1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
|
//===- bolt/Rewrite/RewriteInstance.cpp - ELF rewriter --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "bolt/Rewrite/RewriteInstance.h"
#include "bolt/Core/BinaryContext.h"
#include "bolt/Core/BinaryEmitter.h"
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Core/DebugData.h"
#include "bolt/Core/Exceptions.h"
#include "bolt/Core/MCPlusBuilder.h"
#include "bolt/Core/ParallelUtilities.h"
#include "bolt/Core/Relocation.h"
#include "bolt/Passes/CacheMetrics.h"
#include "bolt/Passes/ReorderFunctions.h"
#include "bolt/Profile/BoltAddressTranslation.h"
#include "bolt/Profile/DataAggregator.h"
#include "bolt/Profile/DataReader.h"
#include "bolt/Profile/YAMLProfileReader.h"
#include "bolt/Profile/YAMLProfileWriter.h"
#include "bolt/Rewrite/BinaryPassManager.h"
#include "bolt/Rewrite/DWARFRewriter.h"
#include "bolt/Rewrite/ExecutableFileMemoryManager.h"
#include "bolt/RuntimeLibs/HugifyRuntimeLibrary.h"
#include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h"
#include "bolt/Utils/CommandLineOpts.h"
#include "bolt/Utils/Utils.h"
#include "llvm/ADT/Optional.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCObjectStreamer.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <fstream>
#include <system_error>
#undef DEBUG_TYPE
#define DEBUG_TYPE "bolt"
using namespace llvm;
using namespace object;
using namespace bolt;
extern cl::opt<uint32_t> X86AlignBranchBoundary;
extern cl::opt<bool> X86AlignBranchWithin32BBoundaries;
namespace opts {
extern cl::opt<MacroFusionType> AlignMacroOpFusion;
extern cl::list<std::string> HotTextMoveSections;
extern cl::opt<bool> Hugify;
extern cl::opt<bool> Instrument;
extern cl::opt<JumpTableSupportLevel> JumpTables;
extern cl::list<std::string> ReorderData;
extern cl::opt<bolt::ReorderFunctions::ReorderType> ReorderFunctions;
extern cl::opt<bool> TimeBuild;
static cl::opt<bool>
ForceToDataRelocations("force-data-relocations",
cl::desc("force relocations to data sections to always be processed"),
cl::init(false),
cl::Hidden,
cl::ZeroOrMore,
cl::cat(BoltCategory));
cl::opt<std::string>
BoltID("bolt-id",
cl::desc("add any string to tag this execution in the "
"output binary via bolt info section"),
cl::ZeroOrMore,
cl::cat(BoltCategory));
cl::opt<bool>
AllowStripped("allow-stripped",
cl::desc("allow processing of stripped binaries"),
cl::Hidden,
cl::cat(BoltCategory));
cl::opt<bool>
DumpDotAll("dump-dot-all",
cl::desc("dump function CFGs to graphviz format after each stage"),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltCategory));
static cl::list<std::string>
ForceFunctionNames("funcs",
cl::CommaSeparated,
cl::desc("limit optimizations to functions from the list"),
cl::value_desc("func1,func2,func3,..."),
cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<std::string>
FunctionNamesFile("funcs-file",
cl::desc("file with list of functions to optimize"),
cl::Hidden,
cl::cat(BoltCategory));
static cl::list<std::string> ForceFunctionNamesNR(
"funcs-no-regex", cl::CommaSeparated,
cl::desc("limit optimizations to functions from the list (non-regex)"),
cl::value_desc("func1,func2,func3,..."), cl::Hidden, cl::cat(BoltCategory));
static cl::opt<std::string> FunctionNamesFileNR(
"funcs-file-no-regex",
cl::desc("file with list of functions to optimize (non-regex)"), cl::Hidden,
cl::cat(BoltCategory));
cl::opt<bool>
KeepTmp("keep-tmp",
cl::desc("preserve intermediate .o file"),
cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<bool>
Lite("lite",
cl::desc("skip processing of cold functions"),
cl::init(false),
cl::ZeroOrMore,
cl::cat(BoltCategory));
static cl::opt<unsigned>
LiteThresholdPct("lite-threshold-pct",
cl::desc("threshold (in percent) for selecting functions to process in lite "
"mode. Higher threshold means fewer functions to process. E.g "
"threshold of 90 means only top 10 percent of functions with "
"profile will be processed."),
cl::init(0),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltOptCategory));
static cl::opt<unsigned>
LiteThresholdCount("lite-threshold-count",
cl::desc("similar to '-lite-threshold-pct' but specify threshold using "
"absolute function call count. I.e. limit processing to functions "
"executed at least the specified number of times."),
cl::init(0),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltOptCategory));
static cl::opt<unsigned>
MaxFunctions("max-funcs",
cl::desc("maximum number of functions to process"),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<unsigned>
MaxDataRelocations("max-data-relocations",
cl::desc("maximum number of data relocations to process"),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltCategory));
cl::opt<bool>
PrintAll("print-all",
cl::desc("print functions after each stage"),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltCategory));
cl::opt<bool>
PrintCFG("print-cfg",
cl::desc("print functions after CFG construction"),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltCategory));
cl::opt<bool> PrintDisasm("print-disasm",
cl::desc("print function after disassembly"),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<bool>
PrintGlobals("print-globals",
cl::desc("print global symbols after disassembly"),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltCategory));
extern cl::opt<bool> PrintSections;
static cl::opt<bool>
PrintLoopInfo("print-loops",
cl::desc("print loop related information"),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<bool>
PrintSDTMarkers("print-sdt",
cl::desc("print all SDT markers"),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltCategory));
enum PrintPseudoProbesOptions {
PPP_None = 0,
PPP_Probes_Section_Decode = 0x1,
PPP_Probes_Address_Conversion = 0x2,
PPP_Encoded_Probes = 0x3,
PPP_All = 0xf
};
cl::opt<PrintPseudoProbesOptions> PrintPseudoProbes(
"print-pseudo-probes", cl::desc("print pseudo probe info"),
cl::init(PPP_None),
cl::values(clEnumValN(PPP_Probes_Section_Decode, "decode",
"decode probes section from binary"),
clEnumValN(PPP_Probes_Address_Conversion, "address_conversion",
"update address2ProbesMap with output block address"),
clEnumValN(PPP_Encoded_Probes, "encoded_probes",
"display the encoded probes in binary section"),
clEnumValN(PPP_All, "all", "enable all debugging printout")),
cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory));
static cl::opt<cl::boolOrDefault>
RelocationMode("relocs",
cl::desc("use relocations in the binary (default=autodetect)"),
cl::ZeroOrMore,
cl::cat(BoltCategory));
static cl::opt<std::string>
SaveProfile("w",
cl::desc("save recorded profile to a file"),
cl::cat(BoltOutputCategory));
static cl::list<std::string>
SkipFunctionNames("skip-funcs",
cl::CommaSeparated,
cl::desc("list of functions to skip"),
cl::value_desc("func1,func2,func3,..."),
cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<std::string>
SkipFunctionNamesFile("skip-funcs-file",
cl::desc("file with list of functions to skip"),
cl::Hidden,
cl::cat(BoltCategory));
cl::opt<bool>
TrapOldCode("trap-old-code",
cl::desc("insert traps in old function bodies (relocation mode)"),
cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<std::string> DWPPathName("dwp",
cl::desc("Path and name to DWP file."),
cl::Hidden, cl::ZeroOrMore,
cl::init(""), cl::cat(BoltCategory));
static cl::opt<bool>
UseGnuStack("use-gnu-stack",
cl::desc("use GNU_STACK program header for new segment (workaround for "
"issues with strip/objcopy)"),
cl::ZeroOrMore,
cl::cat(BoltCategory));
static cl::opt<bool>
TimeRewrite("time-rewrite",
cl::desc("print time spent in rewriting passes"),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<bool>
SequentialDisassembly("sequential-disassembly",
cl::desc("performs disassembly sequentially"),
cl::init(false),
cl::cat(BoltOptCategory));
static cl::opt<bool>
WriteBoltInfoSection("bolt-info",
cl::desc("write bolt info section in the output binary"),
cl::init(true),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltOutputCategory));
} // namespace opts
constexpr const char *RewriteInstance::SectionsToOverwrite[];
std::vector<std::string> RewriteInstance::DebugSectionsToOverwrite = {
".debug_abbrev", ".debug_aranges", ".debug_line", ".debug_loc",
".debug_ranges", ".gdb_index", ".debug_addr"};
const char RewriteInstance::TimerGroupName[] = "rewrite";
const char RewriteInstance::TimerGroupDesc[] = "Rewrite passes";
namespace llvm {
namespace bolt {
extern const char *BoltRevision;
MCPlusBuilder *createMCPlusBuilder(const Triple::ArchType Arch,
const MCInstrAnalysis *Analysis,
const MCInstrInfo *Info,
const MCRegisterInfo *RegInfo) {
#ifdef X86_AVAILABLE
if (Arch == Triple::x86_64)
return createX86MCPlusBuilder(Analysis, Info, RegInfo);
#endif
#ifdef AARCH64_AVAILABLE
if (Arch == Triple::aarch64)
return createAArch64MCPlusBuilder(Analysis, Info, RegInfo);
#endif
llvm_unreachable("architecture unsupported by MCPlusBuilder");
}
} // namespace bolt
} // namespace llvm
namespace {
bool refersToReorderedSection(ErrorOr<BinarySection &> Section) {
auto Itr =
std::find_if(opts::ReorderData.begin(), opts::ReorderData.end(),
[&](const std::string &SectionName) {
return (Section && Section->getName() == SectionName);
});
return Itr != opts::ReorderData.end();
}
} // anonymous namespace
RewriteInstance::RewriteInstance(ELFObjectFileBase *File, const int Argc,
const char *const *Argv, StringRef ToolPath)
: InputFile(File), Argc(Argc), Argv(Argv), ToolPath(ToolPath),
SHStrTab(StringTableBuilder::ELF) {
auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile);
if (!ELF64LEFile) {
errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n";
exit(1);
}
bool IsPIC = false;
const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
if (Obj.getHeader().e_type != ELF::ET_EXEC) {
outs() << "BOLT-INFO: shared object or position-independent executable "
"detected\n";
IsPIC = true;
}
BC = BinaryContext::createBinaryContext(
File, IsPIC,
DWARFContext::create(*File, DWARFContext::ProcessDebugRelocations::Ignore,
nullptr, opts::DWPPathName,
WithColor::defaultErrorHandler,
WithColor::defaultWarningHandler));
BC->initializeTarget(std::unique_ptr<MCPlusBuilder>(createMCPlusBuilder(
BC->TheTriple->getArch(), BC->MIA.get(), BC->MII.get(), BC->MRI.get())));
BAT = std::make_unique<BoltAddressTranslation>(*BC);
if (opts::UpdateDebugSections)
DebugInfoRewriter = std::make_unique<DWARFRewriter>(*BC);
if (opts::Instrument)
BC->setRuntimeLibrary(std::make_unique<InstrumentationRuntimeLibrary>());
else if (opts::Hugify)
BC->setRuntimeLibrary(std::make_unique<HugifyRuntimeLibrary>());
}
RewriteInstance::~RewriteInstance() {}
Error RewriteInstance::setProfile(StringRef Filename) {
if (!sys::fs::exists(Filename))
return errorCodeToError(make_error_code(errc::no_such_file_or_directory));
if (ProfileReader) {
// Already exists
return make_error<StringError>(Twine("multiple profiles specified: ") +
ProfileReader->getFilename() + " and " +
Filename,
inconvertibleErrorCode());
}
// Spawn a profile reader based on file contents.
if (DataAggregator::checkPerfDataMagic(Filename))
ProfileReader = std::make_unique<DataAggregator>(Filename);
else if (YAMLProfileReader::isYAML(Filename))
ProfileReader = std::make_unique<YAMLProfileReader>(Filename);
else
ProfileReader = std::make_unique<DataReader>(Filename);
return Error::success();
}
/// Return true if the function \p BF should be disassembled.
static bool shouldDisassemble(const BinaryFunction &BF) {
if (BF.isPseudo())
return false;
if (opts::processAllFunctions())
return true;
return !BF.isIgnored();
}
void RewriteInstance::discoverStorage() {
NamedRegionTimer T("discoverStorage", "discover storage", TimerGroupName,
TimerGroupDesc, opts::TimeRewrite);
// Stubs are harmful because RuntimeDyld may try to increase the size of
// sections accounting for stubs when we need those sections to match the
// same size seen in the input binary, in case this section is a copy
// of the original one seen in the binary.
BC->EFMM.reset(new ExecutableFileMemoryManager(*BC, /*AllowStubs*/ false));
auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile);
const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
BC->StartFunctionAddress = Obj.getHeader().e_entry;
NextAvailableAddress = 0;
uint64_t NextAvailableOffset = 0;
ELF64LE::PhdrRange PHs =
cantFail(Obj.program_headers(), "program_headers() failed");
for (const ELF64LE::Phdr &Phdr : PHs) {
switch (Phdr.p_type) {
case ELF::PT_LOAD:
BC->FirstAllocAddress = std::min(BC->FirstAllocAddress,
static_cast<uint64_t>(Phdr.p_vaddr));
NextAvailableAddress = std::max(NextAvailableAddress,
Phdr.p_vaddr + Phdr.p_memsz);
NextAvailableOffset = std::max(NextAvailableOffset,
Phdr.p_offset + Phdr.p_filesz);
BC->SegmentMapInfo[Phdr.p_vaddr] = SegmentInfo{Phdr.p_vaddr,
Phdr.p_memsz,
Phdr.p_offset,
Phdr.p_filesz,
Phdr.p_align};
break;
case ELF::PT_INTERP:
BC->HasInterpHeader = true;
break;
}
}
for (const SectionRef &Section : InputFile->sections()) {
StringRef SectionName = cantFail(Section.getName());
if (SectionName == ".text") {
BC->OldTextSectionAddress = Section.getAddress();
BC->OldTextSectionSize = Section.getSize();
StringRef SectionContents = cantFail(Section.getContents());
BC->OldTextSectionOffset =
SectionContents.data() - InputFile->getData().data();
}
if (!opts::HeatmapMode &&
!(opts::AggregateOnly && BAT->enabledFor(InputFile)) &&
(SectionName.startswith(getOrgSecPrefix()) ||
SectionName == getBOLTTextSectionName())) {
errs() << "BOLT-ERROR: input file was processed by BOLT. "
"Cannot re-optimize.\n";
exit(1);
}
}
assert(NextAvailableAddress && NextAvailableOffset &&
"no PT_LOAD pheader seen");
outs() << "BOLT-INFO: first alloc address is 0x"
<< Twine::utohexstr(BC->FirstAllocAddress) << '\n';
FirstNonAllocatableOffset = NextAvailableOffset;
NextAvailableAddress = alignTo(NextAvailableAddress, BC->PageAlign);
NextAvailableOffset = alignTo(NextAvailableOffset, BC->PageAlign);
if (!opts::UseGnuStack) {
// This is where the black magic happens. Creating PHDR table in a segment
// other than that containing ELF header is tricky. Some loaders and/or
// parts of loaders will apply e_phoff from ELF header assuming both are in
// the same segment, while others will do the proper calculation.
// We create the new PHDR table in such a way that both of the methods
// of loading and locating the table work. There's a slight file size
// overhead because of that.
//
// NB: bfd's strip command cannot do the above and will corrupt the
// binary during the process of stripping non-allocatable sections.
if (NextAvailableOffset <= NextAvailableAddress - BC->FirstAllocAddress)
NextAvailableOffset = NextAvailableAddress - BC->FirstAllocAddress;
else
NextAvailableAddress = NextAvailableOffset + BC->FirstAllocAddress;
assert(NextAvailableOffset ==
NextAvailableAddress - BC->FirstAllocAddress &&
"PHDR table address calculation error");
outs() << "BOLT-INFO: creating new program header table at address 0x"
<< Twine::utohexstr(NextAvailableAddress) << ", offset 0x"
<< Twine::utohexstr(NextAvailableOffset) << '\n';
PHDRTableAddress = NextAvailableAddress;
PHDRTableOffset = NextAvailableOffset;
// Reserve space for 3 extra pheaders.
unsigned Phnum = Obj.getHeader().e_phnum;
Phnum += 3;
NextAvailableAddress += Phnum * sizeof(ELF64LEPhdrTy);
NextAvailableOffset += Phnum * sizeof(ELF64LEPhdrTy);
}
// Align at cache line.
NextAvailableAddress = alignTo(NextAvailableAddress, 64);
NextAvailableOffset = alignTo(NextAvailableOffset, 64);
NewTextSegmentAddress = NextAvailableAddress;
NewTextSegmentOffset = NextAvailableOffset;
BC->LayoutStartAddress = NextAvailableAddress;
// Tools such as objcopy can strip section contents but leave header
// entries. Check that at least .text is mapped in the file.
if (!getFileOffsetForAddress(BC->OldTextSectionAddress)) {
errs() << "BOLT-ERROR: input binary is not a valid ELF executable as its "
"text section is not mapped to a valid segment\n";
exit(1);
}
}
void RewriteInstance::parseSDTNotes() {
if (!SDTSection)
return;
StringRef Buf = SDTSection->getContents();
DataExtractor DE = DataExtractor(Buf, BC->AsmInfo->isLittleEndian(),
BC->AsmInfo->getCodePointerSize());
uint64_t Offset = 0;
while (DE.isValidOffset(Offset)) {
uint32_t NameSz = DE.getU32(&Offset);
DE.getU32(&Offset); // skip over DescSz
uint32_t Type = DE.getU32(&Offset);
Offset = alignTo(Offset, 4);
if (Type != 3)
errs() << "BOLT-WARNING: SDT note type \"" << Type
<< "\" is not expected\n";
if (NameSz == 0)
errs() << "BOLT-WARNING: SDT note has empty name\n";
StringRef Name = DE.getCStr(&Offset);
if (!Name.equals("stapsdt"))
errs() << "BOLT-WARNING: SDT note name \"" << Name
<< "\" is not expected\n";
// Parse description
SDTMarkerInfo Marker;
Marker.PCOffset = Offset;
Marker.PC = DE.getU64(&Offset);
Marker.Base = DE.getU64(&Offset);
Marker.Semaphore = DE.getU64(&Offset);
Marker.Provider = DE.getCStr(&Offset);
Marker.Name = DE.getCStr(&Offset);
Marker.Args = DE.getCStr(&Offset);
Offset = alignTo(Offset, 4);
BC->SDTMarkers[Marker.PC] = Marker;
}
if (opts::PrintSDTMarkers)
printSDTMarkers();
}
void RewriteInstance::parsePseudoProbe() {
if (!PseudoProbeDescSection && !PseudoProbeSection) {
// pesudo probe is not added to binary. It is normal and no warning needed.
return;
}
// If only one section is found, it might mean the ELF is corrupted.
if (!PseudoProbeDescSection) {
errs() << "BOLT-WARNING: fail in reading .pseudo_probe_desc binary\n";
return;
} else if (!PseudoProbeSection) {
errs() << "BOLT-WARNING: fail in reading .pseudo_probe binary\n";
return;
}
StringRef Contents = PseudoProbeDescSection->getContents();
if (!BC->ProbeDecoder.buildGUID2FuncDescMap(
reinterpret_cast<const uint8_t *>(Contents.data()),
Contents.size())) {
errs() << "BOLT-WARNING: fail in building GUID2FuncDescMap\n";
return;
}
Contents = PseudoProbeSection->getContents();
if (!BC->ProbeDecoder.buildAddress2ProbeMap(
reinterpret_cast<const uint8_t *>(Contents.data()),
Contents.size())) {
BC->ProbeDecoder.getAddress2ProbesMap().clear();
errs() << "BOLT-WARNING: fail in building Address2ProbeMap\n";
return;
}
if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All ||
opts::PrintPseudoProbes ==
opts::PrintPseudoProbesOptions::PPP_Probes_Section_Decode) {
outs() << "Report of decoding input pseudo probe binaries \n";
BC->ProbeDecoder.printGUID2FuncDescMap(outs());
BC->ProbeDecoder.printProbesForAllAddresses(outs());
}
}
void RewriteInstance::printSDTMarkers() {
outs() << "BOLT-INFO: Number of SDT markers is " << BC->SDTMarkers.size()
<< "\n";
for (auto It : BC->SDTMarkers) {
SDTMarkerInfo &Marker = It.second;
outs() << "BOLT-INFO: PC: " << utohexstr(Marker.PC)
<< ", Base: " << utohexstr(Marker.Base)
<< ", Semaphore: " << utohexstr(Marker.Semaphore)
<< ", Provider: " << Marker.Provider << ", Name: " << Marker.Name
<< ", Args: " << Marker.Args << "\n";
}
}
void RewriteInstance::parseBuildID() {
if (!BuildIDSection)
return;
StringRef Buf = BuildIDSection->getContents();
// Reading notes section (see Portable Formats Specification, Version 1.1,
// pg 2-5, section "Note Section").
DataExtractor DE = DataExtractor(Buf, true, 8);
uint64_t Offset = 0;
if (!DE.isValidOffset(Offset))
return;
uint32_t NameSz = DE.getU32(&Offset);
if (!DE.isValidOffset(Offset))
return;
uint32_t DescSz = DE.getU32(&Offset);
if (!DE.isValidOffset(Offset))
return;
uint32_t Type = DE.getU32(&Offset);
LLVM_DEBUG(dbgs() << "NameSz = " << NameSz << "; DescSz = " << DescSz
<< "; Type = " << Type << "\n");
// Type 3 is a GNU build-id note section
if (Type != 3)
return;
StringRef Name = Buf.slice(Offset, Offset + NameSz);
Offset = alignTo(Offset + NameSz, 4);
if (Name.substr(0, 3) != "GNU")
return;
BuildID = Buf.slice(Offset, Offset + DescSz);
}
Optional<std::string> RewriteInstance::getPrintableBuildID() const {
if (BuildID.empty())
return NoneType();
std::string Str;
raw_string_ostream OS(Str);
const unsigned char *CharIter = BuildID.bytes_begin();
while (CharIter != BuildID.bytes_end()) {
if (*CharIter < 0x10)
OS << "0";
OS << Twine::utohexstr(*CharIter);
++CharIter;
}
return OS.str();
}
void RewriteInstance::patchBuildID() {
raw_fd_ostream &OS = Out->os();
if (BuildID.empty())
return;
size_t IDOffset = BuildIDSection->getContents().rfind(BuildID);
assert(IDOffset != StringRef::npos && "failed to patch build-id");
uint64_t FileOffset = getFileOffsetForAddress(BuildIDSection->getAddress());
if (!FileOffset) {
errs() << "BOLT-WARNING: Non-allocatable build-id will not be updated.\n";
return;
}
char LastIDByte = BuildID[BuildID.size() - 1];
LastIDByte ^= 1;
OS.pwrite(&LastIDByte, 1, FileOffset + IDOffset + BuildID.size() - 1);
outs() << "BOLT-INFO: patched build-id (flipped last bit)\n";
}
void RewriteInstance::run() {
if (!BC) {
errs() << "BOLT-ERROR: failed to create a binary context\n";
return;
}
outs() << "BOLT-INFO: Target architecture: "
<< Triple::getArchTypeName(
(llvm::Triple::ArchType)InputFile->getArch())
<< "\n";
outs() << "BOLT-INFO: BOLT version: " << BoltRevision << "\n";
discoverStorage();
readSpecialSections();
adjustCommandLineOptions();
discoverFileObjects();
preprocessProfileData();
// Skip disassembling if we have a translation table and we are running an
// aggregation job.
if (opts::AggregateOnly && BAT->enabledFor(InputFile)) {
processProfileData();
return;
}
selectFunctionsToProcess();
readDebugInfo();
disassembleFunctions();
processProfileDataPreCFG();
buildFunctionsCFG();
processProfileData();
postProcessFunctions();
if (opts::DiffOnly)
return;
runOptimizationPasses();
emitAndLink();
updateMetadata();
if (opts::LinuxKernelMode) {
errs() << "BOLT-WARNING: not writing the output file for Linux Kernel\n";
return;
} else if (opts::OutputFilename == "/dev/null") {
outs() << "BOLT-INFO: skipping writing final binary to disk\n";
return;
}
// Rewrite allocatable contents and copy non-allocatable parts with mods.
rewriteFile();
}
void RewriteInstance::discoverFileObjects() {
NamedRegionTimer T("discoverFileObjects", "discover file objects",
TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
FileSymRefs.clear();
BC->getBinaryFunctions().clear();
BC->clearBinaryData();
// For local symbols we want to keep track of associated FILE symbol name for
// disambiguation by combined name.
