CurChain;
Chain *DstChain = AllBlocks[DstIndex].CurChain;
if (SrcChain != DstChain && !DstChain->isEntryPoint() &&
SrcChain->blocks().back()->Index == SrcIndex &&
DstChain->blocks().front()->Index == DstIndex)
mergeChains(SrcChain, DstChain, 0, MergeTypeTy::X_Y);
}
}
}
/// Compute ExtTSP score for a given order of basic blocks
double score(const MergedChain &MergedBlocks, const JumpList &Jumps) const {
if (Jumps.empty())
return 0.0;
uint64_t CurAddr = 0;
MergedBlocks.forEach(
[&](const Block *BB) {
BB->EstimatedAddr = CurAddr;
CurAddr += BB->Size;
}
);
double Score = 0;
for (const std::pair<std::pair<Block *, Block *>, uint64_t> &Jump : Jumps) {
const Block *SrcBlock = Jump.first.first;
const Block *DstBlock = Jump.first.second;
Score += extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size,
DstBlock->EstimatedAddr, Jump.second);
}
return Score;
}
/// Compute the gain of merging two chains
///
/// The function considers all possible ways of merging two chains and
/// computes the one having the largest increase in ExtTSP objective. The
/// result is a pair with the first element being the gain and the second
/// element being the corresponding merging type.
MergeGainTy mergeGain(Chain *ChainPred, Chain *ChainSucc, Edge *Edge) const {
if (Edge->hasCachedMergeGain(ChainPred, ChainSucc))
return Edge->getCachedMergeGain(ChainPred, ChainSucc);
// Precompute jumps between ChainPred and ChainSucc
JumpList Jumps = Edge->jumps();
class Edge *EdgePP = ChainPred->getEdge(ChainPred);
if (EdgePP != nullptr)
Jumps.insert(Jumps.end(), EdgePP->jumps().begin(), EdgePP->jumps().end());
assert(Jumps.size() > 0 && "trying to merge chains w/o jumps");
MergeGainTy Gain = MergeGainTy();
// Try to concatenate two chains w/o splitting
Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, 0,
MergeTypeTy::X_Y);
// Try to break ChainPred in various ways and concatenate with ChainSucc
if (ChainPred->blocks().size() <= opts::ChainSplitThreshold) {
for (size_t Offset = 1; Offset < ChainPred->blocks().size(); Offset++) {
Block *BB1 = ChainPred->blocks()[Offset - 1];
Block *BB2 = ChainPred->blocks()[Offset];
// Does the splitting break FT successors?
if (BB1->FallthroughSucc != nullptr) {
(void)BB2;
assert(BB1->FallthroughSucc == BB2 && "Fallthrough not preserved");
continue;
}
Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, Offset,
MergeTypeTy::X1_Y_X2);
Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, Offset,
MergeTypeTy::Y_X2_X1);
Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, Offset,
MergeTypeTy::X2_X1_Y);
}
}
Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain);
return Gain;
}
/// Merge two chains and update the best Gain
MergeGainTy computeMergeGain(const MergeGainTy &CurGain,
const Chain *ChainPred, const Chain *ChainSucc,
const JumpList &Jumps, size_t MergeOffset,
MergeTypeTy MergeType) const {
MergedChain MergedBlocks = mergeBlocks(
ChainPred->blocks(), ChainSucc->blocks(), MergeOffset, MergeType);
// Do not allow a merge that does not preserve the original entry block
if ((ChainPred->isEntryPoint() || ChainSucc->isEntryPoint()) &&
MergedBlocks.getFirstBlock()->Index != 0)
return CurGain;
// The gain for the new chain
const double NewScore = score(MergedBlocks, Jumps) - ChainPred->score();
auto NewGain = MergeGainTy(NewScore, MergeOffset, MergeType);
return CurGain < NewGain ? NewGain : CurGain;
}
/// Merge two chains of blocks respecting a given merge 'type' and 'offset'
///
/// If MergeType == 0, then the result is a concatentation of two chains.
/// Otherwise, the first chain is cut into two sub-chains at the offset,
/// and merged using all possible ways of concatenating three chains.
