1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
|
//===-- lib/Evaluate/characteristics.cpp ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Evaluate/characteristics.h"
#include "flang/Common/indirection.h"
#include "flang/Evaluate/check-expression.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/intrinsics.h"
#include "flang/Evaluate/tools.h"
#include "flang/Evaluate/type.h"
#include "flang/Parser/message.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/symbol.h"
#include "llvm/Support/raw_ostream.h"
#include <initializer_list>
using namespace Fortran::parser::literals;
namespace Fortran::evaluate::characteristics {
// Copy attributes from a symbol to dst based on the mapping in pairs.
template <typename A, typename B>
static void CopyAttrs(const semantics::Symbol &src, A &dst,
const std::initializer_list<std::pair<semantics::Attr, B>> &pairs) {
for (const auto &pair : pairs) {
if (src.attrs().test(pair.first)) {
dst.attrs.set(pair.second);
}
}
}
// Shapes of function results and dummy arguments have to have
// the same rank, the same deferred dimensions, and the same
// values for explicit dimensions when constant.
bool ShapesAreCompatible(const Shape &x, const Shape &y) {
if (x.size() != y.size()) {
return false;
}
auto yIter{y.begin()};
for (const auto &xDim : x) {
const auto &yDim{*yIter++};
if (xDim) {
if (!yDim || ToInt64(*xDim) != ToInt64(*yDim)) {
return false;
}
} else if (yDim) {
return false;
}
}
return true;
}
bool TypeAndShape::operator==(const TypeAndShape &that) const {
return type_ == that.type_ && ShapesAreCompatible(shape_, that.shape_) &&
attrs_ == that.attrs_ && corank_ == that.corank_;
}
TypeAndShape &TypeAndShape::Rewrite(FoldingContext &context) {
LEN_ = Fold(context, std::move(LEN_));
shape_ = Fold(context, std::move(shape_));
return *this;
}
std::optional<TypeAndShape> TypeAndShape::Characterize(
const semantics::Symbol &symbol, FoldingContext &context) {
const auto &ultimate{symbol.GetUltimate()};
return std::visit(
common::visitors{
[&](const semantics::ProcEntityDetails &proc) {
const semantics::ProcInterface &interface{proc.interface()};
if (interface.type()) {
return Characterize(*interface.type(), context);
} else if (interface.symbol()) {
return Characterize(*interface.symbol(), context);
} else {
return std::optional<TypeAndShape>{};
}
},
[&](const semantics::AssocEntityDetails &assoc) {
return Characterize(assoc, context);
},
[&](const semantics::ProcBindingDetails &binding) {
return Characterize(binding.symbol(), context);
},
[&](const auto &x) -> std::optional<TypeAndShape> {
using Ty = std::decay_t<decltype(x)>;
if constexpr (std::is_same_v<Ty, semantics::EntityDetails> ||
std::is_same_v<Ty, semantics::ObjectEntityDetails> ||
std::is_same_v<Ty, semantics::TypeParamDetails>) {
if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) {
if (auto dyType{DynamicType::From(*type)}) {
TypeAndShape result{
std::move(*dyType), GetShape(context, ultimate)};
result.AcquireAttrs(ultimate);
result.AcquireLEN(ultimate);
return std::move(result.Rewrite(context));
}
}
}
return std::nullopt;
},
},
// GetUltimate() used here, not ResolveAssociations(), because
// we need the type/rank of an associate entity from TYPE IS,
// CLASS IS, or RANK statement.
ultimate.details());
}
std::optional<TypeAndShape> TypeAndShape::Characterize(
const semantics::AssocEntityDetails &assoc, FoldingContext &context) {
std::optional<TypeAndShape> result;
if (auto type{DynamicType::From(assoc.type())}) {
if (auto rank{assoc.rank()}) {
if (*rank >= 0 && *rank <= common::maxRank) {
result = TypeAndShape{std::move(*type), Shape(*rank)};
}
} else if (auto shape{GetShape(context, assoc.expr())}) {
result = TypeAndShape{std::move(*type), std::move(*shape)};
}
if (result && type->category() == TypeCategory::Character) {
if (const auto *chExpr{UnwrapExpr<Expr<SomeCharacter>>(assoc.expr())}) {
if (auto len{chExpr->LEN()}) {
result->set_LEN(std::move(*len));
}
}
}
}
return Fold(context, std::move(result));
}
std::optional<TypeAndShape> TypeAndShape::Characterize(
const semantics::DeclTypeSpec &spec, FoldingContext &context) {
if (auto type{DynamicType::From(spec)}) {
return Fold(context, TypeAndShape{std::move(*type)});
} else {
return std::nullopt;
}
}
std::optional<TypeAndShape> TypeAndShape::Characterize(
const ActualArgument &arg, FoldingContext &context) {
return Characterize(arg.UnwrapExpr(), context);
}
bool TypeAndShape::IsCompatibleWith(parser::ContextualMessages &messages,
const TypeAndShape &that, const char *thisIs, const char *thatIs,
bool isElemental, enum CheckConformanceFlags::Flags flags) const {
if (!type_.IsTkCompatibleWith(that.type_)) {
messages.Say(
"%1$s type '%2$s' is not compatible with %3$s type '%4$s'"_err_en_US,
thatIs, that.AsFortran(), thisIs, AsFortran());
return false;
}
return isElemental ||
CheckConformance(messages, shape_, that.shape_, flags, thisIs, thatIs)
.value_or(true /*fail only when nonconformance is known now*/);
}
std::optional<Expr<SubscriptInteger>> TypeAndShape::MeasureElementSizeInBytes(
FoldingContext &foldingContext, bool align) const {
if (LEN_) {
CHECK(type_.category() == TypeCategory::Character);
return Fold(foldingContext,
Expr<SubscriptInteger>{type_.kind()} * Expr<SubscriptInteger>{*LEN_});
}
if (auto elementBytes{type_.MeasureSizeInBytes(foldingContext, align)}) {
return Fold(foldingContext, std::move(*elementBytes));
}
return std::nullopt;
}
std::optional<Expr<SubscriptInteger>> TypeAndShape::MeasureSizeInBytes(
FoldingContext &foldingContext) const {
if (auto elements{GetSize(Shape{shape_})}) {
// Sizes of arrays (even with single elements) are multiples of
// their alignments.