StringRef FileSymbolName;
bool SeenFileName = false;
struct SymbolRefHash {
size_t operator()(SymbolRef const &S) const {
return std::hash<decltype(DataRefImpl::p)>{}(S.getRawDataRefImpl().p);
}
};
std::unordered_map<SymbolRef, StringRef, SymbolRefHash> SymbolToFileName;
for (const ELFSymbolRef &Symbol : InputFile->symbols()) {
Expected<StringRef> NameOrError = Symbol.getName();
if (NameOrError && NameOrError->startswith("__asan_init")) {
errs() << "BOLT-ERROR: input file was compiled or linked with sanitizer "
"support. Cannot optimize.\n";
exit(1);
}
if (NameOrError && NameOrError->startswith("__llvm_coverage_mapping")) {
errs() << "BOLT-ERROR: input file was compiled or linked with coverage "
"support. Cannot optimize.\n";
exit(1);
}
if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined)
continue;
if (cantFail(Symbol.getType()) == SymbolRef::ST_File) {
StringRef Name =
cantFail(std::move(NameOrError), "cannot get symbol name for file");
// Ignore Clang LTO artificial FILE symbol as it is not always generated,
// and this uncertainty is causing havoc in function name matching.
if (Name == "ld-temp.o")
continue;
FileSymbolName = Name;
SeenFileName = true;
continue;
}
if (!FileSymbolName.empty() &&
!(cantFail(Symbol.getFlags()) & SymbolRef::SF_Global))
SymbolToFileName[Symbol] = FileSymbolName;
}
// Sort symbols in the file by value. Ignore symbols from non-allocatable
// sections.
auto isSymbolInMemory = [this](const SymbolRef &Sym) {
if (cantFail(Sym.getType()) == SymbolRef::ST_File)
return false;
if (cantFail(Sym.getFlags()) & SymbolRef::SF_Absolute)
return true;
if (cantFail(Sym.getFlags()) & SymbolRef::SF_Undefined)
return false;
BinarySection Section(*BC, *cantFail(Sym.getSection()));
return Section.isAllocatable();
};
std::vector<SymbolRef> SortedFileSymbols;
std::copy_if(InputFile->symbol_begin(), InputFile->symbol_end(),
std::back_inserter(SortedFileSymbols), isSymbolInMemory);
std::stable_sort(
SortedFileSymbols.begin(), SortedFileSymbols.end(),
[](const SymbolRef &A, const SymbolRef &B) {
// FUNC symbols have the highest precedence, while SECTIONs
// have the lowest.
uint64_t AddressA = cantFail(A.getAddress());
uint64_t AddressB = cantFail(B.getAddress());
if (AddressA != AddressB)
return AddressA < AddressB;
SymbolRef::Type AType = cantFail(A.getType());
SymbolRef::Type BType = cantFail(B.getType());
if (AType == SymbolRef::ST_Function && BType != SymbolRef::ST_Function)
return true;
if (BType == SymbolRef::ST_Debug && AType != SymbolRef::ST_Debug)
return true;
return false;
});
// For aarch64, the ABI defines mapping symbols so we identify data in the
// code section (see IHI0056B). $d identifies data contents.
auto LastSymbol = SortedFileSymbols.end() - 1;
if (BC->isAArch64()) {
LastSymbol = std::stable_partition(
SortedFileSymbols.begin(), SortedFileSymbols.end(),
[](const SymbolRef &Symbol) {
StringRef Name = cantFail(Symbol.getName());
return !(cantFail(Symbol.getType()) == SymbolRef::ST_Unknown &&
(Name == "$d" || Name.startswith("$d.") || Name == "$x" ||
Name.startswith("$x.")));
});
--LastSymbol;
}
BinaryFunction *PreviousFunction = nullptr;
unsigned AnonymousId = 0;
const auto MarkersBegin = std::next(LastSymbol);
for (auto ISym = SortedFileSymbols.begin(); ISym != MarkersBegin; ++ISym) {
const SymbolRef &Symbol = *ISym;
// Keep undefined symbols for pretty printing?
if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined)
continue;
const SymbolRef::Type SymbolType = cantFail(Symbol.getType());
if (SymbolType == SymbolRef::ST_File)
continue;
StringRef SymName = cantFail(Symbol.getName(), "cannot get symbol name");
uint64_t Address =
cantFail(Symbol.getAddress(), "cannot get symbol address");
if (Address == 0) {
if (opts::Verbosity >= 1 && SymbolType == SymbolRef::ST_Function)
errs() << "BOLT-WARNING: function with 0 address seen\n";
continue;
}
// Ignore input hot markers
if (SymName == "__hot_start" || SymName == "__hot_end")
continue;
FileSymRefs[Address] = Symbol;
// Skip section symbols that will be registered by disassemblePLT().
if ((cantFail(Symbol.getType()) == SymbolRef::ST_Debug)) {
ErrorOr<BinarySection &> BSection = BC->getSectionForAddress(Address);
if (BSection && getPLTSectionInfo(BSection->getName()))
continue;
}
/// It is possible we are seeing a globalized local. LLVM might treat it as
/// a local if it has a "private global" prefix, e.g. ".L". Thus we have to
/// change the prefix to enforce global scope of the symbol.
std::string Name = SymName.startswith(BC->AsmInfo->getPrivateGlobalPrefix())
? "PG" + std::string(SymName)
: std::string(SymName);
// Disambiguate all local symbols before adding to symbol table.
// Since we don't know if we will see a global with the same name,
// always modify the local name.
//
// NOTE: the naming convention for local symbols should match
// the one we use for profile data.
std::string UniqueName;
std::string AlternativeName;
if (Name.empty()) {
UniqueName = "ANONYMOUS." + std::to_string(AnonymousId++);
} else if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) {
assert(!BC->getBinaryDataByName(Name) && "global name not unique");
UniqueName = Name;
} else {
// If we have a local file name, we should create 2 variants for the
// function name. The reason is that perf profile might have been
// collected on a binary that did not have the local file name (e.g. as
// a side effect of stripping debug info from the binary):
//
// primary: <function>/<id>
// alternative: <function>/<file>/<id2>
//
// The <id> field is used for disambiguation of local symbols since there
// could be identical function names coming from identical file names
// (e.g. from different directories).
std::string AltPrefix;
auto SFI = SymbolToFileName.find(Symbol);
if (SymbolType == SymbolRef::ST_Function && SFI != SymbolToFileName.end())
AltPrefix = Name + "/" + std::string(SFI->second);
UniqueName = NR.uniquify(Name);
if (!AltPrefix.empty())
AlternativeName = NR.uniquify(AltPrefix);
}
uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize();
uint64_t SymbolAlignment = Symbol.getAlignment();
unsigned SymbolFlags = cantFail(Symbol.getFlags());
auto registerName = [&](uint64_t FinalSize) {
// Register names even if it's not a function, e.g. for an entry point.
BC->registerNameAtAddress(UniqueName, Address, FinalSize, SymbolAlignment,
SymbolFlags);
if (!AlternativeName.empty())
BC->registerNameAtAddress(AlternativeName, Address, FinalSize,
SymbolAlignment, SymbolFlags);
};
section_iterator Section =
cantFail(Symbol.getSection(), "cannot get symbol section");
if (Section == InputFile->section_end()) {
// Could be an absolute symbol. Could record for pretty printing.
LLVM_DEBUG(if (opts::Verbosity > 1) {
dbgs() << "BOLT-INFO: absolute sym " << UniqueName << "\n";
});
registerName(SymbolSize);
continue;
}
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: considering symbol " << UniqueName
<< " for function\n");
if (!Section->isText()) {
assert(SymbolType != SymbolRef::ST_Function &&
"unexpected function inside non-code section");
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejecting as symbol is not in code\n");
registerName(SymbolSize);
continue;
}
// Assembly functions could be ST_NONE with 0 size. Check that the
// corresponding section is a code section and they are not inside any
// other known function to consider them.
//
// Sometimes assembly functions are not marked as functions and neither are
// their local labels. The only way to tell them apart is to look at
// symbol scope - global vs local.
if (PreviousFunction && SymbolType != SymbolRef::ST_Function) {
if (PreviousFunction->containsAddress(Address)) {
if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) {
LLVM_DEBUG(dbgs()
<< "BOLT-DEBUG: symbol is a function local symbol\n");
} else if (Address == PreviousFunction->getAddress() && !SymbolSize) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring symbol as a marker\n");
} else if (opts::Verbosity > 1) {
errs() << "BOLT-WARNING: symbol " << UniqueName
<< " seen in the middle of function " << *PreviousFunction
<< ". Could be a new entry.\n";
}
registerName(SymbolSize);
continue;
} else if (PreviousFunction->getSize() == 0 &&
PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n");
registerName(SymbolSize);
continue;
}
}
if (PreviousFunction && PreviousFunction->containsAddress(Address) &&
PreviousFunction->getAddress() != Address) {
if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) {
if (opts::Verbosity >= 1)
outs() << "BOLT-INFO: skipping possibly another entry for function "
<< *PreviousFunction << " : " << UniqueName << '\n';
} else {
outs() << "BOLT-INFO: using " << UniqueName << " as another entry to "
<< "function " << *PreviousFunction << '\n';
registerName(0);
PreviousFunction->addEntryPointAtOffset(Address -
PreviousFunction->getAddress());
// Remove the symbol from FileSymRefs so that we can skip it from
// in the future.
auto SI = FileSymRefs.find(Address);
assert(SI != FileSymRefs.end() && "symbol expected to be present");
assert(SI->second == Symbol && "wrong symbol found");
FileSymRefs.erase(SI);
}
registerName(SymbolSize);
continue;
}
// Checkout for conflicts with function data from FDEs.
bool IsSimple = true;
auto FDEI = CFIRdWrt->getFDEs().lower_bound(Address);
if (FDEI != CFIRdWrt->getFDEs().end()) {
const dwarf::FDE &FDE = *FDEI->second;
if (FDEI->first != Address) {
// There's no matching starting address in FDE. Make sure the previous
// FDE does not contain this address.
if (FDEI != CFIRdWrt->getFDEs().begin()) {
--FDEI;
const dwarf::FDE &PrevFDE = *FDEI->second;
uint64_t PrevStart = PrevFDE.getInitialLocation();
uint64_t PrevLength = PrevFDE.getAddressRange();
if (Address > PrevStart && Address < PrevStart + PrevLength) {
errs() << "BOLT-ERROR: function " << UniqueName
<< " is in conflict with FDE ["
<< Twine::utohexstr(PrevStart) << ", "
<< Twine::utohexstr(PrevStart + PrevLength)
<< "). Skipping.\n";
IsSimple = false;
}
}
} else if (FDE.getAddressRange() != SymbolSize) {
if (SymbolSize) {
// Function addresses match but sizes differ.
errs() << "BOLT-WARNING: sizes differ for function " << UniqueName
<< ". FDE : " << FDE.getAddressRange()
<< "; symbol table : " << SymbolSize << ". Using max size.\n";
}
SymbolSize = std::max(SymbolSize, FDE.getAddressRange());
if (BC->getBinaryDataAtAddress(Address)) {
BC->setBinaryDataSize(Address, SymbolSize);
} else {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: No BD @ 0x"
<< Twine::utohexstr(Address) << "\n");
}
}
}
BinaryFunction *BF = nullptr;
// Since function may not have yet obtained its real size, do a search
// using the list of registered functions instead of calling
// getBinaryFunctionAtAddress().
auto BFI = BC->getBinaryFunctions().find(Address);
if (BFI != BC->getBinaryFunctions().end()) {
BF = &BFI->second;
// Duplicate the function name. Make sure everything matches before we add
// an alternative name.
if (SymbolSize != BF->getSize()) {
if (opts::Verbosity >= 1) {
if (SymbolSize && BF->getSize())
errs() << "BOLT-WARNING: size mismatch for duplicate entries "
<< *BF << " and " << UniqueName << '\n';
outs() << "BOLT-INFO: adjusting size of function " << *BF << " old "
<< BF->getSize() << " new " << SymbolSize << "\n";
}
BF->setSize(std::max(SymbolSize, BF->getSize()));
BC->setBinaryDataSize(Address, BF->getSize());
}
BF->addAlternativeName(UniqueName);
} else {
ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address);
// Skip symbols from invalid sections
if (!Section) {
errs() << "BOLT-WARNING: " << UniqueName << " (0x"
<< Twine::utohexstr(Address) << ") does not have any section\n";
continue;
}
assert(Section && "section for functions must be registered");
// Skip symbols from zero-sized sections.
if (!Section->getSize())
continue;
BF = BC->createBinaryFunction(UniqueName, *Section, Address, SymbolSize);
if (!IsSimple)
BF->setSimple(false);
}
if (!AlternativeName.empty())
BF->addAlternativeName(AlternativeName);
registerName(SymbolSize);
PreviousFunction = BF;
}
// Read dynamic relocation first as their presence affects the way we process
// static relocations. E.g. we will ignore a static relocation at an address
// that is a subject to dynamic relocation processing.
processDynamicRelocations();
// Process PLT section.
if (BC->TheTriple->getArch() == Triple::x86_64)
disassemblePLT();
// See if we missed any functions marked by FDE.
for (const auto &FDEI : CFIRdWrt->getFDEs()) {
const uint64_t Address = FDEI.first;
const dwarf::FDE *FDE = FDEI.second;
const BinaryFunction *BF = BC->getBinaryFunctionAtAddress(Address);
if (BF)
continue;
BF = BC->getBinaryFunctionContainingAddress(Address);
if (BF) {
errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x"
<< Twine::utohexstr(Address + FDE->getAddressRange())
<< ") conflicts with function " << *BF << '\n';
continue;
}
if (opts::Verbosity >= 1)
errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x"
<< Twine::utohexstr(Address + FDE->getAddressRange())
<< ") has no corresponding symbol table entry\n";
ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address);
assert(Section && "cannot get section for address from FDE");
std::string FunctionName =
"__BOLT_FDE_FUNCat" + Twine::utohexstr(Address).str();
BC->createBinaryFunction(FunctionName, *Section, Address,
FDE->getAddressRange());
}
BC->setHasSymbolsWithFileName(SeenFileName);
// Now that all the functions were created - adjust their boundaries.
adjustFunctionBoundaries();
// Annotate functions with code/data markers in AArch64
for (auto ISym = MarkersBegin; ISym != SortedFileSymbols.end(); ++ISym) {
const SymbolRef &Symbol = *ISym;
uint64_t Address =
cantFail(Symbol.getAddress(), "cannot get symbol address");
uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize();
BinaryFunction *BF =
BC->getBinaryFunctionContainingAddress(Address, true, true);
if (!BF) {
// Stray marker
continue;
}
const uint64_t EntryOffset = Address - BF->getAddress();
if (BF->isCodeMarker(Symbol, SymbolSize)) {
BF->markCodeAtOffset(EntryOffset);
continue;
}
if (BF->isDataMarker(Symbol, SymbolSize)) {
BF->markDataAtOffset(EntryOffset);
BC->AddressToConstantIslandMap[Address] = BF;
continue;
}
llvm_unreachable("Unknown marker");
}
if (opts::LinuxKernelMode) {
// Read all special linux kernel sections and their relocations
processLKSections();
} else {
// Read all relocations now that we have binary functions mapped.
processRelocations();
}
}
void RewriteInstance::disassemblePLT() {
auto analyzeOnePLTSection = [&](BinarySection &Section, uint64_t EntrySize) {
const uint64_t PLTAddress = Section.getAddress();
StringRef PLTContents = Section.getContents();
ArrayRef<uint8_t> PLTData(
reinterpret_cast<const uint8_t *>(PLTContents.data()),
Section.getSize());
const unsigned PtrSize = BC->AsmInfo->getCodePointerSize();
for (uint64_t EntryOffset = 0; EntryOffset + EntrySize <= Section.getSize();
EntryOffset += EntrySize) {
uint64_t InstrOffset = EntryOffset;
uint64_t InstrSize;
MCInst Instruction;
while (InstrOffset < EntryOffset + EntrySize) {
uint64_t InstrAddr = PLTAddress + InstrOffset;
if (!BC->DisAsm->getInstruction(Instruction, InstrSize,
PLTData.slice(InstrOffset), InstrAddr,
nulls())) {
errs() << "BOLT-ERROR: unable to disassemble instruction in PLT "
"section "
<< Section.getName() << " at offset 0x"
<< Twine::utohexstr(InstrOffset) << '\n';
exit(1);
}
// Check if the entry size needs adjustment.
if (EntryOffset == 0 && BC->MIB->isTerminateBranch(Instruction) &&
EntrySize == 8)
EntrySize = 16;
if (BC->MIB->isIndirectBranch(Instruction))
break;
InstrOffset += InstrSize;
}
if (InstrOffset + InstrSize > EntryOffset + EntrySize)
continue;
uint64_t TargetAddress;
if (!BC->MIB->evaluateMemOperandTarget(Instruction, TargetAddress,
PLTAddress + InstrOffset,
InstrSize)) {
errs() << "BOLT-ERROR: error evaluating PLT instruction at offset 0x"
<< Twine::utohexstr(PLTAddress + InstrOffset) << '\n';
exit(1);
}
const Relocation *Rel = BC->getDynamicRelocationAt(TargetAddress);
if (!Rel || !Rel->Symbol)
continue;
BinaryFunction *BF = BC->createBinaryFunction(
Rel->Symbol->getName().str() + "@PLT", Section,
PLTAddress + EntryOffset, 0, EntrySize, Section.getAlignment());
MCSymbol *TargetSymbol =
BC->registerNameAtAddress(Rel->Symbol->getName().str() + "@GOT",
TargetAddress, PtrSize, PtrSize);
BF->setPLTSymbol(TargetSymbol);
}
};
for (BinarySection &Section : BC->allocatableSections()) {
const PLTSectionInfo *PLTSI = getPLTSectionInfo(Section.getName());
if (!PLTSI)
continue;
analyzeOnePLTSection(Section, PLTSI->EntrySize);
// If we did not register any function at the start of the section,
// then it must be a general PLT entry. Add a function at the location.
if (BC->getBinaryFunctions().find(Section.getAddress()) ==
BC->getBinaryFunctions().end()) {
BinaryFunction *BF = BC->createBinaryFunction(
"__BOLT_PSEUDO_" + Section.getName().str(), Section,
Section.getAddress(), 0, PLTSI->EntrySize, Section.getAlignment());
BF->setPseudo(true);
}
}
}
void RewriteInstance::adjustFunctionBoundaries() {
for (auto BFI = BC->getBinaryFunctions().begin(),
BFE = BC->getBinaryFunctions().end();
BFI != BFE; ++BFI) {
BinaryFunction &Function = BFI->second;
const BinaryFunction *NextFunction = nullptr;
if (std::next(BFI) != BFE)
NextFunction = &std::next(BFI)->second;
// Check if it's a fragment of a function.
Optional<StringRef> FragName =
Function.hasRestoredNameRegex(".*\\.cold(\\.[0-9]+)?");
if (FragName) {
static bool PrintedWarning = false;
if (BC->HasRelocations && !PrintedWarning) {
errs() << "BOLT-WARNING: split function detected on input : "
<< *FragName << ". The support is limited in relocation mode.\n";
PrintedWarning = true;
}
Function.IsFragment = true;
}
// Check if there's a symbol or a function with a larger address in the
// same section. If there is - it determines the maximum size for the
// current function. Otherwise, it is the size of a containing section
// the defines it.
//
// NOTE: ignore some symbols that could be tolerated inside the body
// of a function.
auto NextSymRefI = FileSymRefs.upper_bound(Function.getAddress());
while (NextSymRefI != FileSymRefs.end()) {
SymbolRef &Symbol = NextSymRefI->second;
const uint64_t SymbolAddress = NextSymRefI->first;
const uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize();
if (NextFunction && SymbolAddress >= NextFunction->getAddress())
break;
if (!Function.isSymbolValidInScope(Symbol, SymbolSize))
break;
// This is potentially another entry point into the function.
uint64_t EntryOffset = NextSymRefI->first - Function.getAddress();
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding entry point to function "
<< Function << " at offset 0x"
<< Twine::utohexstr(EntryOffset) << '\n');
Function.addEntryPointAtOffset(EntryOffset);
++NextSymRefI;
}
// Function runs at most till the end of the containing section.
uint64_t NextObjectAddress = Function.getOriginSection()->getEndAddress();
// Or till the next object marked by a symbol.
if (NextSymRefI != FileSymRefs.end())
NextObjectAddress = std::min(NextSymRefI->first, NextObjectAddress);
// Or till the next function not marked by a symbol.
if (NextFunction)
NextObjectAddress =
std::min(NextFunction->getAddress(), NextObjectAddress);
const uint64_t MaxSize = NextObjectAddress - Function.getAddress();
if (MaxSize < Function.getSize()) {
errs() << "BOLT-ERROR: symbol seen in the middle of the function "
<< Function << ". Skipping.\n";
Function.setSimple(false);
Function.setMaxSize(Function.getSize());
continue;
}
Function.setMaxSize(MaxSize);
if (!Function.getSize() && Function.isSimple()) {
// Some assembly functions have their size set to 0, use the max
// size as their real size.
if (opts::Verbosity >= 1)
outs() << "BOLT-INFO: setting size of function " << Function << " to "
<< Function.getMaxSize() << " (was 0)\n";
Function.setSize(Function.getMaxSize());
}
}
}
void RewriteInstance::relocateEHFrameSection() {
assert(EHFrameSection && "non-empty .eh_frame section expected");
DWARFDataExtractor DE(EHFrameSection->getContents(),
BC->AsmInfo->isLittleEndian(),
BC->AsmInfo->getCodePointerSize());
auto createReloc = [&](uint64_t Value, uint64_t Offset, uint64_t DwarfType) {
if (DwarfType == dwarf::DW_EH_PE_omit)
return;
// Only fix references that are relative to other locations.
if (!(DwarfType & dwarf::DW_EH_PE_pcrel) &&
!(DwarfType & dwarf::DW_EH_PE_textrel) &&
!(DwarfType & dwarf::DW_EH_PE_funcrel) &&
!(DwarfType & dwarf::DW_EH_PE_datarel))
return;
if (!(DwarfType & dwarf::DW_EH_PE_sdata4))
return;
uint64_t RelType;
switch (DwarfType & 0x0f) {
default:
llvm_unreachable("unsupported DWARF encoding type");
case dwarf::DW_EH_PE_sdata4:
case dwarf::DW_EH_PE_udata4:
RelType = Relocation::getPC32();
Offset -= 4;
break;
case dwarf::DW_EH_PE_sdata8:
case dwarf::DW_EH_PE_udata8:
RelType = Relocation::getPC64();
Offset -= 8;
break;
}
// Create a relocation against an absolute value since the goal is to
// preserve the contents of the section independent of the new values
// of referenced symbols.