MergedChain mergeBlocks(const std::vector<Block *> &X,
const std::vector<Block *> &Y, size_t MergeOffset,
MergeTypeTy MergeType) const {
// Split the first chain, X, into X1 and X2
BlockIter BeginX1 = X.begin();
BlockIter EndX1 = X.begin() + MergeOffset;
BlockIter BeginX2 = X.begin() + MergeOffset;
BlockIter EndX2 = X.end();
BlockIter BeginY = Y.begin();
BlockIter EndY = Y.end();
// Construct a new chain from the three existing ones
switch (MergeType) {
case MergeTypeTy::X_Y:
return MergedChain(BeginX1, EndX2, BeginY, EndY);
case MergeTypeTy::X1_Y_X2:
return MergedChain(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2);
case MergeTypeTy::Y_X2_X1:
return MergedChain(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1);
case MergeTypeTy::X2_X1_Y:
return MergedChain(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY);
}
llvm_unreachable("unexpected merge type");
}
/// Merge chain From into chain Into, update the list of active chains,
/// adjacency information, and the corresponding cached values
void mergeChains(Chain *Into, Chain *From, size_t MergeOffset,
MergeTypeTy MergeType) {
assert(Into != From && "a chain cannot be merged with itself");
// Merge the blocks
MergedChain MergedBlocks =
mergeBlocks(Into->blocks(), From->blocks(), MergeOffset, MergeType);
Into->merge(From, MergedBlocks.getBlocks());
Into->mergeEdges(From);
From->clear();
// Update cached ext-tsp score for the new chain
Edge *SelfEdge = Into->getEdge(Into);
if (SelfEdge != nullptr) {
MergedBlocks = MergedChain(Into->blocks().begin(), Into->blocks().end());
Into->setScore(score(MergedBlocks, SelfEdge->jumps()));
}
// Remove chain From from the list of active chains
auto Iter = std::remove(HotChains.begin(), HotChains.end(), From);
HotChains.erase(Iter, HotChains.end());
// Invalidate caches
for (std::pair<Chain *, Edge *> EdgeIter : Into->edges())
EdgeIter.second->invalidateCache();
}
/// Concatenate all chains into a final order
void concatChains(BinaryFunction::BasicBlockOrderType &Order) {
// Collect chains
std::vector<Chain *> SortedChains;
for (Chain &Chain : AllChains)
if (Chain.blocks().size() > 0)
SortedChains.push_back(&Chain);
// Sorting chains by density in decreasing order
std::stable_sort(
SortedChains.begin(), SortedChains.end(),
[](const Chain *C1, const Chain *C2) {
// Original entry point to the front
if (C1->isEntryPoint() != C2->isEntryPoint()) {
if (C1->isEntryPoint())
return true;
if (C2->isEntryPoint())
return false;
}
const double D1 = C1->density();
const double D2 = C2->density();
if (D1 != D2)
return D1 > D2;
// Making the order deterministic
return C1->id() < C2->id();
}
);
// Collect the basic blocks in the order specified by their chains
Order.reserve(BF.layout_size());
for (Chain *Chain : SortedChains)
for (Block *Block : Chain->blocks())
Order.push_back(Block->BB);
}
private:
// The binary function
const BinaryFunction &BF;
// All CFG nodes (basic blocks)
std::vector<Block> AllBlocks;
// All chains of blocks
std::vector<Chain> AllChains;
// Active chains. The vector gets updated at runtime when chains are merged
std::vector<Chain *> HotChains;
// All edges between chains
std::vector<Edge> AllEdges;
};
void ExtTSPReorderAlgorithm::reorderBasicBlocks(const BinaryFunction &BF,
BasicBlockOrder &Order) const {
if (BF.layout_empty())
return;
// Do not change layout of functions w/o profile information
if (!BF.hasValidProfile() || BF.layout_size() <= 2) {
for (BinaryBasicBlock *BB : BF.layout())
Order.push_back(BB);
return;
}
// Apply the algorithm
ExtTSP(BF).run(Order);
// Verify correctness
assert(Order[0]->isEntryPoint() && "Original entry point is not preserved");
assert(Order.size() == BF.layout_size() && "Wrong size of reordered layout");
}
} // namespace bolt
} // namespace llvm
|