EHFrameSection->addRelocation(Offset, nullptr, RelType, Value);
};
Error E = EHFrameParser::parse(DE, EHFrameSection->getAddress(), createReloc);
check_error(std::move(E), "failed to patch EH frame");
}
ArrayRef<uint8_t> RewriteInstance::getLSDAData() {
return ArrayRef<uint8_t>(LSDASection->getData(),
LSDASection->getContents().size());
}
uint64_t RewriteInstance::getLSDAAddress() { return LSDASection->getAddress(); }
void RewriteInstance::readSpecialSections() {
NamedRegionTimer T("readSpecialSections", "read special sections",
TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
bool HasTextRelocations = false;
bool HasDebugInfo = false;
// Process special sections.
for (const SectionRef &Section : InputFile->sections()) {
Expected<StringRef> SectionNameOrErr = Section.getName();
check_error(SectionNameOrErr.takeError(), "cannot get section name");
StringRef SectionName = *SectionNameOrErr;
// Only register sections with names.
if (!SectionName.empty()) {
BC->registerSection(Section);
LLVM_DEBUG(
dbgs() << "BOLT-DEBUG: registering section " << SectionName << " @ 0x"
<< Twine::utohexstr(Section.getAddress()) << ":0x"
<< Twine::utohexstr(Section.getAddress() + Section.getSize())
<< "\n");
if (isDebugSection(SectionName))
HasDebugInfo = true;
if (isKSymtabSection(SectionName))
opts::LinuxKernelMode = true;
}
}
if (HasDebugInfo && !opts::UpdateDebugSections && !opts::AggregateOnly) {
errs() << "BOLT-WARNING: debug info will be stripped from the binary. "
"Use -update-debug-sections to keep it.\n";
}
HasTextRelocations = (bool)BC->getUniqueSectionByName(".rela.text");
LSDASection = BC->getUniqueSectionByName(".gcc_except_table");
EHFrameSection = BC->getUniqueSectionByName(".eh_frame");
GOTPLTSection = BC->getUniqueSectionByName(".got.plt");
RelaPLTSection = BC->getUniqueSectionByName(".rela.plt");
RelaDynSection = BC->getUniqueSectionByName(".rela.dyn");
BuildIDSection = BC->getUniqueSectionByName(".note.gnu.build-id");
SDTSection = BC->getUniqueSectionByName(".note.stapsdt");
PseudoProbeDescSection = BC->getUniqueSectionByName(".pseudo_probe_desc");
PseudoProbeSection = BC->getUniqueSectionByName(".pseudo_probe");
if (ErrorOr<BinarySection &> BATSec =
BC->getUniqueSectionByName(BoltAddressTranslation::SECTION_NAME)) {
// Do not read BAT when plotting a heatmap
if (!opts::HeatmapMode) {
if (std::error_code EC = BAT->parse(BATSec->getContents())) {
errs() << "BOLT-ERROR: failed to parse BOLT address translation "
"table.\n";
exit(1);
}
}
}
if (opts::PrintSections) {
outs() << "BOLT-INFO: Sections from original binary:\n";
BC->printSections(outs());
}
if (opts::RelocationMode == cl::BOU_TRUE && !HasTextRelocations) {
errs() << "BOLT-ERROR: relocations against code are missing from the input "
"file. Cannot proceed in relocations mode (-relocs).\n";
exit(1);
}
BC->HasRelocations =
HasTextRelocations && (opts::RelocationMode != cl::BOU_FALSE);
// Force non-relocation mode for heatmap generation
if (opts::HeatmapMode)
BC->HasRelocations = false;
if (BC->HasRelocations)
outs() << "BOLT-INFO: enabling " << (opts::StrictMode ? "strict " : "")
<< "relocation mode\n";
// Read EH frame for function boundaries info.
Expected<const DWARFDebugFrame *> EHFrameOrError = BC->DwCtx->getEHFrame();
if (!EHFrameOrError)
report_error("expected valid eh_frame section", EHFrameOrError.takeError());
CFIRdWrt.reset(new CFIReaderWriter(*EHFrameOrError.get()));
// Parse build-id
parseBuildID();
if (Optional<std::string> FileBuildID = getPrintableBuildID())
BC->setFileBuildID(*FileBuildID);
parseSDTNotes();
// Read .dynamic/PT_DYNAMIC.
readELFDynamic();
}
void RewriteInstance::adjustCommandLineOptions() {
if (BC->isAArch64() && !BC->HasRelocations)
errs() << "BOLT-WARNING: non-relocation mode for AArch64 is not fully "
"supported\n";
if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary())
RtLibrary->adjustCommandLineOptions(*BC);
if (opts::AlignMacroOpFusion != MFT_NONE && !BC->isX86()) {
outs() << "BOLT-INFO: disabling -align-macro-fusion on non-x86 platform\n";
opts::AlignMacroOpFusion = MFT_NONE;
}
if (BC->isX86() && BC->MAB->allowAutoPadding()) {
if (!BC->HasRelocations) {
errs() << "BOLT-ERROR: cannot apply mitigations for Intel JCC erratum in "
"non-relocation mode\n";
exit(1);
}
outs() << "BOLT-WARNING: using mitigation for Intel JCC erratum, layout "
"may take several minutes\n";
opts::AlignMacroOpFusion = MFT_NONE;
}
if (opts::AlignMacroOpFusion != MFT_NONE && !BC->HasRelocations) {
outs() << "BOLT-INFO: disabling -align-macro-fusion in non-relocation "
"mode\n";
opts::AlignMacroOpFusion = MFT_NONE;
}
if (opts::SplitEH && !BC->HasRelocations) {
errs() << "BOLT-WARNING: disabling -split-eh in non-relocation mode\n";
opts::SplitEH = false;
}
if (opts::SplitEH && !BC->HasFixedLoadAddress) {
errs() << "BOLT-WARNING: disabling -split-eh for shared object\n";
opts::SplitEH = false;
}
if (opts::StrictMode && !BC->HasRelocations) {
errs() << "BOLT-WARNING: disabling strict mode (-strict) in non-relocation "
"mode\n";
opts::StrictMode = false;
}
if (BC->HasRelocations && opts::AggregateOnly &&
!opts::StrictMode.getNumOccurrences()) {
outs() << "BOLT-INFO: enabling strict relocation mode for aggregation "
"purposes\n";
opts::StrictMode = true;
}
if (BC->isX86() && BC->HasRelocations &&
opts::AlignMacroOpFusion == MFT_HOT && !ProfileReader) {
outs() << "BOLT-INFO: enabling -align-macro-fusion=all since no profile "
"was specified\n";
opts::AlignMacroOpFusion = MFT_ALL;
}
if (!BC->HasRelocations &&
opts::ReorderFunctions != ReorderFunctions::RT_NONE) {
errs() << "BOLT-ERROR: function reordering only works when "
<< "relocations are enabled\n";
exit(1);
}
if (opts::ReorderFunctions != ReorderFunctions::RT_NONE &&
!opts::HotText.getNumOccurrences()) {
opts::HotText = true;
} else if (opts::HotText && !BC->HasRelocations) {
errs() << "BOLT-WARNING: hot text is disabled in non-relocation mode\n";
opts::HotText = false;
}
if (opts::HotText && opts::HotTextMoveSections.getNumOccurrences() == 0) {
opts::HotTextMoveSections.addValue(".stub");
opts::HotTextMoveSections.addValue(".mover");
opts::HotTextMoveSections.addValue(".never_hugify");
}
if (opts::UseOldText && !BC->OldTextSectionAddress) {
errs() << "BOLT-WARNING: cannot use old .text as the section was not found"
"\n";
opts::UseOldText = false;
}
if (opts::UseOldText && !BC->HasRelocations) {
errs() << "BOLT-WARNING: cannot use old .text in non-relocation mode\n";
opts::UseOldText = false;
}
if (!opts::AlignText.getNumOccurrences())
opts::AlignText = BC->PageAlign;
if (BC->isX86() && opts::Lite.getNumOccurrences() == 0 && !opts::StrictMode &&
!opts::UseOldText)
opts::Lite = true;
if (opts::Lite && opts::UseOldText) {
errs() << "BOLT-WARNING: cannot combine -lite with -use-old-text. "
"Disabling -use-old-text.\n";
opts::UseOldText = false;
}
if (opts::Lite && opts::StrictMode) {
errs() << "BOLT-ERROR: -strict and -lite cannot be used at the same time\n";
exit(1);
}
if (opts::Lite)
outs() << "BOLT-INFO: enabling lite mode\n";
if (!opts::SaveProfile.empty() && BAT->enabledFor(InputFile)) {
errs() << "BOLT-ERROR: unable to save profile in YAML format for input "
"file processed by BOLT. Please remove -w option and use branch "
"profile.\n";
exit(1);
}
}
namespace {
template <typename ELFT>
int64_t getRelocationAddend(const ELFObjectFile<ELFT> *Obj,
const RelocationRef &RelRef) {
using ELFShdrTy = typename ELFT::Shdr;
using Elf_Rela = typename ELFT::Rela;
int64_t Addend = 0;
const ELFFile<ELFT> &EF = Obj->getELFFile();
DataRefImpl Rel = RelRef.getRawDataRefImpl();
const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a));
switch (RelocationSection->sh_type) {
default:
llvm_unreachable("unexpected relocation section type");
case ELF::SHT_REL:
break;
case ELF::SHT_RELA: {
const Elf_Rela *RelA = Obj->getRela(Rel);
Addend = RelA->r_addend;
break;
}
}
return Addend;
}
int64_t getRelocationAddend(const ELFObjectFileBase *Obj,
const RelocationRef &Rel) {
if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
return getRelocationAddend(ELF32LE, Rel);
if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
return getRelocationAddend(ELF64LE, Rel);
if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
return getRelocationAddend(ELF32BE, Rel);
auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
return getRelocationAddend(ELF64BE, Rel);
}
} // anonymous namespace
bool RewriteInstance::analyzeRelocation(
const RelocationRef &Rel, uint64_t RType, std::string &SymbolName,
bool &IsSectionRelocation, uint64_t &SymbolAddress, int64_t &Addend,
uint64_t &ExtractedValue, bool &Skip) const {
Skip = false;
if (!Relocation::isSupported(RType))
return false;
const bool IsAArch64 = BC->isAArch64();
const size_t RelSize = Relocation::getSizeForType(RType);
ErrorOr<uint64_t> Value =
BC->getUnsignedValueAtAddress(Rel.getOffset(), RelSize);
assert(Value && "failed to extract relocated value");
if ((Skip = Relocation::skipRelocationProcess(RType, *Value)))
return true;
ExtractedValue = Relocation::extractValue(RType, *Value, Rel.getOffset());
Addend = getRelocationAddend(InputFile, Rel);
const bool IsPCRelative = Relocation::isPCRelative(RType);
const uint64_t PCRelOffset = IsPCRelative && !IsAArch64 ? Rel.getOffset() : 0;
bool SkipVerification = false;
auto SymbolIter = Rel.getSymbol();
if (SymbolIter == InputFile->symbol_end()) {
SymbolAddress = ExtractedValue - Addend + PCRelOffset;
MCSymbol *RelSymbol =
BC->getOrCreateGlobalSymbol(SymbolAddress, "RELSYMat");
SymbolName = std::string(RelSymbol->getName());
IsSectionRelocation = false;
} else {
const SymbolRef &Symbol = *SymbolIter;
SymbolName = std::string(cantFail(Symbol.getName()));
SymbolAddress = cantFail(Symbol.getAddress());
SkipVerification = (cantFail(Symbol.getType()) == SymbolRef::ST_Other);
// Section symbols are marked as ST_Debug.
IsSectionRelocation = (cantFail(Symbol.getType()) == SymbolRef::ST_Debug);
}
// For PIE or dynamic libs, the linker may choose not to put the relocation
// result at the address if it is a X86_64_64 one because it will emit a
// dynamic relocation (X86_RELATIVE) for the dynamic linker and loader to
// resolve it at run time. The static relocation result goes as the addend
// of the dynamic relocation in this case. We can't verify these cases.
// FIXME: perhaps we can try to find if it really emitted a corresponding
// RELATIVE relocation at this offset with the correct value as the addend.
if (!BC->HasFixedLoadAddress && RelSize == 8)
SkipVerification = true;
if (IsSectionRelocation && !IsAArch64) {
ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress);
assert(Section && "section expected for section relocation");
SymbolName = "section " + std::string(Section->getName());
// Convert section symbol relocations to regular relocations inside
// non-section symbols.
if (Section->containsAddress(ExtractedValue) && !IsPCRelative) {
SymbolAddress = ExtractedValue;
Addend = 0;
} else {
Addend = ExtractedValue - (SymbolAddress - PCRelOffset);
}
}
// If no symbol has been found or if it is a relocation requiring the
// creation of a GOT entry, do not link against the symbol but against
// whatever address was extracted from the instruction itself. We are
// not creating a GOT entry as this was already processed by the linker.
// For GOT relocs, do not subtract addend as the addend does not refer
// to this instruction's target, but it refers to the target in the GOT
// entry.
if (Relocation::isGOT(RType)) {
Addend = 0;
SymbolAddress = ExtractedValue + PCRelOffset;
} else if (Relocation::isTLS(RType)) {
SkipVerification = true;
} else if (!SymbolAddress) {
assert(!IsSectionRelocation);
if (ExtractedValue || Addend == 0 || IsPCRelative) {
SymbolAddress =
truncateToSize(ExtractedValue - Addend + PCRelOffset, RelSize);
} else {
// This is weird case. The extracted value is zero but the addend is
// non-zero and the relocation is not pc-rel. Using the previous logic,
// the SymbolAddress would end up as a huge number. Seen in
// exceptions_pic.test.
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocation @ 0x"
<< Twine::utohexstr(Rel.getOffset())
<< " value does not match addend for "
<< "relocation to undefined symbol.\n");
return true;
}
}
auto verifyExtractedValue = [&]() {
if (SkipVerification)
return true;
if (IsAArch64)
return true;
if (SymbolName == "__hot_start" || SymbolName == "__hot_end")
return true;
if (RType == ELF::R_X86_64_PLT32)
return true;
return truncateToSize(ExtractedValue, RelSize) ==
truncateToSize(SymbolAddress + Addend - PCRelOffset, RelSize);
};
(void)verifyExtractedValue;
assert(verifyExtractedValue() && "mismatched extracted relocation value");
return true;
}
void RewriteInstance::processDynamicRelocations() {
// Read relocations for PLT - DT_JMPREL.
if (PLTRelocationsSize > 0) {
ErrorOr<BinarySection &> PLTRelSectionOrErr =
BC->getSectionForAddress(*PLTRelocationsAddress);
if (!PLTRelSectionOrErr)
report_error("unable to find section corresponding to DT_JMPREL",
PLTRelSectionOrErr.getError());
if (PLTRelSectionOrErr->getSize() != PLTRelocationsSize)
report_error("section size mismatch for DT_PLTRELSZ",
errc::executable_format_error);
readDynamicRelocations(PLTRelSectionOrErr->getSectionRef());
}
// The rest of dynamic relocations - DT_RELA.
if (DynamicRelocationsSize > 0) {
ErrorOr<BinarySection &> DynamicRelSectionOrErr =
BC->getSectionForAddress(*DynamicRelocationsAddress);
if (!DynamicRelSectionOrErr)
report_error("unable to find section corresponding to DT_RELA",
DynamicRelSectionOrErr.getError());
if (DynamicRelSectionOrErr->getSize() != DynamicRelocationsSize)
report_error("section size mismatch for DT_RELASZ",
errc::executable_format_error);
readDynamicRelocations(DynamicRelSectionOrErr->getSectionRef());
}
}
void RewriteInstance::processRelocations() {
if (!BC->HasRelocations)
return;
for (const SectionRef &Section : InputFile->sections()) {
if (cantFail(Section.getRelocatedSection()) != InputFile->section_end() &&
!BinarySection(*BC, Section).isAllocatable())
readRelocations(Section);
}
if (NumFailedRelocations)
errs() << "BOLT-WARNING: Failed to analyze " << NumFailedRelocations
<< " relocations\n";
}
void RewriteInstance::insertLKMarker(uint64_t PC, uint64_t SectionOffset,
int32_t PCRelativeOffset,
bool IsPCRelative, StringRef SectionName) {
BC->LKMarkers[PC].emplace_back(LKInstructionMarkerInfo{
SectionOffset, PCRelativeOffset, IsPCRelative, SectionName});
}
void RewriteInstance::processLKSections() {
assert(opts::LinuxKernelMode &&
"process Linux Kernel special sections and their relocations only in "
"linux kernel mode.\n");
processLKExTable();
processLKPCIFixup();
processLKKSymtab();
processLKKSymtab(true);
processLKBugTable();
processLKSMPLocks();
}
/// Process __ex_table section of Linux Kernel.
/// This section contains information regarding kernel level exception
/// handling (https://www.kernel.org/doc/html/latest/x86/exception-tables.html).
/// More documentation is in arch/x86/include/asm/extable.h.
///
/// The section is the list of the following structures:
///
/// struct exception_table_entry {
/// int insn;
/// int fixup;
/// int handler;
/// };
///
void RewriteInstance::processLKExTable() {
ErrorOr<BinarySection &> SectionOrError =
BC->getUniqueSectionByName("__ex_table");
if (!SectionOrError)
return;
const uint64_t SectionSize = SectionOrError->getSize();
const uint64_t SectionAddress = SectionOrError->getAddress();
assert((SectionSize % 12) == 0 &&
"The size of the __ex_table section should be a multiple of 12");
for (uint64_t I = 0; I < SectionSize; I += 4) {
const uint64_t EntryAddress = SectionAddress + I;
ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4);
assert(Offset && "failed reading PC-relative offset for __ex_table");
int32_t SignedOffset = *Offset;
const uint64_t RefAddress = EntryAddress + SignedOffset;
BinaryFunction *ContainingBF =
BC->getBinaryFunctionContainingAddress(RefAddress);
if (!ContainingBF)
continue;
MCSymbol *ReferencedSymbol = ContainingBF->getSymbol();
const uint64_t FunctionOffset = RefAddress - ContainingBF->getAddress();
switch (I % 12) {
default:
llvm_unreachable("bad alignment of __ex_table");
break;
case 0:
// insn
insertLKMarker(RefAddress, I, SignedOffset, true, "__ex_table");
break;
case 4:
// fixup
if (FunctionOffset)
ReferencedSymbol = ContainingBF->addEntryPointAtOffset(FunctionOffset);
BC->addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(),
0, *Offset);
break;
case 8:
// handler
assert(!FunctionOffset &&
"__ex_table handler entry should point to function start");
BC->addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(),
0, *Offset);
break;
}
}
}
/// Process .pci_fixup section of Linux Kernel.
/// This section contains a list of entries for different PCI devices and their
/// corresponding hook handler (code pointer where the fixup
/// code resides, usually on x86_64 it is an entry PC relative 32 bit offset).
/// Documentation is in include/linux/pci.h.
void RewriteInstance::processLKPCIFixup() {
ErrorOr<BinarySection &> SectionOrError =
BC->getUniqueSectionByName(".pci_fixup");
assert(SectionOrError &&
".pci_fixup section not found in Linux Kernel binary");
const uint64_t SectionSize = SectionOrError->getSize();
const uint64_t SectionAddress = SectionOrError->getAddress();
assert((SectionSize % 16) == 0 && ".pci_fixup size is not a multiple of 16");
for (uint64_t I = 12; I + 4 <= SectionSize; I += 16) {
const uint64_t PC = SectionAddress + I;
ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(PC, 4);
assert(Offset && "cannot read value from .pci_fixup");
const int32_t SignedOffset = *Offset;
const uint64_t HookupAddress = PC + SignedOffset;
BinaryFunction *HookupFunction =
BC->getBinaryFunctionAtAddress(HookupAddress);
assert(HookupFunction && "expected function for entry in .pci_fixup");
BC->addRelocation(PC, HookupFunction->getSymbol(), Relocation::getPC32(), 0,
*Offset);
}
}
/// Process __ksymtab[_gpl] sections of Linux Kernel.
/// This section lists all the vmlinux symbols that kernel modules can access.
///
/// All the entries are 4 bytes each and hence we can read them by one by one
/// and ignore the ones that are not pointing to the .text section. All pointers
/// are PC relative offsets. Always, points to the beginning of the function.
void RewriteInstance::processLKKSymtab(bool IsGPL) {
StringRef SectionName = "__ksymtab";
if (IsGPL)
SectionName = "__ksymtab_gpl";
ErrorOr<BinarySection &> SectionOrError =
BC->getUniqueSectionByName(SectionName);
assert(SectionOrError &&
"__ksymtab[_gpl] section not found in Linux Kernel binary");
const uint64_t SectionSize = SectionOrError->getSize();
const uint64_t SectionAddress = SectionOrError->getAddress();
assert((SectionSize % 4) == 0 &&
"The size of the __ksymtab[_gpl] section should be a multiple of 4");
for (uint64_t I = 0; I < SectionSize; I += 4) {
const uint64_t EntryAddress = SectionAddress + I;
ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4);
assert(Offset && "Reading valid PC-relative offset for a ksymtab entry");
const int32_t SignedOffset = *Offset;
const uint64_t RefAddress = EntryAddress + SignedOffset;
BinaryFunction *BF = BC->getBinaryFunctionAtAddress(RefAddress);
if (!BF)
continue;
BC->addRelocation(EntryAddress, BF->getSymbol(), Relocation::getPC32(), 0,
*Offset);
}
}
/// Process __bug_table section.
/// This section contains information useful for kernel debugging.
/// Each entry in the section is a struct bug_entry that contains a pointer to
/// the ud2 instruction corresponding to the bug, corresponding file name (both
/// pointers use PC relative offset addressing), line number, and flags.
/// The definition of the struct bug_entry can be found in
/// `include/asm-generic/bug.h`
void RewriteInstance::processLKBugTable() {
ErrorOr<BinarySection &> SectionOrError =
BC->getUniqueSectionByName("__bug_table");
if (!SectionOrError)
return;
const uint64_t SectionSize = SectionOrError->getSize();
const uint64_t SectionAddress = SectionOrError->getAddress();
assert((SectionSize % 12) == 0 &&
"The size of the __bug_table section should be a multiple of 12");
for (uint64_t I = 0; I < SectionSize; I += 12) {
const uint64_t EntryAddress = SectionAddress + I;
ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4);
assert(Offset &&
"Reading valid PC-relative offset for a __bug_table entry");
const int32_t SignedOffset = *Offset;
const uint64_t RefAddress = EntryAddress + SignedOffset;
assert(BC->getBinaryFunctionContainingAddress(RefAddress) &&
"__bug_table entries should point to a function");
insertLKMarker(RefAddress, I, SignedOffset, true, "__bug_table");
}
}
/// .smp_locks section contains PC-relative references to instructions with LOCK
/// prefix. The prefix can be converted to NOP at boot time on non-SMP systems.
void RewriteInstance::processLKSMPLocks() {
ErrorOr<BinarySection &> SectionOrError =
BC->getUniqueSectionByName(".smp_locks");
if (!SectionOrError)
return;
uint64_t SectionSize = SectionOrError->getSize();
const uint64_t SectionAddress = SectionOrError->getAddress();
assert((SectionSize % 4) == 0 &&
"The size of the .smp_locks section should be a multiple of 4");
for (uint64_t I = 0; I < SectionSize; I += 4) {
const uint64_t EntryAddress = SectionAddress + I;
ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4);
assert(Offset && "Reading valid PC-relative offset for a .smp_locks entry");
int32_t SignedOffset = *Offset;
uint64_t RefAddress = EntryAddress + SignedOffset;
BinaryFunction *ContainingBF =
BC->getBinaryFunctionContainingAddress(RefAddress);
if (!ContainingBF)
continue;
insertLKMarker(RefAddress, I, SignedOffset, true, ".smp_locks");
}
}
void RewriteInstance::readDynamicRelocations(const SectionRef &Section) {
assert(BinarySection(*BC, Section).isAllocatable() && "allocatable expected");
LLVM_DEBUG({
StringRef SectionName = cantFail(Section.getName());
dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName
<< ":\n";
});
for (const RelocationRef &Rel : Section.relocations()) {
uint64_t RType = Rel.getType();
if (Relocation::isNone(RType))
continue;
StringRef SymbolName = "<none>";
MCSymbol *Symbol = nullptr;
uint64_t SymbolAddress = 0;
const uint64_t Addend = getRelocationAddend(InputFile, Rel);
symbol_iterator SymbolIter = Rel.getSymbol();
if (SymbolIter != InputFile->symbol_end()) {
SymbolName = cantFail(SymbolIter->getName());
BinaryData *BD = BC->getBinaryDataByName(SymbolName);
Symbol = BD ? BD->getSymbol()
: BC->getOrCreateUndefinedGlobalSymbol(SymbolName);
SymbolAddress = cantFail(SymbolIter->getAddress());
(void)SymbolAddress;
}
LLVM_DEBUG(
SmallString<16> TypeName;
Rel.getTypeName(TypeName);
dbgs() << "BOLT-DEBUG: dynamic relocation at 0x"
<< Twine::utohexstr(Rel.getOffset()) << " : " << TypeName
<< " : " << SymbolName << " : " << Twine::utohexstr(SymbolAddress)
<< " : + 0x" << Twine::utohexstr(Addend) << '\n'
);
BC->addDynamicRelocation(Rel.getOffset(), Symbol, Rel.getType(), Addend);
}
}
void RewriteInstance::readRelocations(const SectionRef &Section) {
LLVM_DEBUG({
StringRef SectionName = cantFail(Section.getName());
dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName
<< ":\n";
});
if (BinarySection(*BC, Section).isAllocatable()) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring runtime relocations\n");
return;
}
section_iterator SecIter = cantFail(Section.getRelocatedSection());
assert(SecIter != InputFile->section_end() && "relocated section expected");
SectionRef RelocatedSection = *SecIter;
StringRef RelocatedSectionName = cantFail(RelocatedSection.getName());
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocated section is "
<< RelocatedSectionName << '\n');
if (!BinarySection(*BC, RelocatedSection).isAllocatable()) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocations against "
<< "non-allocatable section\n");
return;
}
const bool SkipRelocs = StringSwitch<bool>(RelocatedSectionName)
.Cases(".plt", ".rela.plt", ".got.plt",
".eh_frame", ".gcc_except_table", true)
.Default(false);
if (SkipRelocs) {
LLVM_DEBUG(
dbgs() << "BOLT-DEBUG: ignoring relocations against known section\n");
return;
}
const bool IsAArch64 = BC->isAArch64();
const bool IsFromCode = RelocatedSection.isText();
auto printRelocationInfo = [&](const RelocationRef &Rel,
StringRef SymbolName,
uint64_t SymbolAddress,
uint64_t Addend,
uint64_t ExtractedValue) {
SmallString<16> TypeName;
Rel.getTypeName(TypeName);
const uint64_t Address = SymbolAddress + Addend;
ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress);
dbgs() << "Relocation: offset = 0x"
<< Twine::utohexstr(Rel.getOffset())
<< "; type = " << TypeName
<< "; value = 0x" << Twine::utohexstr(ExtractedValue)
<< "; symbol = " << SymbolName
<< " (" << (Section ? Section->getName() : "") << ")"
<< "; symbol address = 0x" << Twine::utohexstr(SymbolAddress)
<< "; addend = 0x" << Twine::utohexstr(Addend)
<< "; address = 0x" << Twine::utohexstr(Address)
<< "; in = ";
if (BinaryFunction *Func = BC->getBinaryFunctionContainingAddress(
Rel.getOffset(), false, IsAArch64))
dbgs() << Func->getPrintName() << "\n";
else
dbgs() << BC->getSectionForAddress(Rel.getOffset())->getName() << "\n";
};
for (const RelocationRef &Rel : Section.relocations()) {
SmallString<16> TypeName;
Rel.getTypeName(TypeName);
uint64_t RType = Rel.getType();
if (Relocation::isNone(RType))
continue;
// Adjust the relocation type as the linker might have skewed it.
if (BC->isX86() && (RType & ELF::R_X86_64_converted_reloc_bit)) {
if (opts::Verbosity >= 1)
dbgs() << "BOLT-WARNING: ignoring R_X86_64_converted_reloc_bit\n";
RType &= ~ELF::R_X86_64_converted_reloc_bit;
}
if (Relocation::isTLS(RType)) {
// No special handling required for TLS relocations on X86.
if (BC->isX86())
continue;
// The non-got related TLS relocations on AArch64 also could be skipped.
if (!Relocation::isGOT(RType))
continue;
}
if (BC->getDynamicRelocationAt(Rel.getOffset())) {
LLVM_DEBUG(
dbgs() << "BOLT-DEBUG: address 0x"
<< Twine::utohexstr(Rel.getOffset())
<< " has a dynamic relocation against it. Ignoring static "
"relocation.\n");
continue;
}
std::string SymbolName;
uint64_t SymbolAddress;
int64_t Addend;
uint64_t ExtractedValue;
bool IsSectionRelocation;
bool Skip;
if (!analyzeRelocation(Rel, RType, SymbolName, IsSectionRelocation,
SymbolAddress, Addend, ExtractedValue, Skip)) {
LLVM_DEBUG(dbgs() << "BOLT-WARNING: failed to analyze relocation @ "
<< "offset = 0x" << Twine::utohexstr(Rel.getOffset())
<< "; type name = " << TypeName << '\n');
++NumFailedRelocations;
continue;
}
if (Skip) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: skipping relocation @ offset = 0x"
<< Twine::utohexstr(Rel.getOffset())
<< "; type name = " << TypeName << '\n');
continue;
}
const uint64_t Address = SymbolAddress + Addend;
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: "; printRelocationInfo(
Rel, SymbolName, SymbolAddress, Addend, ExtractedValue));
BinaryFunction *ContainingBF = nullptr;
if (IsFromCode) {
ContainingBF =
BC->getBinaryFunctionContainingAddress(Rel.getOffset(),
/*CheckPastEnd*/ false,
/*UseMaxSize*/ true);
assert(ContainingBF && "cannot find function for address in code");
if (!IsAArch64 && !ContainingBF->containsAddress(Rel.getOffset())) {
if (opts::Verbosity >= 1)
outs() << "BOLT-INFO: " << *ContainingBF
<< " has relocations in padding area\n";
ContainingBF->setSize(ContainingBF->getMaxSize());
ContainingBF->setSimple(false);
continue;
}
}
// PC-relative relocations from data to code are tricky since the original
// information is typically lost after linking even with '--emit-relocs'.
// They are normally used by PIC-style jump tables and reference both
// the jump table and jump destination by computing the difference
// between the two. If we blindly apply the relocation it will appear
// that it references an arbitrary location in the code, possibly even
// in a different function from that containing the jump table.
if (!IsAArch64 && Relocation::isPCRelative(RType)) {
// Just register the fact that we have PC-relative relocation at a given
// address. The actual referenced label/address cannot be determined
// from linker data alone.
if (!IsFromCode)
BC->addPCRelativeDataRelocation(Rel.getOffset());
LLVM_DEBUG(
dbgs() << "BOLT-DEBUG: not creating PC-relative relocation at 0x"
<< Twine::utohexstr(Rel.getOffset()) << " for " << SymbolName
<< "\n");
continue;
}
bool ForceRelocation = BC->forceSymbolRelocations(SymbolName);
ErrorOr<BinarySection &> RefSection =
std::make_error_code(std::errc::bad_address);
if (BC->isAArch64() && Relocation::isGOT(RType)) {
ForceRelocation = true;
} else {
RefSection = BC->getSectionForAddress(SymbolAddress);
if (!RefSection && !ForceRelocation) {
LLVM_DEBUG(
dbgs() << "BOLT-DEBUG: cannot determine referenced section.\n");
continue;
}
}
const bool IsToCode = RefSection && RefSection->isText();
// Occasionally we may see a reference past the last byte of the function
// typically as a result of __builtin_unreachable(). Check it here.
BinaryFunction *ReferencedBF = BC->getBinaryFunctionContainingAddress(
Address, /*CheckPastEnd*/ true, /*UseMaxSize*/ IsAArch64);
if (!IsSectionRelocation) {
if (BinaryFunction *BF =
BC->getBinaryFunctionContainingAddress(SymbolAddress)) {
if (BF != ReferencedBF) {
// It's possible we are referencing a function without referencing any
// code, e.g. when taking a bitmask action on a function address.
errs() << "BOLT-WARNING: non-standard function reference (e.g. "
"bitmask) detected against function "
<< *BF;
if (IsFromCode)
errs() << " from function " << *ContainingBF << '\n';
else
errs() << " from data section at 0x"
<< Twine::utohexstr(Rel.getOffset()) << '\n';
LLVM_DEBUG(printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend,
ExtractedValue));
ReferencedBF = BF;
}
}
} else if (ReferencedBF) {
assert(RefSection && "section expected for section relocation");
if (*ReferencedBF->getOriginSection() != *RefSection) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring false function reference\n");
ReferencedBF = nullptr;
}
}
// Workaround for a member function pointer de-virtualization bug. We check
// if a non-pc-relative relocation in the code is pointing to (fptr - 1).
if (IsToCode && ContainingBF && !Relocation::isPCRelative(RType) &&
(!ReferencedBF || (ReferencedBF->getAddress() != Address))) {
if (const BinaryFunction *RogueBF =
BC->getBinaryFunctionAtAddress(Address + 1)) {
// Do an extra check that the function was referenced previously.
// It's a linear search, but it should rarely happen.
bool Found = false;
for (const auto &RelKV : ContainingBF->Relocations) {
const Relocation &Rel = RelKV.second;
if (Rel.Symbol == RogueBF->getSymbol() &&
!Relocation::isPCRelative(Rel.Type)) {
Found = true;
break;
}
}
if (Found) {
errs() << "BOLT-WARNING: detected possible compiler "
"de-virtualization bug: -1 addend used with "
"non-pc-relative relocation against function "
<< *RogueBF << " in function " << *ContainingBF << '\n';
continue;
}
}
}
MCSymbol *ReferencedSymbol = nullptr;
if (ForceRelocation) {
std::string Name = Relocation::isGOT(RType) ? "Zero" : SymbolName;
ReferencedSymbol = BC->registerNameAtAddress(Name, 0, 0, 0);
SymbolAddress = 0;
if (Relocation::isGOT(RType))
Addend = Address;
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: forcing relocation against symbol "
<< SymbolName << " with addend " << Addend << '\n');
} else if (ReferencedBF) {
ReferencedSymbol = ReferencedBF->getSymbol();
uint64_t RefFunctionOffset = 0;
// Adjust the point of reference to a code location inside a function.
if (ReferencedBF->containsAddress(Address, /*UseMaxSize = */true)) {
RefFunctionOffset = Address - ReferencedBF->getAddress();
if (RefFunctionOffset) {
if (ContainingBF && ContainingBF != ReferencedBF) {
ReferencedSymbol =
ReferencedBF->addEntryPointAtOffset(RefFunctionOffset);
} else {
ReferencedSymbol =
ReferencedBF->getOrCreateLocalLabel(Address,
/*CreatePastEnd =*/true);
ReferencedBF->registerReferencedOffset(RefFunctionOffset);
}
if (opts::Verbosity > 1 &&
!BinarySection(*BC, RelocatedSection).isReadOnly())
errs() << "BOLT-WARNING: writable reference into the middle of "
<< "the function " << *ReferencedBF
<< " detected at address 0x"
<< Twine::utohexstr(Rel.getOffset()) << '\n';
}
SymbolAddress = Address;
Addend = 0;
}
LLVM_DEBUG(
dbgs() << " referenced function " << *ReferencedBF;
if (Address != ReferencedBF->getAddress())
dbgs() << " at offset 0x" << Twine::utohexstr(RefFunctionOffset);
dbgs() << '\n'
);
} else {
if (IsToCode && SymbolAddress) {
// This can happen e.g. with PIC-style jump tables.
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: no corresponding function for "
"relocation against code\n");
}
// In AArch64 there are zero reasons to keep a reference to the
// "original" symbol plus addend. The original symbol is probably just a
// section symbol. If we are here, this means we are probably accessing
// data, so it is imperative to keep the original address.
if (IsAArch64) {
SymbolName = ("SYMBOLat0x" + Twine::utohexstr(Address)).str();
SymbolAddress = Address;
Addend = 0;
}
if (BinaryData *BD = BC->getBinaryDataContainingAddress(SymbolAddress)) {
// Note: this assertion is trying to check sanity of BinaryData objects
// but AArch64 has inferred and incomplete object locations coming from
// GOT/TLS or any other non-trivial relocation (that requires creation
// of sections and whose symbol address is not really what should be
// encoded in the instruction). So we essentially disabled this check
// for AArch64 and live with bogus names for objects.
assert((IsAArch64 || IsSectionRelocation ||
BD->nameStartsWith(SymbolName) ||
BD->nameStartsWith("PG" + SymbolName) ||
(BD->nameStartsWith("ANONYMOUS") &&
(BD->getSectionName().startswith(".plt") ||
BD->getSectionName().endswith(".plt")))) &&
"BOLT symbol names of all non-section relocations must match "
"up with symbol names referenced in the relocation");
if (IsSectionRelocation)
BC->markAmbiguousRelocations(*BD, Address);
ReferencedSymbol = BD->getSymbol();
Addend += (SymbolAddress - BD->getAddress());
SymbolAddress = BD->getAddress();
assert(Address == SymbolAddress + Addend);
} else {
// These are mostly local data symbols but undefined symbols
// in relocation sections can get through here too, from .plt.
assert(
(IsAArch64 || IsSectionRelocation ||
BC->getSectionNameForAddress(SymbolAddress)->startswith(".plt")) &&
"known symbols should not resolve to anonymous locals");
if (IsSectionRelocation) {
ReferencedSymbol =
BC->getOrCreateGlobalSymbol(SymbolAddress, "SYMBOLat");
} else {
SymbolRef Symbol = *Rel.getSymbol();
const uint64_t SymbolSize =
IsAArch64 ? 0 : ELFSymbolRef(Symbol).getSize();
const uint64_t SymbolAlignment =
IsAArch64 ? 1 : Symbol.getAlignment();
const uint32_t SymbolFlags = cantFail(Symbol.getFlags());
std::string Name;
if (SymbolFlags & SymbolRef::SF_Global) {
Name = SymbolName;
} else {
if (StringRef(SymbolName)
.startswith(BC->AsmInfo->getPrivateGlobalPrefix()))
Name = NR.uniquify("PG" + SymbolName);
else
Name = NR.uniquify(SymbolName);
}
ReferencedSymbol = BC->registerNameAtAddress(
Name, SymbolAddress, SymbolSize, SymbolAlignment, SymbolFlags);
}
if (IsSectionRelocation) {
BinaryData *BD = BC->getBinaryDataByName(ReferencedSymbol->getName());
BC->markAmbiguousRelocations(*BD, Address);
}
}
}
auto checkMaxDataRelocations = [&]() {
++NumDataRelocations;
if (opts::MaxDataRelocations &&
NumDataRelocations + 1 == opts::MaxDataRelocations) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: processing ending on data relocation "
<< NumDataRelocations << ": ");
printRelocationInfo(Rel, ReferencedSymbol->getName(), SymbolAddress,
Addend, ExtractedValue);
}
return (!opts::MaxDataRelocations ||
NumDataRelocations < opts::MaxDataRelocations);
};
if ((RefSection && refersToReorderedSection(RefSection)) ||
(opts::ForceToDataRelocations && checkMaxDataRelocations()))
ForceRelocation = true;
if (IsFromCode) {
ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType,
Addend, ExtractedValue);
} else if (IsToCode || ForceRelocation) {
BC->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, Addend,
ExtractedValue);
} else {
LLVM_DEBUG(
dbgs() << "BOLT-DEBUG: ignoring relocation from data to data\n");
}
}
}
void RewriteInstance::selectFunctionsToProcess() {
// Extend the list of functions to process or skip from a file.
auto populateFunctionNames = [](cl::opt<std::string> &FunctionNamesFile,
cl::list<std::string> &FunctionNames) {
if (FunctionNamesFile.empty())
return;
std::ifstream FuncsFile(FunctionNamesFile, std::ios::in);
std::string FuncName;
while (std::getline(FuncsFile, FuncName))
FunctionNames.push_back(FuncName);
};
populateFunctionNames(opts::FunctionNamesFile, opts::ForceFunctionNames);
populateFunctionNames(opts::SkipFunctionNamesFile, opts::SkipFunctionNames);
populateFunctionNames(opts::FunctionNamesFileNR, opts::ForceFunctionNamesNR);
// Make a set of functions to process to speed up lookups.
std::unordered_set<std::string> ForceFunctionsNR(
opts::ForceFunctionNamesNR.begin(), opts::ForceFunctionNamesNR.end());
if ((!opts::ForceFunctionNames.empty() ||
!opts::ForceFunctionNamesNR.empty()) &&
!opts::SkipFunctionNames.empty()) {
errs() << "BOLT-ERROR: cannot select functions to process and skip at the "
"same time. Please use only one type of selection.\n";
exit(1);
}
uint64_t LiteThresholdExecCount = 0;
if (opts::LiteThresholdPct) {
if (opts::LiteThresholdPct > 100)
opts::LiteThresholdPct = 100;
std::vector<const BinaryFunction *> TopFunctions;
for (auto &BFI : BC->getBinaryFunctions()) {
const BinaryFunction &Function = BFI.second;
if (ProfileReader->mayHaveProfileData(Function))
TopFunctions.push_back(&Function);
}
std::sort(TopFunctions.begin(), TopFunctions.end(),
[](const BinaryFunction *A, const BinaryFunction *B) {
return
A->getKnownExecutionCount() < B->getKnownExecutionCount();
});
size_t Index = TopFunctions.size() * opts::LiteThresholdPct / 100;
if (Index)
--Index;
LiteThresholdExecCount = TopFunctions[Index]->getKnownExecutionCount();
outs() << "BOLT-INFO: limiting processing to functions with at least "
<< LiteThresholdExecCount << " invocations\n";
}
LiteThresholdExecCount = std::max(
LiteThresholdExecCount, static_cast<uint64_t>(opts::LiteThresholdCount));
uint64_t NumFunctionsToProcess = 0;
auto shouldProcess = [&](const BinaryFunction &Function) {
if (opts::MaxFunctions && NumFunctionsToProcess > opts::MaxFunctions)
return false;
// If the list is not empty, only process functions from the list.
if (!opts::ForceFunctionNames.empty() || !ForceFunctionsNR.empty()) {
// Regex check (-funcs and -funcs-file options).
for (std::string &Name : opts::ForceFunctionNames)
if (Function.hasNameRegex(Name))
return true;
// Non-regex check (-funcs-no-regex and -funcs-file-no-regex).
Optional<StringRef> Match =
Function.forEachName([&ForceFunctionsNR](StringRef Name) {
return ForceFunctionsNR.count(Name.str());
});
return Match.hasValue();
}
for (std::string &Name : opts::SkipFunctionNames)
if (Function.hasNameRegex(Name))
return false;
if (opts::Lite) {
if (ProfileReader && !ProfileReader->mayHaveProfileData(Function))
return false;
if (Function.getKnownExecutionCount() < LiteThresholdExecCount)
return false;
}
return true;
};
for (auto &BFI : BC->getBinaryFunctions()) {
BinaryFunction &Function = BFI.second;
// Pseudo functions are explicitly marked by us not to be processed.
if (Function.isPseudo()) {
Function.IsIgnored = true;
Function.HasExternalRefRelocations = true;
continue;
}
if (!shouldProcess(Function)) {
LLVM_DEBUG(dbgs() << "BOLT-INFO: skipping processing of function "
<< Function << " per user request\n");
Function.setIgnored();
} else {
++NumFunctionsToProcess;
if (opts::MaxFunctions && NumFunctionsToProcess == opts::MaxFunctions)
outs() << "BOLT-INFO: processing ending on " << Function << '\n';
}
}
}
void RewriteInstance::readDebugInfo() {
NamedRegionTimer T("readDebugInfo", "read debug info", TimerGroupName,
TimerGroupDesc, opts::TimeRewrite);
if (!opts::UpdateDebugSections)
return;
BC->preprocessDebugInfo();
}
void RewriteInstance::preprocessProfileData() {
if (!ProfileReader)
return;
NamedRegionTimer T("preprocessprofile", "pre-process profile data",
TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
outs() << "BOLT-INFO: pre-processing profile using "
<< ProfileReader->getReaderName() << '\n';
if (BAT->enabledFor(InputFile)) {
outs() << "BOLT-INFO: profile collection done on a binary already "
"processed by BOLT\n";
ProfileReader->setBAT(&*BAT);
}
if (Error E = ProfileReader->preprocessProfile(*BC.get()))
report_error("cannot pre-process profile", std::move(E));
if (!BC->hasSymbolsWithFileName() && ProfileReader->hasLocalsWithFileName() &&
!opts::AllowStripped) {
errs() << "BOLT-ERROR: input binary does not have local file symbols "
"but profile data includes function names with embedded file "
"names. It appears that the input binary was stripped while a "
"profiled binary was not. If you know what you are doing and "
"wish to proceed, use -allow-stripped option.\n";
exit(1);
}
}
void RewriteInstance::processProfileDataPreCFG() {
if (!ProfileReader)
return;
NamedRegionTimer T("processprofile-precfg", "process profile data pre-CFG",
TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
if (Error E = ProfileReader->readProfilePreCFG(*BC.get()))
report_error("cannot read profile pre-CFG", std::move(E));
}
void RewriteInstance::processProfileData() {
if (!ProfileReader)
return;
NamedRegionTimer T("processprofile", "process profile data", TimerGroupName,
TimerGroupDesc, opts::TimeRewrite);
if (Error E = ProfileReader->readProfile(*BC.get()))
report_error("cannot read profile", std::move(E));
if (!opts::SaveProfile.empty()) {
YAMLProfileWriter PW(opts::SaveProfile);
PW.writeProfile(*this);
}
// Release memory used by profile reader.
ProfileReader.reset();
if (opts::AggregateOnly)
exit(0);
}
void RewriteInstance::disassembleFunctions() {
NamedRegionTimer T("disassembleFunctions", "disassemble functions",
TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
for (auto &BFI : BC->getBinaryFunctions()) {
BinaryFunction &Function = BFI.second;
ErrorOr<ArrayRef<uint8_t>> FunctionData = Function.getData();
if (!FunctionData) {
errs() << "BOLT-ERROR: corresponding section is non-executable or "
<< "empty for function " << Function << '\n';
exit(1);
}
// Treat zero-sized functions as non-simple ones.
if (Function.getSize() == 0) {
Function.setSimple(false);
continue;
}
// Offset of the function in the file.
const auto *FileBegin =
reinterpret_cast<const uint8_t *>(InputFile->getData().data());
Function.setFileOffset(FunctionData->begin() - FileBegin);
if (!shouldDisassemble(Function)) {
NamedRegionTimer T("scan", "scan functions", "buildfuncs",
"Scan Binary Functions", opts::TimeBuild);
Function.scanExternalRefs();
Function.setSimple(false);
continue;
}
if (!Function.disassemble()) {
if (opts::processAllFunctions())
BC->exitWithBugReport("function cannot be properly disassembled. "
"Unable to continue in relocation mode.",
Function);
if (opts::Verbosity >= 1)
outs() << "BOLT-INFO: could not disassemble function " << Function
<< ". Will ignore.\n";
// Forcefully ignore the function.
Function.setIgnored();
continue;
}
if (opts::PrintAll || opts::PrintDisasm)
Function.print(outs(), "after disassembly", true);
BC->processInterproceduralReferences(Function);
}
BC->populateJumpTables();
BC->skipMarkedFragments();
for (auto &BFI : BC->getBinaryFunctions()) {
BinaryFunction &Function = BFI.second;
if (!shouldDisassemble(Function))
continue;
Function.postProcessEntryPoints();
Function.postProcessJumpTables();
}
BC->adjustCodePadding();
for (auto &BFI : BC->getBinaryFunctions()) {
BinaryFunction &Function = BFI.second;
if (!shouldDisassemble(Function))
continue;
if (!Function.isSimple()) {
assert((!BC->HasRelocations || Function.getSize() == 0) &&
"unexpected non-simple function in relocation mode");
continue;
}
// Fill in CFI information for this function
if (!Function.trapsOnEntry() && !CFIRdWrt->fillCFIInfoFor(Function)) {
if (BC->HasRelocations) {
BC->exitWithBugReport("unable to fill CFI.", Function);
} else {
errs() << "BOLT-WARNING: unable to fill CFI for function " << Function
<< ". Skipping.\n";
Function.setSimple(false);
continue;
}
}
// Parse LSDA.
if (Function.getLSDAAddress() != 0)
Function.parseLSDA(getLSDAData(), getLSDAAddress());
}
}
void RewriteInstance::buildFunctionsCFG() {
NamedRegionTimer T("buildCFG", "buildCFG", "buildfuncs",
"Build Binary Functions", opts::TimeBuild);
// Create annotation indices to allow lock-free execution
BC->MIB->getOrCreateAnnotationIndex("JTIndexReg");
BC->MIB->getOrCreateAnnotationIndex("NOP");
BC->MIB->getOrCreateAnnotationIndex("Size");
ParallelUtilities::WorkFuncWithAllocTy WorkFun =
[&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId) {
if (!BF.buildCFG(AllocId))
return;
if (opts::PrintAll)
BF.print(outs(), "while building cfg", true);
};
ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) {
return !shouldDisassemble(BF) || !BF.isSimple();
};
ParallelUtilities::runOnEachFunctionWithUniqueAllocId(
*BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun,
SkipPredicate, "disassembleFunctions-buildCFG",
/*ForceSequential*/ opts::SequentialDisassembly || opts::PrintAll);
BC->postProcessSymbolTable();
}
void RewriteInstance::postProcessFunctions() {
BC->TotalScore = 0;
BC->SumExecutionCount = 0;
for (auto &BFI : BC->getBinaryFunctions()) {
BinaryFunction &Function = BFI.second;
if (Function.empty())
continue;
Function.postProcessCFG();
if (opts::PrintAll || opts::PrintCFG)
Function.print(outs(), "after building cfg", true);
if (opts::DumpDotAll)
Function.dumpGraphForPass("00_build-cfg");
if (opts::PrintLoopInfo) {
Function.calculateLoopInfo();
Function.printLoopInfo(outs());
}
BC->TotalScore += Function.getFunctionScore();
BC->SumExecutionCount += Function.getKnownExecutionCount();
}
if (opts::PrintGlobals) {
outs() << "BOLT-INFO: Global symbols:\n";
BC->printGlobalSymbols(outs());
}
}
void RewriteInstance::runOptimizationPasses() {
NamedRegionTimer T("runOptimizationPasses", "run optimization passes",
TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
BinaryFunctionPassManager::runAllPasses(*BC);
}
namespace {
class BOLTSymbolResolver : public JITSymbolResolver {
BinaryContext &BC;
public:
BOLTSymbolResolver(BinaryContext &BC) : BC(BC) {}
// We are responsible for all symbols
Expected<LookupSet> getResponsibilitySet(const LookupSet &Symbols) override {
return Symbols;
}
// Some of our symbols may resolve to zero and this should not be an error
bool allowsZeroSymbols() override { return true; }
/// Resolves the address of each symbol requested
void lookup(const LookupSet &Symbols,
OnResolvedFunction OnResolved) override {
JITSymbolResolver::LookupResult AllResults;
if (BC.EFMM->ObjectsLoaded) {
for (const StringRef &Symbol : Symbols) {
std::string SymName = Symbol.str();
LLVM_DEBUG(dbgs() << "BOLT: looking for " << SymName << "\n");
// Resolve to a PLT entry if possible
if (BinaryData *I = BC.getBinaryDataByName(SymName + "@PLT")) {
AllResults[Symbol] =
JITEvaluatedSymbol(I->getAddress(), JITSymbolFlags());
continue;
}
OnResolved(make_error<StringError>(
"Symbol not found required by runtime: " + Symbol,
inconvertibleErrorCode()));
return;
}
OnResolved(std::move(AllResults));
return;
}
for (const StringRef &Symbol : Symbols) {
std::string SymName = Symbol.str();
LLVM_DEBUG(dbgs() << "BOLT: looking for " << SymName << "\n");
if (BinaryData *I = BC.getBinaryDataByName(SymName)) {
uint64_t Address = I->isMoved() && !I->isJumpTable()
? I->getOutputAddress()
: I->getAddress();
LLVM_DEBUG(dbgs() << "Resolved to address 0x"
<< Twine::utohexstr(Address) << "\n");
AllResults[Symbol] = JITEvaluatedSymbol(Address, JITSymbolFlags());
continue;
}
LLVM_DEBUG(dbgs() << "Resolved to address 0x0\n");
AllResults[Symbol] = JITEvaluatedSymbol(0, JITSymbolFlags());
}
OnResolved(std::move(AllResults));
}
};
} // anonymous namespace
void RewriteInstance::emitAndLink() {
NamedRegionTimer T("emitAndLink", "emit and link", TimerGroupName,
TimerGroupDesc, opts::TimeRewrite);
std::error_code EC;
// This is an object file, which we keep for debugging purposes.
// Once we decide it's useless, we should create it in memory.
SmallString<128> OutObjectPath;
sys::fs::getPotentiallyUniqueTempFileName("output", "o", OutObjectPath);
std::unique_ptr<ToolOutputFile> TempOut =
std::make_unique<ToolOutputFile>(OutObjectPath, EC, sys::fs::OF_None);
check_error(EC, "cannot create output object file");
std::unique_ptr<buffer_ostream> BOS =
std::make_unique<buffer_ostream>(TempOut->os());
raw_pwrite_stream *OS = BOS.get();
// Implicitly MCObjectStreamer takes ownership of MCAsmBackend (MAB)
// and MCCodeEmitter (MCE). ~MCObjectStreamer() will delete these
// two instances.
std::unique_ptr<MCStreamer> Streamer = BC->createStreamer(*OS);
if (EHFrameSection) {
if (opts::UseOldText || opts::StrictMode) {
// The section is going to be regenerated from scratch.
// Empty the contents, but keep the section reference.
EHFrameSection->clearContents();
} else {
// Make .eh_frame relocatable.
relocateEHFrameSection();
}
}
emitBinaryContext(*Streamer, *BC, getOrgSecPrefix());
Streamer->Finish();
//////////////////////////////////////////////////////////////////////////////
// Assign addresses to new sections.
//////////////////////////////////////////////////////////////////////////////
// Get output object as ObjectFile.
std::unique_ptr<MemoryBuffer> ObjectMemBuffer =
MemoryBuffer::getMemBuffer(BOS->str(), "in-memory object file", false);
std::unique_ptr<object::ObjectFile> Obj = cantFail(
object::ObjectFile::createObjectFile(ObjectMemBuffer->getMemBufferRef()),
"error creating in-memory object");
BOLTSymbolResolver Resolver = BOLTSymbolResolver(*BC);
MCAsmLayout FinalLayout(
static_cast<MCObjectStreamer *>(Streamer.get())->getAssembler());
RTDyld.reset(new decltype(RTDyld)::element_type(*BC->EFMM, Resolver));
RTDyld->setProcessAllSections(false);
RTDyld->loadObject(*Obj);
// Assign addresses to all sections. If key corresponds to the object
// created by ourselves, call our regular mapping function. If we are
// loading additional objects as part of runtime libraries for
// instrumentation, treat them as extra sections.
mapFileSections(*RTDyld);
RTDyld->finalizeWithMemoryManagerLocking();
if (RTDyld->hasError()) {
outs() << "BOLT-ERROR: RTDyld failed: " << RTDyld->getErrorString() << "\n";
exit(1);
}
// Update output addresses based on the new section map and
// layout. Only do this for the object created by ourselves.
updateOutputValues(FinalLayout);
if (opts::UpdateDebugSections)
DebugInfoRewriter->updateLineTableOffsets(FinalLayout);
if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary())
RtLibrary->link(*BC, ToolPath, *RTDyld, [this](RuntimeDyld &R) {
this->mapExtraSections(*RTDyld);
});
// Once the code is emitted, we can rename function sections to actual
// output sections and de-register sections used for emission.
for (BinaryFunction *Function : BC->getAllBinaryFunctions()) {
ErrorOr<BinarySection &> Section = Function->getCodeSection();
if (Section &&
(Function->getImageAddress() == 0 || Function->getImageSize() == 0))
continue;
// Restore origin section for functions that were emitted or supposed to
// be emitted to patch sections.
if (Section)
BC->deregisterSection(*Section);
assert(Function->getOriginSectionName() && "expected origin section");
Function->CodeSectionName = std::string(*Function->getOriginSectionName());
if (Function->isSplit()) {
if (ErrorOr<BinarySection &> ColdSection = Function->getColdCodeSection())
BC->deregisterSection(*ColdSection);
Function->ColdCodeSectionName = std::string(getBOLTTextSectionName());
}
}
if (opts::PrintCacheMetrics) {
outs() << "BOLT-INFO: cache metrics after emitting functions:\n";
CacheMetrics::printAll(BC->getSortedFunctions());
}
if (opts::KeepTmp) {
TempOut->keep();
outs() << "BOLT-INFO: intermediary output object file saved for debugging "
"purposes: "
<< OutObjectPath << "\n";
}
}
void RewriteInstance::updateMetadata() {
updateSDTMarkers();
updateLKMarkers();
parsePseudoProbe();
updatePseudoProbes();
if (opts::UpdateDebugSections) {
NamedRegionTimer T("updateDebugInfo", "update debug info", TimerGroupName,
TimerGroupDesc, opts::TimeRewrite);
DebugInfoRewriter->updateDebugInfo();
}
if (opts::WriteBoltInfoSection)
addBoltInfoSection();
}
void RewriteInstance::updatePseudoProbes() {
// check if there is pseudo probe section decoded
if (BC->ProbeDecoder.getAddress2ProbesMap().empty())
return;
// input address converted to output
AddressProbesMap &Address2ProbesMap = BC->ProbeDecoder.getAddress2ProbesMap();
const GUIDProbeFunctionMap &GUID2Func =
BC->ProbeDecoder.getGUID2FuncDescMap();
for (auto &AP : Address2ProbesMap) {
BinaryFunction *F = BC->getBinaryFunctionContainingAddress(AP.first);
// If F is removed, eliminate all probes inside it from inline tree
// Setting probes' addresses as INT64_MAX means elimination
if (!F) {
for (MCDecodedPseudoProbe &Probe : AP.second)
Probe.setAddress(INT64_MAX);
continue;
}
// If F is not emitted, the function will remain in the same address as its
// input
if (!F->isEmitted())
continue;
uint64_t Offset = AP.first - F->getAddress();
const BinaryBasicBlock *BB = F->getBasicBlockContainingOffset(Offset);
uint64_t BlkOutputAddress = BB->getOutputAddressRange().first;
// Check if block output address is defined.
// If not, such block is removed from binary. Then remove the probes from
// inline tree
if (BlkOutputAddress == 0) {
for (MCDecodedPseudoProbe &Probe : AP.second)
Probe.setAddress(INT64_MAX);
continue;
}
unsigned ProbeTrack = AP.second.size();
std::list<MCDecodedPseudoProbe>::iterator Probe = AP.second.begin();
while (ProbeTrack != 0) {
if (Probe->isBlock()) {
Probe->setAddress(BlkOutputAddress);
} else if (Probe->isCall()) {
// A call probe may be duplicated due to ICP
// Go through output of InputOffsetToAddressMap to collect all related
// probes
const InputOffsetToAddressMapTy &Offset2Addr =
F->getInputOffsetToAddressMap();
auto CallOutputAddresses = Offset2Addr.equal_range(Offset);
auto CallOutputAddress = CallOutputAddresses.first;
if (CallOutputAddress == CallOutputAddresses.second) {
Probe->setAddress(INT64_MAX);
} else {
Probe->setAddress(CallOutputAddress->second);
CallOutputAddress = std::next(CallOutputAddress);
}
while (CallOutputAddress != CallOutputAddresses.second) {
AP.second.push_back(*Probe);
AP.second.back().setAddress(CallOutputAddress->second);
Probe->getInlineTreeNode()->addProbes(&(AP.second.back()));
CallOutputAddress = std::next(CallOutputAddress);
}
}
Probe = std::next(Probe);
ProbeTrack--;
}
}
if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All ||
opts::PrintPseudoProbes ==
opts::PrintPseudoProbesOptions::PPP_Probes_Address_Conversion) {
outs() << "Pseudo Probe Address Conversion results:\n";
// table that correlates address to block
std::unordered_map<uint64_t, StringRef> Addr2BlockNames;
for (auto &F : BC->getBinaryFunctions())
for (BinaryBasicBlock &BinaryBlock : F.second)
Addr2BlockNames[BinaryBlock.getOutputAddressRange().first] =
BinaryBlock.getName();
// scan all addresses -> correlate probe to block when print out
std::vector<uint64_t> Addresses;
for (auto &Entry : Address2ProbesMap)
Addresses.push_back(Entry.first);
std::sort(Addresses.begin(), Addresses.end());
for (uint64_t Key : Addresses) {
for (MCDecodedPseudoProbe &Probe : Address2ProbesMap[Key]) {
if (Probe.getAddress() == INT64_MAX)
outs() << "Deleted Probe: ";
else
outs() << "Address: " << format_hex(Probe.getAddress(), 8) << " ";
Probe.print(outs(), GUID2Func, true);
// print block name only if the probe is block type and undeleted.
if (Probe.isBlock() && Probe.getAddress() != INT64_MAX)
outs() << format_hex(Probe.getAddress(), 8) << " Probe is in "
<< Addr2BlockNames[Probe.getAddress()] << "\n";
}
}
outs() << "=======================================\n";
}
// encode pseudo probes with updated addresses
encodePseudoProbes();
}
template <typename F>
static void emitLEB128IntValue(F encode, uint64_t Value,
SmallString<8> &Contents) {
SmallString<128> Tmp;
raw_svector_ostream OSE(Tmp);
encode(Value, OSE);
Contents.append(OSE.str().begin(), OSE.str().end());
}
void RewriteInstance::encodePseudoProbes() {
// Buffer for new pseudo probes section
SmallString<8> Contents;
MCDecodedPseudoProbe *LastProbe = nullptr;
auto EmitInt = [&](uint64_t Value, uint32_t Size) {
const bool IsLittleEndian = BC->AsmInfo->isLittleEndian();
uint64_t Swapped = support::endian::byte_swap(
Value, IsLittleEndian ? support::little : support::big);
unsigned Index = IsLittleEndian ? 0 : 8 - Size;
auto Entry = StringRef(reinterpret_cast<char *>(&Swapped) + Index, Size);
Contents.append(Entry.begin(), Entry.end());
};
auto EmitULEB128IntValue = [&](uint64_t Value) {
SmallString<128> Tmp;
raw_svector_ostream OSE(Tmp);
encodeULEB128(Value, OSE, 0);
Contents.append(OSE.str().begin(), OSE.str().end());
};
auto EmitSLEB128IntValue = [&](int64_t Value) {
SmallString<128> Tmp;
raw_svector_ostream OSE(Tmp);
encodeSLEB128(Value, OSE);
Contents.append(OSE.str().begin(), OSE.str().end());
};
// Emit indiviual pseudo probes in a inline tree node
// Probe index, type, attribute, address type and address are encoded
// Address of the first probe is absolute.
// Other probes' address are represented by delta
auto EmitDecodedPseudoProbe = [&](MCDecodedPseudoProbe *&CurProbe) {
EmitULEB128IntValue(CurProbe->getIndex());
uint8_t PackedType = CurProbe->getType() | (CurProbe->getAttributes() << 4);
uint8_t Flag =
LastProbe ? ((int8_t)MCPseudoProbeFlag::AddressDelta << 7) : 0;
EmitInt(Flag | PackedType, 1);
if (LastProbe) {
// Emit the delta between the address label and LastProbe.
int64_t Delta = CurProbe->getAddress() - LastProbe->getAddress();
EmitSLEB128IntValue(Delta);
} else {
// Emit absolute address for encoding the first pseudo probe.
uint32_t AddrSize = BC->AsmInfo->getCodePointerSize();
EmitInt(CurProbe->getAddress(), AddrSize);
}
};
std::map<InlineSite, MCDecodedPseudoProbeInlineTree *,
std::greater<InlineSite>>
Inlinees;
// DFS of inline tree to emit pseudo probes in all tree node
// Inline site index of a probe is emitted first.
// Then tree node Guid, size of pseudo probes and children nodes, and detail
// of contained probes are emitted Deleted probes are skipped Root node is not
// encoded to binaries. It's a "wrapper" of inline trees of each function.
std::list<std::pair<uint64_t, MCDecodedPseudoProbeInlineTree *>> NextNodes;
const MCDecodedPseudoProbeInlineTree &Root =
BC->ProbeDecoder.getDummyInlineRoot();
for (auto Child = Root.getChildren().begin();
Child != Root.getChildren().end(); ++Child)
Inlinees[Child->first] = Child->second.get();
for (auto Inlinee : Inlinees)
// INT64_MAX is "placeholder" of unused callsite index field in the pair
NextNodes.push_back({INT64_MAX, Inlinee.second});
Inlinees.clear();
while (!NextNodes.empty()) {
uint64_t ProbeIndex = NextNodes.back().first;
MCDecodedPseudoProbeInlineTree *Cur = NextNodes.back().second;
NextNodes.pop_back();
if (Cur->Parent && !Cur->Parent->isRoot())
// Emit probe inline site
EmitULEB128IntValue(ProbeIndex);
// Emit probes grouped by GUID.
LLVM_DEBUG({
dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
dbgs() << "GUID: " << Cur->Guid << "\n";
});
// Emit Guid
EmitInt(Cur->Guid, 8);
// Emit number of probes in this node
uint64_t Deleted = 0;
for (MCDecodedPseudoProbe *&Probe : Cur->getProbes())
if (Probe->getAddress() == INT64_MAX)
Deleted++;
LLVM_DEBUG(dbgs() << "Deleted Probes:" << Deleted << "\n");
uint64_t ProbesSize = Cur->getProbes().size() - Deleted;
EmitULEB128IntValue(ProbesSize);
// Emit number of direct inlinees
EmitULEB128IntValue(Cur->getChildren().size());
// Emit probes in this group
for (MCDecodedPseudoProbe *&Probe : Cur->getProbes()) {
if (Probe->getAddress() == INT64_MAX)
continue;
EmitDecodedPseudoProbe(Probe);
LastProbe = Probe;
}
for (auto Child = Cur->getChildren().begin();
Child != Cur->getChildren().end(); ++Child)
Inlinees[Child->first] = Child->second.get();
for (const auto &Inlinee : Inlinees) {
assert(Cur->Guid != 0 && "non root tree node must have nonzero Guid");
NextNodes.push_back({std::get<1>(Inlinee.first), Inlinee.second});
LLVM_DEBUG({
dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
dbgs() << "InlineSite: " << std::get<1>(Inlinee.first) << "\n";
});
}
Inlinees.clear();
}
// Create buffer for new contents for the section
// Freed when parent section is destroyed
uint8_t *Output = new uint8_t[Contents.str().size()];
memcpy(Output, Contents.str().data(), Contents.str().size());
addToDebugSectionsToOverwrite(".pseudo_probe");
BC->registerOrUpdateSection(".pseudo_probe", PseudoProbeSection->getELFType(),
PseudoProbeSection->getELFFlags(), Output,
Contents.str().size(), 1);
if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All ||
opts::PrintPseudoProbes ==
opts::PrintPseudoProbesOptions::PPP_Encoded_Probes) {
// create a dummy decoder;
MCPseudoProbeDecoder DummyDecoder;
StringRef DescContents = PseudoProbeDescSection->getContents();
DummyDecoder.buildGUID2FuncDescMap(
reinterpret_cast<const uint8_t *>(DescContents.data()),
DescContents.size());
StringRef ProbeContents = PseudoProbeSection->getOutputContents();
DummyDecoder.buildAddress2ProbeMap(
reinterpret_cast<const uint8_t *>(ProbeContents.data()),
ProbeContents.size());
DummyDecoder.printProbesForAllAddresses(outs());
}
}
void RewriteInstance::updateSDTMarkers() {
NamedRegionTimer T("updateSDTMarkers", "update SDT markers", TimerGroupName,
TimerGroupDesc, opts::TimeRewrite);
if (!SDTSection)
return;
SDTSection->registerPatcher(std::make_unique<SimpleBinaryPatcher>());
SimpleBinaryPatcher *SDTNotePatcher =
static_cast<SimpleBinaryPatcher *>(SDTSection->getPatcher());
for (auto &SDTInfoKV : BC->SDTMarkers) {
const uint64_t OriginalAddress = SDTInfoKV.first;
SDTMarkerInfo &SDTInfo = SDTInfoKV.second;
const BinaryFunction *F =
BC->getBinaryFunctionContainingAddress(OriginalAddress);
if (!F)
continue;
const uint64_t NewAddress =
F->translateInputToOutputAddress(OriginalAddress);
SDTNotePatcher->addLE64Patch(SDTInfo.PCOffset, NewAddress);
}
}
void RewriteInstance::updateLKMarkers() {
if (BC->LKMarkers.size() == 0)
return;
NamedRegionTimer T("updateLKMarkers", "update LK markers", TimerGroupName,
TimerGroupDesc, opts::TimeRewrite);
std::unordered_map<std::string, uint64_t> PatchCounts;
for (std::pair<const uint64_t, std::vector<LKInstructionMarkerInfo>>
&LKMarkerInfoKV : BC->LKMarkers) {
const uint64_t OriginalAddress = LKMarkerInfoKV.first;
const BinaryFunction *BF =
BC->getBinaryFunctionContainingAddress(OriginalAddress, false, true);
if (!BF)
continue;
uint64_t NewAddress = BF->translateInputToOutputAddress(OriginalAddress);
if (NewAddress == 0)
continue;
// Apply base address.
if (OriginalAddress >= 0xffffffff00000000 && NewAddress < 0xffffffff)
NewAddress = NewAddress + 0xffffffff00000000;
if (OriginalAddress == NewAddress)
continue;
for (LKInstructionMarkerInfo &LKMarkerInfo : LKMarkerInfoKV.second) {
StringRef SectionName = LKMarkerInfo.SectionName;
SimpleBinaryPatcher *LKPatcher;
ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName);
assert(BSec && "missing section info for kernel section");
if (!BSec->getPatcher())
BSec->registerPatcher(std::make_unique<SimpleBinaryPatcher>());
LKPatcher = static_cast<SimpleBinaryPatcher *>(BSec->getPatcher());
PatchCounts[std::string(SectionName)]++;
if (LKMarkerInfo.IsPCRelative)
LKPatcher->addLE32Patch(LKMarkerInfo.SectionOffset,
NewAddress - OriginalAddress +
LKMarkerInfo.PCRelativeOffset);
else
LKPatcher->addLE64Patch(LKMarkerInfo.SectionOffset, NewAddress);
}
}
outs() << "BOLT-INFO: patching linux kernel sections. Total patches per "
"section are as follows:\n";
for (const std::pair<const std::string, uint64_t> &KV : PatchCounts)
outs() << " Section: " << KV.first << ", patch-counts: " << KV.second
<< '\n';
}
void RewriteInstance::mapFileSections(RuntimeDyld &RTDyld) {
mapCodeSections(RTDyld);
mapDataSections(RTDyld);
}
std::vector<BinarySection *> RewriteInstance::getCodeSections() {
std::vector<BinarySection *> CodeSections;
for (BinarySection &Section : BC->textSections())
if (Section.hasValidSectionID())
CodeSections.emplace_back(&Section);
auto compareSections = [&](const BinarySection *A, const BinarySection *B) {
// Place movers before anything else.
if (A->getName() == BC->getHotTextMoverSectionName())
return true;
if (B->getName() == BC->getHotTextMoverSectionName())
return false;
// Depending on the option, put main text at the beginning or at the end.
if (opts::HotFunctionsAtEnd)
return B->getName() == BC->getMainCodeSectionName();
else
return A->getName() == BC->getMainCodeSectionName();
};
// Determine the order of sections.
std::stable_sort(CodeSections.begin(), CodeSections.end(), compareSections);
return CodeSections;
}
void RewriteInstance::mapCodeSections(RuntimeDyld &RTDyld) {
if (BC->HasRelocations) {
ErrorOr<BinarySection &> TextSection =
BC->getUniqueSectionByName(BC->getMainCodeSectionName());
assert(TextSection && ".text section not found in output");
assert(TextSection->hasValidSectionID() && ".text section should be valid");
// Map sections for functions with pre-assigned addresses.
for (BinaryFunction *InjectedFunction : BC->getInjectedBinaryFunctions()) {
const uint64_t OutputAddress = InjectedFunction->getOutputAddress();
if (!OutputAddress)
continue;
ErrorOr<BinarySection &> FunctionSection =
InjectedFunction->getCodeSection();
assert(FunctionSection && "function should have section");
FunctionSection->setOutputAddress(OutputAddress);
RTDyld.reassignSectionAddress(FunctionSection->getSectionID(),
OutputAddress);
InjectedFunction->setImageAddress(FunctionSection->getAllocAddress());
InjectedFunction->setImageSize(FunctionSection->getOutputSize());
}
// Populate the list of sections to be allocated.
std::vector<BinarySection *> CodeSections = getCodeSections();
// Remove sections that were pre-allocated (patch sections).
CodeSections.erase(
std::remove_if(CodeSections.begin(), CodeSections.end(),
[](BinarySection *Section) {
return Section->getOutputAddress();
}),
CodeSections.end());
LLVM_DEBUG(dbgs() << "Code sections in the order of output:\n";
for (const BinarySection *Section : CodeSections)
dbgs() << Section->getName() << '\n';
);
uint64_t PaddingSize = 0; // size of padding required at the end
// Allocate sections starting at a given Address.
auto allocateAt = [&](uint64_t Address) {
for (BinarySection *Section : CodeSections) {
Address = alignTo(Address, Section->getAlignment());
Section->setOutputAddress(Address);
Address += Section->getOutputSize();
}
// Make sure we allocate enough space for huge pages.
if (opts::HotText) {
uint64_t HotTextEnd =
TextSection->getOutputAddress() + TextSection->getOutputSize();
HotTextEnd = alignTo(HotTextEnd, BC->PageAlign);
if (HotTextEnd > Address) {
PaddingSize = HotTextEnd - Address;
Address = HotTextEnd;
}
}
return Address;
};
// Check if we can fit code in the original .text
bool AllocationDone = false;
if (opts::UseOldText) {
const uint64_t CodeSize =
allocateAt(BC->OldTextSectionAddress) - BC->OldTextSectionAddress;
if (CodeSize <= BC->OldTextSectionSize) {
outs() << "BOLT-INFO: using original .text for new code with 0x"
<< Twine::utohexstr(opts::AlignText) << " alignment\n";
AllocationDone = true;
} else {
errs() << "BOLT-WARNING: original .text too small to fit the new code"
<< " using 0x" << Twine::utohexstr(opts::AlignText)
<< " alignment. " << CodeSize << " bytes needed, have "
<< BC->OldTextSectionSize << " bytes available.\n";
opts::UseOldText = false;
}
}
if (!AllocationDone)
NextAvailableAddress = allocateAt(NextAvailableAddress);
// Do the mapping for ORC layer based on the allocation.
for (BinarySection *Section : CodeSections) {
LLVM_DEBUG(
dbgs() << "BOLT: mapping " << Section->getName() << " at 0x"
<< Twine::utohexstr(Section->getAllocAddress()) << " to 0x"
<< Twine::utohexstr(Section->getOutputAddress()) << '\n');
RTDyld.reassignSectionAddress(Section->getSectionID(),
Section->getOutputAddress());
Section->setOutputFileOffset(
getFileOffsetForAddress(Section->getOutputAddress()));
}
// Check if we need to insert a padding section for hot text.
if (PaddingSize && !opts::UseOldText)
outs() << "BOLT-INFO: padding code to 0x"
<< Twine::utohexstr(NextAvailableAddress)
<< " to accommodate hot text\n";
return;
}
// Processing in non-relocation mode.
uint64_t NewTextSectionStartAddress = NextAvailableAddress;
for (auto &BFI : BC->getBinaryFunctions()) {
BinaryFunction &Function = BFI.second;
if (!Function.isEmitted())
continue;
bool TooLarge = false;
ErrorOr<BinarySection &> FuncSection = Function.getCodeSection();
assert(FuncSection && "cannot find section for function");
FuncSection->setOutputAddress(Function.getAddress());
LLVM_DEBUG(dbgs() << "BOLT: mapping 0x"
<< Twine::utohexstr(FuncSection->getAllocAddress())
<< " to 0x" << Twine::utohexstr(Function.getAddress())
<< '\n');
RTDyld.reassignSectionAddress(FuncSection->getSectionID(),
Function.getAddress());
Function.setImageAddress(FuncSection->getAllocAddress());
Function.setImageSize(FuncSection->getOutputSize());
if (Function.getImageSize() > Function.getMaxSize()) {
TooLarge = true;
FailedAddresses.emplace_back(Function.getAddress());
}
// Map jump tables if updating in-place.
if (opts::JumpTables == JTS_BASIC) {
for (auto &JTI : Function.JumpTables) {
JumpTable *JT = JTI.second;
BinarySection &Section = JT->getOutputSection();
Section.setOutputAddress(JT->getAddress());
Section.setOutputFileOffset(getFileOffsetForAddress(JT->getAddress()));
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: mapping " << Section.getName()
<< " to 0x" << Twine::utohexstr(JT->getAddress())
<< '\n');
RTDyld.reassignSectionAddress(Section.getSectionID(), JT->getAddress());
}
}
if (!Function.isSplit())
continue;
ErrorOr<BinarySection &> ColdSection = Function.getColdCodeSection();
assert(ColdSection && "cannot find section for cold part");
// Cold fragments are aligned at 16 bytes.
NextAvailableAddress = alignTo(NextAvailableAddress, 16);
BinaryFunction::FragmentInfo &ColdPart = Function.cold();
if (TooLarge) {
// The corresponding FDE will refer to address 0.
ColdPart.setAddress(0);
ColdPart.setImageAddress(0);
ColdPart.setImageSize(0);
ColdPart.setFileOffset(0);
} else {
ColdPart.setAddress(NextAvailableAddress);
ColdPart.setImageAddress(ColdSection->getAllocAddress());
ColdPart.setImageSize(ColdSection->getOutputSize());
ColdPart.setFileOffset(getFileOffsetForAddress(NextAvailableAddress));
ColdSection->setOutputAddress(ColdPart.getAddress());
}
LLVM_DEBUG(dbgs() << "BOLT: mapping cold fragment 0x"
<< Twine::utohexstr(ColdPart.getImageAddress())
<< " to 0x" << Twine::utohexstr(ColdPart.getAddress())
<< " with size "
<< Twine::utohexstr(ColdPart.getImageSize()) << '\n');
RTDyld.reassignSectionAddress(ColdSection->getSectionID(),
ColdPart.getAddress());
NextAvailableAddress += ColdPart.getImageSize();
}
// Add the new text section aggregating all existing code sections.
// This is pseudo-section that serves a purpose of creating a corresponding
// entry in section header table.
int64_t NewTextSectionSize =
NextAvailableAddress - NewTextSectionStartAddress;
if (NewTextSectionSize) {
const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true,
/*IsText=*/true,
/*IsAllocatable=*/true);
BinarySection &Section =
BC->registerOrUpdateSection(getBOLTTextSectionName(),
ELF::SHT_PROGBITS,
Flags,
/*Data=*/nullptr,
NewTextSectionSize,
16);
Section.setOutputAddress(NewTextSectionStartAddress);
Section.setOutputFileOffset(
getFileOffsetForAddress(NewTextSectionStartAddress));
}
}
void RewriteInstance::mapDataSections(RuntimeDyld &RTDyld) {
// Map special sections to their addresses in the output image.
// These are the sections that we generate via MCStreamer.
// The order is important.
std::vector<std::string> Sections = {
".eh_frame", Twine(getOrgSecPrefix(), ".eh_frame").str(),
".gcc_except_table", ".rodata", ".rodata.cold"};
if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary())
RtLibrary->addRuntimeLibSections(Sections);
for (std::string &SectionName : Sections) {
ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName);
if (!Section || !Section->isAllocatable() || !Section->isFinalized())
continue;
NextAvailableAddress =
alignTo(NextAvailableAddress, Section->getAlignment());
LLVM_DEBUG(dbgs() << "BOLT: mapping section " << SectionName << " (0x"
<< Twine::utohexstr(Section->getAllocAddress())
<< ") to 0x" << Twine::utohexstr(NextAvailableAddress)
<< ":0x"
<< Twine::utohexstr(NextAvailableAddress +
Section->getOutputSize())
<< '\n');
RTDyld.reassignSectionAddress(Section->getSectionID(),
NextAvailableAddress);
Section->setOutputAddress(NextAvailableAddress);
Section->setOutputFileOffset(getFileOffsetForAddress(NextAvailableAddress));
NextAvailableAddress += Section->getOutputSize();
}
// Handling for sections with relocations.
for (BinarySection &Section : BC->sections()) {
if (!Section.hasSectionRef())
continue;
StringRef SectionName = Section.getName();
ErrorOr<BinarySection &> OrgSection =
BC->getUniqueSectionByName((getOrgSecPrefix() + SectionName).str());
if (!OrgSection ||
!OrgSection->isAllocatable() ||
!OrgSection->isFinalized() ||
!OrgSection->hasValidSectionID())
continue;
if (OrgSection->getOutputAddress()) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: section " << SectionName
<< " is already mapped at 0x"
<< Twine::utohexstr(OrgSection->getOutputAddress())
<< '\n');
continue;
}
LLVM_DEBUG(
dbgs() << "BOLT: mapping original section " << SectionName << " (0x"
<< Twine::utohexstr(OrgSection->getAllocAddress()) << ") to 0x"
<< Twine::utohexstr(Section.getAddress()) << '\n');
RTDyld.reassignSectionAddress(OrgSection->getSectionID(),
Section.getAddress());
OrgSection->setOutputAddress(Section.getAddress());
OrgSection->setOutputFileOffset(Section.getContents().data() -
InputFile->getData().data());
}
}
void RewriteInstance::mapExtraSections(RuntimeDyld &RTDyld) {
for (BinarySection &Section : BC->allocatableSections()) {
if (Section.getOutputAddress() || !Section.hasValidSectionID())
continue;
NextAvailableAddress =
alignTo(NextAvailableAddress, Section.getAlignment());
Section.setOutputAddress(NextAvailableAddress);
NextAvailableAddress += Section.getOutputSize();
LLVM_DEBUG(dbgs() << "BOLT: (extra) mapping " << Section.getName()
<< " at 0x" << Twine::utohexstr(Section.getAllocAddress())
<< " to 0x"
<< Twine::utohexstr(Section.getOutputAddress()) << '\n');
RTDyld.reassignSectionAddress(Section.getSectionID(),
Section.getOutputAddress());
Section.setOutputFileOffset(
getFileOffsetForAddress(Section.getOutputAddress()));
}
}
void RewriteInstance::updateOutputValues(const MCAsmLayout &Layout) {
for (BinaryFunction *Function : BC->getAllBinaryFunctions())
Function->updateOutputValues(Layout);
}
void RewriteInstance::patchELFPHDRTable() {
auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile);
if (!ELF64LEFile) {
errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n";
exit(1);
}
const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
raw_fd_ostream &OS = Out->os();
// Write/re-write program headers.
Phnum = Obj.getHeader().e_phnum;
if (PHDRTableOffset) {
// Writing new pheader table.
Phnum += 1; // only adding one new segment
// Segment size includes the size of the PHDR area.
NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress;
} else {
assert(!PHDRTableAddress && "unexpected address for program header table");
// Update existing table.
PHDRTableOffset = Obj.getHeader().e_phoff;
NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress;
}
OS.seek(PHDRTableOffset);
bool ModdedGnuStack = false;
(void)ModdedGnuStack;
bool AddedSegment = false;
(void)AddedSegment;
auto createNewTextPhdr = [&]() {
ELF64LEPhdrTy NewPhdr;
NewPhdr.p_type = ELF::PT_LOAD;
if (PHDRTableAddress) {
NewPhdr.p_offset = PHDRTableOffset;
NewPhdr.p_vaddr = PHDRTableAddress;
NewPhdr.p_paddr = PHDRTableAddress;
} else {
NewPhdr.p_offset = NewTextSegmentOffset;
NewPhdr.p_vaddr = NewTextSegmentAddress;
NewPhdr.p_paddr = NewTextSegmentAddress;
}
NewPhdr.p_filesz = NewTextSegmentSize;
NewPhdr.p_memsz = NewTextSegmentSize;
NewPhdr.p_flags = ELF::PF_X | ELF::PF_R;
// FIXME: Currently instrumentation is experimental and the runtime data
// is emitted with code, thus everything needs to be writable
if (opts::Instrument)
NewPhdr.p_flags |= ELF::PF_W;
NewPhdr.p_align = BC->PageAlign;
return NewPhdr;
};
// Copy existing program headers with modifications.
for (const ELF64LE::Phdr &Phdr : cantFail(Obj.program_headers())) {
ELF64LE::Phdr NewPhdr = Phdr;
if (PHDRTableAddress && Phdr.p_type == ELF::PT_PHDR) {
NewPhdr.p_offset = PHDRTableOffset;
NewPhdr.p_vaddr = PHDRTableAddress;
NewPhdr.p_paddr = PHDRTableAddress;
NewPhdr.p_filesz = sizeof(NewPhdr) * Phnum;
NewPhdr.p_memsz = sizeof(NewPhdr) * Phnum;
} else if (Phdr.p_type == ELF::PT_GNU_EH_FRAME) {
ErrorOr<BinarySection &> EHFrameHdrSec =
BC->getUniqueSectionByName(".eh_frame_hdr");
if (EHFrameHdrSec && EHFrameHdrSec->isAllocatable() &&
EHFrameHdrSec->isFinalized()) {
NewPhdr.p_offset = EHFrameHdrSec->getOutputFileOffset();
NewPhdr.p_vaddr = EHFrameHdrSec->getOutputAddress();
NewPhdr.p_paddr = EHFrameHdrSec->getOutputAddress();
NewPhdr.p_filesz = EHFrameHdrSec->getOutputSize();
NewPhdr.p_memsz = EHFrameHdrSec->getOutputSize();
}
} else if (opts::UseGnuStack && Phdr.p_type == ELF::PT_GNU_STACK) {
NewPhdr = createNewTextPhdr();
ModdedGnuStack = true;
} else if (!opts::UseGnuStack && Phdr.p_type == ELF::PT_DYNAMIC) {
// Insert the new header before DYNAMIC.
ELF64LE::Phdr NewTextPhdr = createNewTextPhdr();
OS.write(reinterpret_cast<const char *>(&NewTextPhdr),
sizeof(NewTextPhdr));
AddedSegment = true;
}
OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr));
}
if (!opts::UseGnuStack && !AddedSegment) {
// Append the new header to the end of the table.
ELF64LE::Phdr NewTextPhdr = createNewTextPhdr();
OS.write(reinterpret_cast<const char *>(&NewTextPhdr), sizeof(NewTextPhdr));
}
assert((!opts::UseGnuStack || ModdedGnuStack) &&
"could not find GNU_STACK program header to modify");
}
namespace {
/// Write padding to \p OS such that its current \p Offset becomes aligned
/// at \p Alignment. Return new (aligned) offset.
uint64_t appendPadding(raw_pwrite_stream &OS, uint64_t Offset,
uint64_t Alignment) {
if (!Alignment)
return Offset;
const uint64_t PaddingSize =
offsetToAlignment(Offset, llvm::Align(Alignment));
for (unsigned I = 0; I < PaddingSize; ++I)
OS.write((unsigned char)0);
return Offset + PaddingSize;
}
}
void RewriteInstance::rewriteNoteSections() {
auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile);
if (!ELF64LEFile) {
errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n";
exit(1);
}
const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
raw_fd_ostream &OS = Out->os();
uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress);
assert(NextAvailableOffset >= FirstNonAllocatableOffset &&
"next available offset calculation failure");
OS.seek(NextAvailableOffset);
// Copy over non-allocatable section contents and update file offsets.
for (const ELF64LE::Shdr &Section : cantFail(Obj.sections())) {
if (Section.sh_type == ELF::SHT_NULL)
continue;
if (Section.sh_flags & ELF::SHF_ALLOC)
continue;
StringRef SectionName =
cantFail(Obj.getSectionName(Section), "cannot get section name");
ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName);
if (shouldStrip(Section, SectionName))
continue;
// Insert padding as needed.
NextAvailableOffset =
appendPadding(OS, NextAvailableOffset, Section.sh_addralign);
// New section size.
uint64_t Size = 0;
bool DataWritten = false;
uint8_t *SectionData = nullptr;
// Copy over section contents unless it's one of the sections we overwrite.
if (!willOverwriteSection(SectionName)) {
Size = Section.sh_size;
StringRef Dataref = InputFile->getData().substr(Section.sh_offset, Size);
std::string Data;
if (BSec && BSec->getPatcher()) {
Data = BSec->getPatcher()->patchBinary(Dataref);
Dataref = StringRef(Data);
}
// Section was expanded, so need to treat it as overwrite.
if (Size != Dataref.size()) {
BSec = BC->registerOrUpdateNoteSection(
SectionName, copyByteArray(Dataref), Dataref.size());
Size = 0;
} else {
OS << Dataref;
DataWritten = true;
// Add padding as the section extension might rely on the alignment.
Size = appendPadding(OS, Size, Section.sh_addralign);
}
}
// Perform section post-processing.
if (BSec && !BSec->isAllocatable()) {
assert(BSec->getAlignment() <= Section.sh_addralign &&
"alignment exceeds value in file");
if (BSec->getAllocAddress()) {
assert(!DataWritten && "Writing section twice.");
SectionData = BSec->getOutputData();
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: " << (Size ? "appending" : "writing")
<< " contents to section " << SectionName << '\n');
OS.write(reinterpret_cast<char *>(SectionData), BSec->getOutputSize());
Size += BSec->getOutputSize();
}
BSec->setOutputFileOffset(NextAvailableOffset);
BSec->flushPendingRelocations(OS,
[this] (const MCSymbol *S) {
return getNewValueForSymbol(S->getName());
});
}
// Set/modify section info.
BinarySection &NewSection =
BC->registerOrUpdateNoteSection(SectionName,
SectionData,
Size,
Section.sh_addralign,
BSec ? BSec->isReadOnly() : false,
BSec ? BSec->getELFType()
: ELF::SHT_PROGBITS);
NewSection.setOutputAddress(0);
NewSection.setOutputFileOffset(NextAvailableOffset);
NextAvailableOffset += Size;
}
// Write new note sections.
for (BinarySection &Section : BC->nonAllocatableSections()) {
if (Section.getOutputFileOffset() || !Section.getAllocAddress())
continue;
assert(!Section.hasPendingRelocations() && "cannot have pending relocs");
NextAvailableOffset =
appendPadding(OS, NextAvailableOffset, Section.getAlignment());
Section.setOutputFileOffset(NextAvailableOffset);
LLVM_DEBUG(
dbgs() << "BOLT-DEBUG: writing out new section " << Section.getName()
<< " of size " << Section.getOutputSize() << " at offset 0x"
<< Twine::utohexstr(Section.getOutputFileOffset()) << '\n');
OS.write(Section.getOutputContents().data(), Section.getOutputSize());
NextAvailableOffset += Section.getOutputSize();
}
}
template <typename ELFT>
void RewriteInstance::finalizeSectionStringTable(ELFObjectFile<ELFT> *File) {
using ELFShdrTy = typename ELFT::Shdr;
const ELFFile<ELFT> &Obj = File->getELFFile();
// Pre-populate section header string table.
for (const ELFShdrTy &Section : cantFail(Obj.sections())) {
StringRef SectionName =
cantFail(Obj.getSectionName(Section), "cannot get section name");
SHStrTab.add(SectionName);
std::string OutputSectionName = getOutputSectionName(Obj, Section);
if (OutputSectionName != SectionName)
SHStrTabPool.emplace_back(std::move(OutputSectionName));
}
for (const std::string &Str : SHStrTabPool)
SHStrTab.add(Str);
for (const BinarySection &Section : BC->sections())
SHStrTab.add(Section.getName());
SHStrTab.finalize();
const size_t SHStrTabSize = SHStrTab.getSize();
uint8_t *DataCopy = new uint8_t[SHStrTabSize];
memset(DataCopy, 0, SHStrTabSize);
SHStrTab.write(DataCopy);
BC->registerOrUpdateNoteSection(".shstrtab",
DataCopy,
SHStrTabSize,
/*Alignment=*/1,
/*IsReadOnly=*/true,
ELF::SHT_STRTAB);
}
void RewriteInstance::addBoltInfoSection() {
std::string DescStr;
raw_string_ostream DescOS(DescStr);
DescOS << "BOLT revision: " << BoltRevision << ", "
<< "command line:";
for (int I = 0; I < Argc; ++I)
DescOS << " " << Argv[I];
DescOS.flush();
// Encode as GNU GOLD VERSION so it is easily printable by 'readelf -n'
const std::string BoltInfo =
BinarySection::encodeELFNote("GNU", DescStr, 4 /*NT_GNU_GOLD_VERSION*/);
BC->registerOrUpdateNoteSection(".note.bolt_info", copyByteArray(BoltInfo),
BoltInfo.size(),
/*Alignment=*/1,
/*IsReadOnly=*/true, ELF::SHT_NOTE);
}
void RewriteInstance::addBATSection() {
BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, nullptr,
0,
/*Alignment=*/1,
/*IsReadOnly=*/true, ELF::SHT_NOTE);
}
void RewriteInstance::encodeBATSection() {
std::string DescStr;
raw_string_ostream DescOS(DescStr);
BAT->write(DescOS);
DescOS.flush();
const std::string BoltInfo =
BinarySection::encodeELFNote("BOLT", DescStr, BinarySection::NT_BOLT_BAT);
BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME,
copyByteArray(BoltInfo), BoltInfo.size(),
/*Alignment=*/1,
/*IsReadOnly=*/true, ELF::SHT_NOTE);
}
template <typename ELFObjType, typename ELFShdrTy>
std::string RewriteInstance::getOutputSectionName(const ELFObjType &Obj,
const ELFShdrTy &Section) {
if (Section.sh_type == ELF::SHT_NULL)
return "";
StringRef SectionName =
cantFail(Obj.getSectionName(Section), "cannot get section name");
if ((Section.sh_flags & ELF::SHF_ALLOC) && willOverwriteSection(SectionName))
return (getOrgSecPrefix() + SectionName).str();
return std::string(SectionName);
}
template <typename ELFShdrTy>
bool RewriteInstance::shouldStrip(const ELFShdrTy &Section,
StringRef SectionName) {
// Strip non-allocatable relocation sections.
if (!(Section.sh_flags & ELF::SHF_ALLOC) && Section.sh_type == ELF::SHT_RELA)
return true;
// Strip debug sections if not updating them.
if (isDebugSection(SectionName) && !opts::UpdateDebugSections)
return true;
// Strip symtab section if needed
if (opts::RemoveSymtab && Section.sh_type == ELF::SHT_SYMTAB)
return true;
return false;
}
template <typename ELFT>
std::vector<typename object::ELFObjectFile<ELFT>::Elf_Shdr>
RewriteInstance::getOutputSections(ELFObjectFile<ELFT> *File,
std::vector<uint32_t> &NewSectionIndex) {
using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr;
const ELFFile<ELFT> &Obj = File->getELFFile();
typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
// Keep track of section header entries together with their name.
std::vector<std::pair<std::string, ELFShdrTy>> OutputSections;
auto addSection = [&](const std::string &Name, const ELFShdrTy &Section) {
ELFShdrTy NewSection = Section;
NewSection.sh_name = SHStrTab.getOffset(Name);
OutputSections.emplace_back(Name, std::move(NewSection));
};
// Copy over entries for original allocatable sections using modified name.
for (const ELFShdrTy &Section : Sections) {
// Always ignore this section.
if (Section.sh_type == ELF::SHT_NULL) {
OutputSections.emplace_back("", Section);
continue;
}
if (!(Section.sh_flags & ELF::SHF_ALLOC))
continue;
addSection(getOutputSectionName(Obj, Section), Section);
}
for (const BinarySection &Section : BC->allocatableSections()) {
if (!Section.isFinalized())
continue;
if (Section.getName().startswith(getOrgSecPrefix()) ||
Section.isAnonymous()) {
if (opts::Verbosity)
outs() << "BOLT-INFO: not writing section header for section "
<< Section.getName() << '\n';
continue;
}
if (opts::Verbosity >= 1)
outs() << "BOLT-INFO: writing section header for " << Section.getName()
<< '\n';
ELFShdrTy NewSection;
NewSection.sh_type = ELF::SHT_PROGBITS;
NewSection.sh_addr = Section.getOutputAddress();
NewSection.sh_offset = Section.getOutputFileOffset();
NewSection.sh_size = Section.getOutputSize();
NewSection.sh_entsize = 0;
NewSection.sh_flags = Section.getELFFlags();
NewSection.sh_link = 0;
NewSection.sh_info = 0;
NewSection.sh_addralign = Section.getAlignment();
addSection(std::string(Section.getName()), NewSection);
}
// Sort all allocatable sections by their offset.
std::stable_sort(OutputSections.begin(), OutputSections.end(),
[] (const std::pair<std::string, ELFShdrTy> &A,
const std::pair<std::string, ELFShdrTy> &B) {
return A.second.sh_offset < B.second.sh_offset;
});
// Fix section sizes to prevent overlapping.
ELFShdrTy *PrevSection = nullptr;
StringRef PrevSectionName;
for (auto &SectionKV : OutputSections) {
ELFShdrTy &Section = SectionKV.second;
// TBSS section does not take file or memory space. Ignore it for layout
// purposes.
if (Section.sh_type == ELF::SHT_NOBITS && (Section.sh_flags & ELF::SHF_TLS))
continue;
if (PrevSection &&
PrevSection->sh_addr + PrevSection->sh_size > Section.sh_addr) {
if (opts::Verbosity > 1)
outs() << "BOLT-INFO: adjusting size for section " << PrevSectionName
<< '\n';
PrevSection->sh_size = Section.sh_addr > PrevSection->sh_addr
? Section.sh_addr - PrevSection->sh_addr
: 0;
}
PrevSection = &Section;
PrevSectionName = SectionKV.first;
}
uint64_t LastFileOffset = 0;
// Copy over entries for non-allocatable sections performing necessary
// adjustments.
for (const ELFShdrTy &Section : Sections) {
if (Section.sh_type == ELF::SHT_NULL)
continue;
if (Section.sh_flags & ELF::SHF_ALLOC)
continue;
StringRef SectionName =
cantFail(Obj.getSectionName(Section), "cannot get section name");
if (shouldStrip(Section, SectionName))
continue;
ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName);
assert(BSec && "missing section info for non-allocatable section");
ELFShdrTy NewSection = Section;
NewSection.sh_offset = BSec->getOutputFileOffset();
NewSection.sh_size = BSec->getOutputSize();
if (NewSection.sh_type == ELF::SHT_SYMTAB)
NewSection.sh_info = NumLocalSymbols;
addSection(std::string(SectionName), NewSection);
LastFileOffset = BSec->getOutputFileOffset();
}
// Create entries for new non-allocatable sections.
for (BinarySection &Section : BC->nonAllocatableSections()) {
if (Section.getOutputFileOffset() <= LastFileOffset)
continue;
if (opts::Verbosity >= 1)
outs() << "BOLT-INFO: writing section header for " << Section.getName()
<< '\n';
ELFShdrTy NewSection;
NewSection.sh_type = Section.getELFType();
NewSection.sh_addr = 0;
NewSection.sh_offset = Section.getOutputFileOffset();
NewSection.sh_size = Section.getOutputSize();
NewSection.sh_entsize = 0;
NewSection.sh_flags = Section.getELFFlags();
NewSection.sh_link = 0;
NewSection.sh_info = 0;
NewSection.sh_addralign = Section.getAlignment();
addSection(std::string(Section.getName()), NewSection);
}
// Assign indices to sections.
std::unordered_map<std::string, uint64_t> NameToIndex;
for (uint32_t Index = 1; Index < OutputSections.size(); ++Index) {
const std::string &SectionName = OutputSections[Index].first;
NameToIndex[SectionName] = Index;
if (ErrorOr<BinarySection &> Section =
BC->getUniqueSectionByName(SectionName))
Section->setIndex(Index);
}
// Update section index mapping
NewSectionIndex.clear();
NewSectionIndex.resize(Sections.size(), 0);
for (const ELFShdrTy &Section : Sections) {
if (Section.sh_type == ELF::SHT_NULL)
continue;
size_t OrgIndex = std::distance(Sections.begin(), &Section);
std::string SectionName = getOutputSectionName(Obj, Section);
// Some sections are stripped
if (!NameToIndex.count(SectionName))
continue;
NewSectionIndex[OrgIndex] = NameToIndex[SectionName];
}
std::vector<ELFShdrTy> SectionsOnly(OutputSections.size());
std::transform(OutputSections.begin(), OutputSections.end(),
SectionsOnly.begin(),
[](std::pair<std::string, ELFShdrTy> &SectionInfo) {
return SectionInfo.second;
});
return SectionsOnly;
}
// Rewrite section header table inserting new entries as needed. The sections
// header table size itself may affect the offsets of other sections,
// so we are placing it at the end of the binary.
//
// As we rewrite entries we need to track how many sections were inserted
// as it changes the sh_link value. We map old indices to new ones for
// existing sections.
template <typename ELFT>
void RewriteInstance::patchELFSectionHeaderTable(ELFObjectFile<ELFT> *File) {
using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr;
using ELFEhdrTy = typename ELFObjectFile<ELFT>::Elf_Ehdr;
raw_fd_ostream &OS = Out->os();
const ELFFile<ELFT> &Obj = File->getELFFile();
std::vector<uint32_t> NewSectionIndex;
std::vector<ELFShdrTy> OutputSections =
getOutputSections(File, NewSectionIndex);
LLVM_DEBUG(
dbgs() << "BOLT-DEBUG: old to new section index mapping:\n";
for (uint64_t I = 0; I < NewSectionIndex.size(); ++I)
dbgs() << " " << I << " -> " << NewSectionIndex[I] << '\n';
);
// Align starting address for section header table.
uint64_t SHTOffset = OS.tell();
SHTOffset = appendPadding(OS, SHTOffset, sizeof(ELFShdrTy));
// Write all section header entries while patching section references.
for (ELFShdrTy &Section : OutputSections) {
Section.sh_link = NewSectionIndex[Section.sh_link];
if (Section.sh_type == ELF::SHT_REL || Section.sh_type == ELF::SHT_RELA) {
if (Section.sh_info)
Section.sh_info = NewSectionIndex[Section.sh_info];
}
OS.write(reinterpret_cast<const char *>(&Section), sizeof(Section));
}
// Fix ELF header.
ELFEhdrTy NewEhdr = Obj.getHeader();
if (BC->HasRelocations) {
if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary())
NewEhdr.e_entry = RtLibrary->getRuntimeStartAddress();
else
NewEhdr.e_entry = getNewFunctionAddress(NewEhdr.e_entry);
assert((NewEhdr.e_entry || !Obj.getHeader().e_entry) &&
"cannot find new address for entry point");
}
NewEhdr.e_phoff = PHDRTableOffset;
NewEhdr.e_phnum = Phnum;
NewEhdr.e_shoff = SHTOffset;
NewEhdr.e_shnum = OutputSections.size();
NewEhdr.e_shstrndx = NewSectionIndex[NewEhdr.e_shstrndx];
OS.pwrite(reinterpret_cast<const char *>(&NewEhdr), sizeof(NewEhdr), 0);
}
template <typename ELFT, typename WriteFuncTy, typename StrTabFuncTy>
void RewriteInstance::updateELFSymbolTable(
ELFObjectFile<ELFT> *File, bool IsDynSym,
const typename object::ELFObjectFile<ELFT>::Elf_Shdr &SymTabSection,
const std::vector<uint32_t> &NewSectionIndex, WriteFuncTy Write,
StrTabFuncTy AddToStrTab) {
const ELFFile<ELFT> &Obj = File->getELFFile();
using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym;
StringRef StringSection =
cantFail(Obj.getStringTableForSymtab(SymTabSection));
unsigned NumHotTextSymsUpdated = 0;
unsigned NumHotDataSymsUpdated = 0;
std::map<const BinaryFunction *, uint64_t> IslandSizes;
auto getConstantIslandSize = [&IslandSizes](const BinaryFunction &BF) {
auto Itr = IslandSizes.find(&BF);
if (Itr != IslandSizes.end())
return Itr->second;
return IslandSizes[&BF] = BF.estimateConstantIslandSize();
};
// Symbols for the new symbol table.
std::vector<ELFSymTy> Symbols;
auto getNewSectionIndex = [&](uint32_t OldIndex) {
assert(OldIndex < NewSectionIndex.size() && "section index out of bounds");
const uint32_t NewIndex = NewSectionIndex[OldIndex];
// We may have stripped the section that dynsym was referencing due to
// the linker bug. In that case return the old index avoiding marking
// the symbol as undefined.
if (IsDynSym && NewIndex != OldIndex && NewIndex == ELF::SHN_UNDEF)
return OldIndex;
return NewIndex;
};
// Add extra symbols for the function.
//
// Note that addExtraSymbols() could be called multiple times for the same
// function with different FunctionSymbol matching the main function entry
// point.
auto addExtraSymbols = [&](const BinaryFunction &Function,
const ELFSymTy &FunctionSymbol) {
if (Function.isFolded()) {
BinaryFunction *ICFParent = Function.getFoldedIntoFunction();
while (ICFParent->isFolded())
ICFParent = ICFParent->getFoldedIntoFunction();
ELFSymTy ICFSymbol = FunctionSymbol;
SmallVector<char, 256> Buf;
ICFSymbol.st_name =
AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection)))
.concat(".icf.0")
.toStringRef(Buf));
ICFSymbol.st_value = ICFParent->getOutputAddress();
ICFSymbol.st_size = ICFParent->getOutputSize();
ICFSymbol.st_shndx = ICFParent->getCodeSection()->getIndex();
Symbols.emplace_back(ICFSymbol);
}
if (Function.isSplit() && Function.cold().getAddress()) {
ELFSymTy NewColdSym = FunctionSymbol;
SmallVector<char, 256> Buf;
NewColdSym.st_name =
AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection)))
.concat(".cold.0")
.toStringRef(Buf));
NewColdSym.st_shndx = Function.getColdCodeSection()->getIndex();
NewColdSym.st_value = Function.cold().getAddress();
NewColdSym.st_size = Function.cold().getImageSize();
NewColdSym.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC);
Symbols.emplace_back(NewColdSym);
}
if (Function.hasConstantIsland()) {
uint64_t DataMark = Function.getOutputDataAddress();
uint64_t CISize = getConstantIslandSize(Function);
uint64_t CodeMark = DataMark + CISize;
ELFSymTy DataMarkSym = FunctionSymbol;
DataMarkSym.st_name = AddToStrTab("$d");
DataMarkSym.st_value = DataMark;
DataMarkSym.st_size = 0;
DataMarkSym.setType(ELF::STT_NOTYPE);
DataMarkSym.setBinding(ELF::STB_LOCAL);
ELFSymTy CodeMarkSym = DataMarkSym;
CodeMarkSym.st_name = AddToStrTab("$x");
CodeMarkSym.st_value = CodeMark;
Symbols.emplace_back(DataMarkSym);
Symbols.emplace_back(CodeMarkSym);
}
if (Function.hasConstantIsland() && Function.isSplit()) {
uint64_t DataMark = Function.getOutputColdDataAddress();
uint64_t CISize = getConstantIslandSize(Function);
uint64_t CodeMark = DataMark + CISize;
ELFSymTy DataMarkSym = FunctionSymbol;
DataMarkSym.st_name = AddToStrTab("$d");
DataMarkSym.st_value = DataMark;
DataMarkSym.st_size = 0;
DataMarkSym.setType(ELF::STT_NOTYPE);
DataMarkSym.setBinding(ELF::STB_LOCAL);
ELFSymTy CodeMarkSym = DataMarkSym;
CodeMarkSym.st_name = AddToStrTab("$x");
CodeMarkSym.st_value = CodeMark;
Symbols.emplace_back(DataMarkSym);
Symbols.emplace_back(CodeMarkSym);
}
};
// For regular (non-dynamic) symbol table, exclude symbols referring
// to non-allocatable sections.
auto shouldStrip = [&](const ELFSymTy &Symbol) {
if (Symbol.isAbsolute() || !Symbol.isDefined())
return false;
// If we cannot link the symbol to a section, leave it as is.
Expected<const typename ELFT::Shdr *> Section =
Obj.getSection(Symbol.st_shndx);
if (!Section)
return false;
// Remove the section symbol iif the corresponding section was stripped.
if (Symbol.getType() == ELF::STT_SECTION) {
if (!getNewSectionIndex(Symbol.st_shndx))
return true;
return false;
}
// Symbols in non-allocatable sections are typically remnants of relocations
// emitted under "-emit-relocs" linker option. Delete those as we delete
// relocations against non-allocatable sections.
if (!((*Section)->sh_flags & ELF::SHF_ALLOC))
return true;
return false;
};
for (const ELFSymTy &Symbol : cantFail(Obj.symbols(&SymTabSection))) {
// For regular (non-dynamic) symbol table strip unneeded symbols.
if (!IsDynSym && shouldStrip(Symbol))
continue;
const BinaryFunction *Function =
BC->getBinaryFunctionAtAddress(Symbol.st_value);
// Ignore false function references, e.g. when the section address matches
// the address of the function.
if (Function && Symbol.getType() == ELF::STT_SECTION)
Function = nullptr;
// For non-dynamic symtab, make sure the symbol section matches that of
// the function. It can mismatch e.g. if the symbol is a section marker
// in which case we treat the symbol separately from the function.
// For dynamic symbol table, the section index could be wrong on the input,
// and its value is ignored by the runtime if it's different from
// SHN_UNDEF and SHN_ABS.
if (!IsDynSym && Function &&
Symbol.st_shndx !=
Function->getOriginSection()->getSectionRef().getIndex())
Function = nullptr;
// Create a new symbol based on the existing symbol.
ELFSymTy NewSymbol = Symbol;
if (Function) {
// If the symbol matched a function that was not emitted, update the
// corresponding section index but otherwise leave it unchanged.
if (Function->isEmitted()) {
NewSymbol.st_value = Function->getOutputAddress();
NewSymbol.st_size = Function->getOutputSize();
NewSymbol.st_shndx = Function->getCodeSection()->getIndex();
} else if (Symbol.st_shndx < ELF::SHN_LORESERVE) {
NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx);
}
// Add new symbols to the symbol table if necessary.
if (!IsDynSym)
addExtraSymbols(*Function, NewSymbol);
} else {
// Check if the function symbol matches address inside a function, i.e.
// it marks a secondary entry point.
Function =
(Symbol.getType() == ELF::STT_FUNC)
? BC->getBinaryFunctionContainingAddress(Symbol.st_value,
/*CheckPastEnd=*/false,
/*UseMaxSize=*/true)
: nullptr;
if (Function && Function->isEmitted()) {
const uint64_t OutputAddress =
Function->translateInputToOutputAddress(Symbol.st_value);
NewSymbol.st_value = OutputAddress;
// Force secondary entry points to have zero size.
NewSymbol.st_size = 0;
NewSymbol.st_shndx =
OutputAddress >= Function->cold().getAddress() &&
OutputAddress < Function->cold().getImageSize()
? Function->getColdCodeSection()->getIndex()
: Function->getCodeSection()->getIndex();
} else {
// Check if the symbol belongs to moved data object and update it.
BinaryData *BD = opts::ReorderData.empty()
? nullptr
: BC->getBinaryDataAtAddress(Symbol.st_value);
if (BD && BD->isMoved() && !BD->isJumpTable()) {
assert((!BD->getSize() || !Symbol.st_size ||
Symbol.st_size == BD->getSize()) &&
"sizes must match");
BinarySection &OutputSection = BD->getOutputSection();
assert(OutputSection.getIndex());
LLVM_DEBUG(dbgs()
<< "BOLT-DEBUG: moving " << BD->getName() << " from "
<< *BC->getSectionNameForAddress(Symbol.st_value) << " ("
<< Symbol.st_shndx << ") to " << OutputSection.getName()
<< " (" << OutputSection.getIndex() << ")\n");
NewSymbol.st_shndx = OutputSection.getIndex();
NewSymbol.st_value = BD->getOutputAddress();
} else {
// Otherwise just update the section for the symbol.
if (Symbol.st_shndx < ELF::SHN_LORESERVE)
NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx);
}
// Detect local syms in the text section that we didn't update
// and that were preserved by the linker to support relocations against
// .text. Remove them from the symtab.
if (Symbol.getType() == ELF::STT_NOTYPE &&
Symbol.getBinding() == ELF::STB_LOCAL && Symbol.st_size == 0) {
if (BC->getBinaryFunctionContainingAddress(Symbol.st_value,
/*CheckPastEnd=*/false,
/*UseMaxSize=*/true)) {
// Can only delete the symbol if not patching. Such symbols should
// not exist in the dynamic symbol table.
assert(!IsDynSym && "cannot delete symbol");
continue;
}
}
}
}
// Handle special symbols based on their name.
Expected<StringRef> SymbolName = Symbol.getName(StringSection);
assert(SymbolName && "cannot get symbol name");
auto updateSymbolValue = [&](const StringRef Name, unsigned &IsUpdated) {
NewSymbol.st_value = getNewValueForSymbol(Name);
NewSymbol.st_shndx = ELF::SHN_ABS;
outs() << "BOLT-INFO: setting " << Name << " to 0x"
<< Twine::utohexstr(NewSymbol.st_value) << '\n';
++IsUpdated;
};
if (opts::HotText &&
(*SymbolName == "__hot_start" || *SymbolName == "__hot_end"))
updateSymbolValue(*SymbolName, NumHotTextSymsUpdated);
if (opts::HotData &&
(*SymbolName == "__hot_data_start" || *SymbolName == "__hot_data_end"))
updateSymbolValue(*SymbolName, NumHotDataSymsUpdated);
if (*SymbolName == "_end") {
unsigned Ignored;
updateSymbolValue(*SymbolName, Ignored);
}
if (IsDynSym)
Write((&Symbol - cantFail(Obj.symbols(&SymTabSection)).begin()) *
sizeof(ELFSymTy),
NewSymbol);
else
Symbols.emplace_back(NewSymbol);
}
if (IsDynSym) {
assert(Symbols.empty());
return;
}
// Add symbols of injected functions
for (BinaryFunction *Function : BC->getInjectedBinaryFunctions()) {
ELFSymTy NewSymbol;
BinarySection *OriginSection = Function->getOriginSection();
NewSymbol.st_shndx =
OriginSection
? getNewSectionIndex(OriginSection->getSectionRef().getIndex())
: Function->getCodeSection()->getIndex();
NewSymbol.st_value = Function->getOutputAddress();
NewSymbol.st_name = AddToStrTab(Function->getOneName());
NewSymbol.st_size = Function->getOutputSize();
NewSymbol.st_other = 0;
NewSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC);
Symbols.emplace_back(NewSymbol);
if (Function->isSplit()) {
ELFSymTy NewColdSym = NewSymbol;
NewColdSym.setType(ELF::STT_NOTYPE);
SmallVector<char, 256> Buf;
NewColdSym.st_name = AddToStrTab(
Twine(Function->getPrintName()).concat(".cold.0").toStringRef(Buf));
NewColdSym.st_value = Function->cold().getAddress();
NewColdSym.st_size = Function->cold().getImageSize();
Symbols.emplace_back(NewColdSym);
}
}
assert((!NumHotTextSymsUpdated || NumHotTextSymsUpdated == 2) &&
"either none or both __hot_start/__hot_end symbols were expected");
assert((!NumHotDataSymsUpdated || NumHotDataSymsUpdated == 2) &&
"either none or both __hot_data_start/__hot_data_end symbols were "
"expected");
auto addSymbol = [&](const std::string &Name) {
ELFSymTy Symbol;
Symbol.st_value = getNewValueForSymbol(Name);
Symbol.st_shndx = ELF::SHN_ABS;
Symbol.st_name = AddToStrTab(Name);
Symbol.st_size = 0;
Symbol.st_other = 0;
Symbol.setBindingAndType(ELF::STB_WEAK, ELF::STT_NOTYPE);
outs() << "BOLT-INFO: setting " << Name << " to 0x"
<< Twine::utohexstr(Symbol.st_value) << '\n';
Symbols.emplace_back(Symbol);
};
if (opts::HotText && !NumHotTextSymsUpdated) {
addSymbol("__hot_start");
addSymbol("__hot_end");
}
if (opts::HotData && !NumHotDataSymsUpdated) {
addSymbol("__hot_data_start");
addSymbol("__hot_data_end");
}
// Put local symbols at the beginning.
std::stable_sort(Symbols.begin(), Symbols.end(),
[](const ELFSymTy &A, const ELFSymTy &B) {
if (A.getBinding() == ELF::STB_LOCAL &&
B.getBinding() != ELF::STB_LOCAL)
return true;
return false;
});
for (const ELFSymTy &Symbol : Symbols)
Write(0, Symbol);
}
template <typename ELFT>
void RewriteInstance::patchELFSymTabs(ELFObjectFile<ELFT> *File) {
const ELFFile<ELFT> &Obj = File->getELFFile();
using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr;
using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym;
// Compute a preview of how section indices will change after rewriting, so
// we can properly update the symbol table based on new section indices.
std::vector<uint32_t> NewSectionIndex;
getOutputSections(File, NewSectionIndex);
// Set pointer at the end of the output file, so we can pwrite old symbol
// tables if we need to.
uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress);
assert(NextAvailableOffset >= FirstNonAllocatableOffset &&
"next available offset calculation failure");
Out->os().seek(NextAvailableOffset);
// Update dynamic symbol table.
const ELFShdrTy *DynSymSection = nullptr;
for (const ELFShdrTy &Section : cantFail(Obj.sections())) {
if (Section.sh_type == ELF::SHT_DYNSYM) {
DynSymSection = &Section;
break;
}
}
assert((DynSymSection || BC->IsStaticExecutable) &&
"dynamic symbol table expected");
if (DynSymSection) {
updateELFSymbolTable(
File,
/*IsDynSym=*/true,
*DynSymSection,
NewSectionIndex,
[&](size_t Offset, const ELFSymTy &Sym) {
Out->os().pwrite(reinterpret_cast<const char *>(&Sym),
sizeof(ELFSymTy),
DynSymSection->sh_offset + Offset);
},
[](StringRef) -> size_t { return 0; });
}
if (opts::RemoveSymtab)
return;
// (re)create regular symbol table.
const ELFShdrTy *SymTabSection = nullptr;
for (const ELFShdrTy &Section : cantFail(Obj.sections())) {
if (Section.sh_type == ELF::SHT_SYMTAB) {
SymTabSection = &Section;
break;
}
}
if (!SymTabSection) {
errs() << "BOLT-WARNING: no symbol table found\n";
return;
}
const ELFShdrTy *StrTabSection =
cantFail(Obj.getSection(SymTabSection->sh_link));
std::string NewContents;
std::string NewStrTab = std::string(
File->getData().substr(StrTabSection->sh_offset, StrTabSection->sh_size));
StringRef SecName = cantFail(Obj.getSectionName(*SymTabSection));
StringRef StrSecName = cantFail(Obj.getSectionName(*StrTabSection));
NumLocalSymbols = 0;
updateELFSymbolTable(
File,
/*IsDynSym=*/false,
*SymTabSection,
NewSectionIndex,
[&](size_t Offset, const ELFSymTy &Sym) {
if (Sym.getBinding() == ELF::STB_LOCAL)
++NumLocalSymbols;
NewContents.append(reinterpret_cast<const char *>(&Sym),
sizeof(ELFSymTy));
},
[&](StringRef Str) {
size_t Idx = NewStrTab.size();
NewStrTab.append(NameResolver::restore(Str).str());
NewStrTab.append(1, '\0');
return Idx;
});
BC->registerOrUpdateNoteSection(SecName,
copyByteArray(NewContents),
NewContents.size(),
/*Alignment=*/1,
/*IsReadOnly=*/true,
ELF::SHT_SYMTAB);
BC->registerOrUpdateNoteSection(StrSecName,
copyByteArray(NewStrTab),
NewStrTab.size(),
/*Alignment=*/1,
/*IsReadOnly=*/true,
ELF::SHT_STRTAB);
}
template <typename ELFT>
void
RewriteInstance::patchELFAllocatableRelaSections(ELFObjectFile<ELFT> *File) {
using Elf_Rela = typename ELFT::Rela;
raw_fd_ostream &OS = Out->os();
for (BinarySection &RelaSection : BC->allocatableRelaSections()) {
for (const RelocationRef &Rel : RelaSection.getSectionRef().relocations()) {
uint64_t RType = Rel.getType();
if (!Relocation::isRelative(RType) && !Relocation::isIRelative(RType))
continue;
DataRefImpl DRI = Rel.getRawDataRefImpl();
const Elf_Rela *RelA = File->getRela(DRI);
auto Address = RelA->r_addend;
uint64_t NewAddress = getNewFunctionAddress(Address);
if (!NewAddress)
continue;
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching (I)RELATIVE "
<< RelaSection.getName() << " entry 0x"
<< Twine::utohexstr(Address) << " with 0x"
<< Twine::utohexstr(NewAddress) << '\n');
Elf_Rela NewRelA = *RelA;
NewRelA.r_addend = NewAddress;
OS.pwrite(reinterpret_cast<const char *>(&NewRelA), sizeof(NewRelA),
reinterpret_cast<const char *>(RelA) - File->getData().data());
}
}
}
template <typename ELFT>
void RewriteInstance::patchELFGOT(ELFObjectFile<ELFT> *File) {
raw_fd_ostream &OS = Out->os();
SectionRef GOTSection;
for (const SectionRef &Section : File->sections()) {
StringRef SectionName = cantFail(Section.getName());
if (SectionName == ".got") {
GOTSection = Section;
break;
}
}
if (!GOTSection.getObject()) {
errs() << "BOLT-INFO: no .got section found\n";
return;
}
StringRef GOTContents = cantFail(GOTSection.getContents());
for (const uint64_t *GOTEntry =
reinterpret_cast<const uint64_t *>(GOTContents.data());
GOTEntry < reinterpret_cast<const uint64_t *>(GOTContents.data() +
GOTContents.size());
++GOTEntry) {
if (uint64_t NewAddress = getNewFunctionAddress(*GOTEntry)) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching GOT entry 0x"
<< Twine::utohexstr(*GOTEntry) << " with 0x"
<< Twine::utohexstr(NewAddress) << '\n');
OS.pwrite(reinterpret_cast<const char *>(&NewAddress), sizeof(NewAddress),
reinterpret_cast<const char *>(GOTEntry) -
File->getData().data());
}
}
}
template <typename ELFT>
void RewriteInstance::patchELFDynamic(ELFObjectFile<ELFT> *File) {
if (BC->IsStaticExecutable)
return;
const ELFFile<ELFT> &Obj = File->getELFFile();
raw_fd_ostream &OS = Out->os();
using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr;
using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn;
// Locate DYNAMIC by looking through program headers.
uint64_t DynamicOffset = 0;
const Elf_Phdr *DynamicPhdr = 0;
for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) {
if (Phdr.p_type == ELF::PT_DYNAMIC) {
DynamicOffset = Phdr.p_offset;
DynamicPhdr = &Phdr;
assert(Phdr.p_memsz == Phdr.p_filesz && "dynamic sizes should match");
break;
}
}
assert(DynamicPhdr && "missing dynamic in ELF binary");
bool ZNowSet = false;
// Go through all dynamic entries and patch functions addresses with
// new ones.
typename ELFT::DynRange DynamicEntries =
cantFail(Obj.dynamicEntries(), "error accessing dynamic table");
auto DTB = DynamicEntries.begin();
for (const Elf_Dyn &Dyn : DynamicEntries) {
Elf_Dyn NewDE = Dyn;
bool ShouldPatch = true;
switch (Dyn.d_tag) {
default:
ShouldPatch = false;
break;
case ELF::DT_INIT:
case ELF::DT_FINI: {
if (BC->HasRelocations) {
if (uint64_t NewAddress = getNewFunctionAddress(Dyn.getPtr())) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching dynamic entry of type "
<< Dyn.getTag() << '\n');
NewDE.d_un.d_ptr = NewAddress;
}
}
RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary();
if (RtLibrary && Dyn.getTag() == ELF::DT_FINI) {
if (uint64_t Addr = RtLibrary->getRuntimeFiniAddress())
NewDE.d_un.d_ptr = Addr;
}
if (RtLibrary && Dyn.getTag() == ELF::DT_INIT && !BC->HasInterpHeader) {
if (auto Addr = RtLibrary->getRuntimeStartAddress()) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set DT_INIT to 0x"
<< Twine::utohexstr(Addr) << '\n');
NewDE.d_un.d_ptr = Addr;
}
}
break;
}
case ELF::DT_FLAGS:
if (BC->RequiresZNow) {
NewDE.d_un.d_val |= ELF::DF_BIND_NOW;
ZNowSet = true;
}
break;
case ELF::DT_FLAGS_1:
if (BC->RequiresZNow) {
NewDE.d_un.d_val |= ELF::DF_1_NOW;
ZNowSet = true;
}
break;
}
if (ShouldPatch)
OS.pwrite(reinterpret_cast<const char *>(&NewDE), sizeof(NewDE),
DynamicOffset + (&Dyn - DTB) * sizeof(Dyn));
}
if (BC->RequiresZNow && !ZNowSet) {
errs() << "BOLT-ERROR: output binary requires immediate relocation "
"processing which depends on DT_FLAGS or DT_FLAGS_1 presence in "
".dynamic. Please re-link the binary with -znow.\n";
exit(1);
}
}
template <typename ELFT>
void RewriteInstance::readELFDynamic(ELFObjectFile<ELFT> *File) {
const ELFFile<ELFT> &Obj = File->getELFFile();
using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr;
using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn;
// Locate DYNAMIC by looking through program headers.
const Elf_Phdr *DynamicPhdr = 0;
for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) {
if (Phdr.p_type == ELF::PT_DYNAMIC) {
DynamicPhdr = &Phdr;
break;
}
}
if (!DynamicPhdr) {
outs() << "BOLT-INFO: static input executable detected\n";
// TODO: static PIE executable might have dynamic header
BC->IsStaticExecutable = true;
return;
}
assert(DynamicPhdr->p_memsz == DynamicPhdr->p_filesz &&
"dynamic section sizes should match");
// Go through all dynamic entries to locate entries of interest.
typename ELFT::DynRange DynamicEntries =
cantFail(Obj.dynamicEntries(), "error accessing dynamic table");
for (const Elf_Dyn &Dyn : DynamicEntries) {
switch (Dyn.d_tag) {
case ELF::DT_INIT:
if (!BC->HasInterpHeader) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set start function address\n");
BC->StartFunctionAddress = Dyn.getPtr();
}
break;
case ELF::DT_FINI:
BC->FiniFunctionAddress = Dyn.getPtr();
break;
case ELF::DT_RELA:
DynamicRelocationsAddress = Dyn.getPtr();
break;
case ELF::DT_RELASZ:
DynamicRelocationsSize = Dyn.getVal();
break;
case ELF::DT_JMPREL:
PLTRelocationsAddress = Dyn.getPtr();
break;
case ELF::DT_PLTRELSZ:
PLTRelocationsSize = Dyn.getVal();
break;
}
}
if (!DynamicRelocationsAddress)
DynamicRelocationsSize = 0;
if (!PLTRelocationsAddress)
PLTRelocationsSize = 0;
}
uint64_t RewriteInstance::getNewFunctionAddress(uint64_t OldAddress) {
const BinaryFunction *Function = BC->getBinaryFunctionAtAddress(OldAddress);
if (!Function)
return 0;
assert(!Function->isFragment() && "cannot get new address for a fragment");
return Function->getOutputAddress();
}
void RewriteInstance::rewriteFile() {
std::error_code EC;
Out = std::make_unique<ToolOutputFile>(opts::OutputFilename, EC,
sys::fs::OF_None);
check_error(EC, "cannot create output executable file");
raw_fd_ostream &OS = Out->os();
// Copy allocatable part of the input.
OS << InputFile->getData().substr(0, FirstNonAllocatableOffset);
// We obtain an asm-specific writer so that we can emit nops in an
// architecture-specific way at the end of the function.
std::unique_ptr<MCAsmBackend> MAB(
BC->TheTarget->createMCAsmBackend(*BC->STI, *BC->MRI, MCTargetOptions()));
auto Streamer = BC->createStreamer(OS);
// Make sure output stream has enough reserved space, otherwise
// pwrite() will fail.
uint64_t Offset = OS.seek(getFileOffsetForAddress(NextAvailableAddress));
(void)Offset;
assert(Offset == getFileOffsetForAddress(NextAvailableAddress) &&
"error resizing output file");
// Overwrite functions with fixed output address. This is mostly used by
// non-relocation mode, with one exception: injected functions are covered
// here in both modes.
uint64_t CountOverwrittenFunctions = 0;
uint64_t OverwrittenScore = 0;
for (BinaryFunction *Function : BC->getAllBinaryFunctions()) {
if (Function->getImageAddress() == 0 || Function->getImageSize() == 0)
continue;
if (Function->getImageSize() > Function->getMaxSize()) {
if (opts::Verbosity >= 1)
errs() << "BOLT-WARNING: new function size (0x"
<< Twine::utohexstr(Function->getImageSize())
<< ") is larger than maximum allowed size (0x"
<< Twine::utohexstr(Function->getMaxSize()) << ") for function "
<< *Function << '\n';
// Remove jump table sections that this function owns in non-reloc mode
// because we don't want to write them anymore.
if (!BC->HasRelocations && opts::JumpTables == JTS_BASIC) {
for (auto &JTI : Function->JumpTables) {
JumpTable *JT = JTI.second;
BinarySection &Section = JT->getOutputSection();
BC->deregisterSection(Section);
}
}
continue;
}
if (Function->isSplit() && (Function->cold().getImageAddress() == 0 ||
Function->cold().getImageSize() == 0))
continue;
OverwrittenScore += Function->getFunctionScore();
// Overwrite function in the output file.
if (opts::Verbosity >= 2)
outs() << "BOLT: rewriting function \"" << *Function << "\"\n";
OS.pwrite(reinterpret_cast<char *>(Function->getImageAddress()),
Function->getImageSize(), Function->getFileOffset());
// Write nops at the end of the function.
if (Function->getMaxSize() != std::numeric_limits<uint64_t>::max()) {
uint64_t Pos = OS.tell();
OS.seek(Function->getFileOffset() + Function->getImageSize());
MAB->writeNopData(OS, Function->getMaxSize() - Function->getImageSize(),
&*BC->STI);
OS.seek(Pos);
}
if (!Function->isSplit()) {
++CountOverwrittenFunctions;
if (opts::MaxFunctions &&
CountOverwrittenFunctions == opts::MaxFunctions) {
outs() << "BOLT: maximum number of functions reached\n";
break;
}
continue;
}
// Write cold part
if (opts::Verbosity >= 2)
outs() << "BOLT: rewriting function \"" << *Function
<< "\" (cold part)\n";
OS.pwrite(reinterpret_cast<char *>(Function->cold().getImageAddress()),
Function->cold().getImageSize(),
Function->cold().getFileOffset());
++CountOverwrittenFunctions;
if (opts::MaxFunctions && CountOverwrittenFunctions == opts::MaxFunctions) {
outs() << "BOLT: maximum number of functions reached\n";
break;
}
}
// Print function statistics for non-relocation mode.
if (!BC->HasRelocations) {
outs() << "BOLT: " << CountOverwrittenFunctions << " out of "
<< BC->getBinaryFunctions().size()
<< " functions were overwritten.\n";
if (BC->TotalScore != 0) {
double Coverage = OverwrittenScore / (double)BC->TotalScore * 100.0;
outs() << format("BOLT-INFO: rewritten functions cover %.2lf", Coverage)
<< "% of the execution count of simple functions of "
"this binary\n";
}
}
if (BC->HasRelocations && opts::TrapOldCode) {
uint64_t SavedPos = OS.tell();
// Overwrite function body to make sure we never execute these instructions.
for (auto &BFI : BC->getBinaryFunctions()) {
BinaryFunction &BF = BFI.second;
if (!BF.getFileOffset() || !BF.isEmitted())
continue;
OS.seek(BF.getFileOffset());
for (unsigned I = 0; I < BF.getMaxSize(); ++I)
OS.write((unsigned char)BC->MIB->getTrapFillValue());
}
OS.seek(SavedPos);
}
// Write all allocatable sections - reloc-mode text is written here as well
for (BinarySection &Section : BC->allocatableSections()) {
if (!Section.isFinalized() || !Section.getOutputData())
continue;
if (opts::Verbosity >= 1)
outs() << "BOLT: writing new section " << Section.getName()
<< "\n data at 0x" << Twine::utohexstr(Section.getAllocAddress())
<< "\n of size " << Section.getOutputSize() << "\n at offset "
<< Section.getOutputFileOffset() << '\n';
OS.pwrite(reinterpret_cast<const char *>(Section.getOutputData()),
Section.getOutputSize(), Section.getOutputFileOffset());
}
for (BinarySection &Section : BC->allocatableSections())
Section.flushPendingRelocations(OS, [this](const MCSymbol *S) {
return getNewValueForSymbol(S->getName());
});
// If .eh_frame is present create .eh_frame_hdr.
if (EHFrameSection && EHFrameSection->isFinalized())
writeEHFrameHeader();
// Add BOLT Addresses Translation maps to allow profile collection to
// happen in the output binary
if (opts::EnableBAT)
addBATSection();
// Patch program header table.
patchELFPHDRTable();
// Finalize memory image of section string table.
finalizeSectionStringTable();
// Update symbol tables.
patchELFSymTabs();
patchBuildID();
if (opts::EnableBAT)
encodeBATSection();
// Copy non-allocatable sections once allocatable part is finished.
rewriteNoteSections();
// Patch dynamic section/segment.
patchELFDynamic();
if (BC->HasRelocations) {
patchELFAllocatableRelaSections();
patchELFGOT();
}
// Update ELF book-keeping info.
patchELFSectionHeaderTable();
if (opts::PrintSections) {
outs() << "BOLT-INFO: Sections after processing:\n";
BC->printSections(outs());
}
Out->keep();
EC = sys::fs::setPermissions(opts::OutputFilename, sys::fs::perms::all_all);
check_error(EC, "cannot set permissions of output file");
}
void RewriteInstance::writeEHFrameHeader() {
DWARFDebugFrame NewEHFrame(BC->TheTriple->getArch(), true,
EHFrameSection->getOutputAddress());
Error E = NewEHFrame.parse(DWARFDataExtractor(
EHFrameSection->getOutputContents(), BC->AsmInfo->isLittleEndian(),
BC->AsmInfo->getCodePointerSize()));
check_error(std::move(E), "failed to parse EH frame");
uint64_t OldEHFrameAddress = 0;
StringRef OldEHFrameContents;
ErrorOr<BinarySection &> OldEHFrameSection =
BC->getUniqueSectionByName(Twine(getOrgSecPrefix(), ".eh_frame").str());
if (OldEHFrameSection) {
OldEHFrameAddress = OldEHFrameSection->getOutputAddress();
OldEHFrameContents = OldEHFrameSection->getOutputContents();
}
DWARFDebugFrame OldEHFrame(BC->TheTriple->getArch(), true, OldEHFrameAddress);
Error Er = OldEHFrame.parse(
DWARFDataExtractor(OldEHFrameContents, BC->AsmInfo->isLittleEndian(),
BC->AsmInfo->getCodePointerSize()));
check_error(std::move(Er), "failed to parse EH frame");
LLVM_DEBUG(dbgs() << "BOLT: writing a new .eh_frame_hdr\n");
NextAvailableAddress =
appendPadding(Out->os(), NextAvailableAddress, EHFrameHdrAlign);
const uint64_t EHFrameHdrOutputAddress = NextAvailableAddress;
const uint64_t EHFrameHdrFileOffset =
getFileOffsetForAddress(NextAvailableAddress);
std::vector<char> NewEHFrameHdr = CFIRdWrt->generateEHFrameHeader(
OldEHFrame, NewEHFrame, EHFrameHdrOutputAddress, FailedAddresses);
assert(Out->os().tell() == EHFrameHdrFileOffset && "offset mismatch");
Out->os().write(NewEHFrameHdr.data(), NewEHFrameHdr.size());
const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true,
/*IsText=*/false,
/*IsAllocatable=*/true);
BinarySection &EHFrameHdrSec = BC->registerOrUpdateSection(
".eh_frame_hdr", ELF::SHT_PROGBITS, Flags, nullptr, NewEHFrameHdr.size(),
/*Alignment=*/1);
EHFrameHdrSec.setOutputFileOffset(EHFrameHdrFileOffset);
EHFrameHdrSec.setOutputAddress(EHFrameHdrOutputAddress);
NextAvailableAddress += EHFrameHdrSec.getOutputSize();
// Merge new .eh_frame with original so that gdb can locate all FDEs.
if (OldEHFrameSection) {
const uint64_t EHFrameSectionSize = (OldEHFrameSection->getOutputAddress() +
OldEHFrameSection->getOutputSize() -
EHFrameSection->getOutputAddress());
EHFrameSection =
BC->registerOrUpdateSection(".eh_frame",
EHFrameSection->getELFType(),
EHFrameSection->getELFFlags(),
EHFrameSection->getOutputData(),
EHFrameSectionSize,
EHFrameSection->getAlignment());
BC->deregisterSection(*OldEHFrameSection);
}
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: size of .eh_frame after merge is "
<< EHFrameSection->getOutputSize() << '\n');
}
uint64_t RewriteInstance::getNewValueForSymbol(const StringRef Name) {
uint64_t Value = RTDyld->getSymbol(Name).getAddress();
if (Value != 0)
return Value;
// Return the original value if we haven't emitted the symbol.
BinaryData *BD = BC->getBinaryDataByName(Name);
if (!BD)
return 0;
return BD->getAddress();
}
uint64_t RewriteInstance::getFileOffsetForAddress(uint64_t Address) const {
// Check if it's possibly part of the new segment.
if (Address >= NewTextSegmentAddress)
return Address - NewTextSegmentAddress + NewTextSegmentOffset;
// Find an existing segment that matches the address.
const auto SegmentInfoI = BC->SegmentMapInfo.upper_bound(Address);
if (SegmentInfoI == BC->SegmentMapInfo.begin())
return 0;
const SegmentInfo &SegmentInfo = std::prev(SegmentInfoI)->second;
if (Address < SegmentInfo.Address ||
Address >= SegmentInfo.Address + SegmentInfo.FileSize)
return 0;
return SegmentInfo.FileOffset + Address - SegmentInfo.Address;
}
bool RewriteInstance::willOverwriteSection(StringRef SectionName) {
for (const char *const &OverwriteName : SectionsToOverwrite)
if (SectionName == OverwriteName)
return true;
for (std::string &OverwriteName : DebugSectionsToOverwrite)
if (SectionName == OverwriteName)
return true;
ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName);
return Section && Section->isAllocatable() && Section->isFinalized();
}
bool RewriteInstance::isDebugSection(StringRef SectionName) {
if (SectionName.startswith(".debug_") || SectionName.startswith(".zdebug_") ||
SectionName == ".gdb_index" || SectionName == ".stab" ||
SectionName == ".stabstr")
return true;
return false;
}
bool RewriteInstance::isKSymtabSection(StringRef SectionName) {
if (SectionName.startswith("__ksymtab"))
return true;
return false;
}
|