if (auto elementBytes{
MeasureElementSizeInBytes(foldingContext, GetRank(shape_) > 0)}) {
return Fold(
foldingContext, std::move(*elements) * std::move(*elementBytes));
}
}
return std::nullopt;
}
void TypeAndShape::AcquireAttrs(const semantics::Symbol &symbol) {
if (IsAssumedShape(symbol)) {
attrs_.set(Attr::AssumedShape);
}
if (IsDeferredShape(symbol)) {
attrs_.set(Attr::DeferredShape);
}
if (const auto *object{
symbol.GetUltimate().detailsIf<semantics::ObjectEntityDetails>()}) {
corank_ = object->coshape().Rank();
if (object->IsAssumedRank()) {
attrs_.set(Attr::AssumedRank);
}
if (object->IsAssumedSize()) {
attrs_.set(Attr::AssumedSize);
}
if (object->IsCoarray()) {
attrs_.set(Attr::Coarray);
}
}
}
void TypeAndShape::AcquireLEN() {
if (auto len{type_.GetCharLength()}) {
LEN_ = std::move(len);
}
}
void TypeAndShape::AcquireLEN(const semantics::Symbol &symbol) {
if (type_.category() == TypeCategory::Character) {
if (auto len{DataRef{symbol}.LEN()}) {
LEN_ = std::move(*len);
}
}
}
std::string TypeAndShape::AsFortran() const {
return type_.AsFortran(LEN_ ? LEN_->AsFortran() : "");
}
llvm::raw_ostream &TypeAndShape::Dump(llvm::raw_ostream &o) const {
o << type_.AsFortran(LEN_ ? LEN_->AsFortran() : "");
attrs_.Dump(o, EnumToString);
if (!shape_.empty()) {
o << " dimension";
char sep{'('};
for (const auto &expr : shape_) {
o << sep;
sep = ',';
if (expr) {
expr->AsFortran(o);
} else {
o << ':';
}
}
o << ')';
}
return o;
}
bool DummyDataObject::operator==(const DummyDataObject &that) const {
return type == that.type && attrs == that.attrs && intent == that.intent &&
coshape == that.coshape;
}
static common::Intent GetIntent(const semantics::Attrs &attrs) {
if (attrs.test(semantics::Attr::INTENT_IN)) {
return common::Intent::In;
} else if (attrs.test(semantics::Attr::INTENT_OUT)) {
return common::Intent::Out;
} else if (attrs.test(semantics::Attr::INTENT_INOUT)) {
return common::Intent::InOut;
} else {
return common::Intent::Default;
}
}
std::optional<DummyDataObject> DummyDataObject::Characterize(
const semantics::Symbol &symbol, FoldingContext &context) {
if (symbol.has<semantics::ObjectEntityDetails>() ||
symbol.has<semantics::EntityDetails>()) {
if (auto type{TypeAndShape::Characterize(symbol, context)}) {
std::optional<DummyDataObject> result{std::move(*type)};
using semantics::Attr;
CopyAttrs<DummyDataObject, DummyDataObject::Attr>(symbol, *result,
{
{Attr::OPTIONAL, DummyDataObject::Attr::Optional},
{Attr::ALLOCATABLE, DummyDataObject::Attr::Allocatable},
{Attr::ASYNCHRONOUS, DummyDataObject::Attr::Asynchronous},
{Attr::CONTIGUOUS, DummyDataObject::Attr::Contiguous},
{Attr::VALUE, DummyDataObject::Attr::Value},
{Attr::VOLATILE, DummyDataObject::Attr::Volatile},
{Attr::POINTER, DummyDataObject::Attr::Pointer},
{Attr::TARGET, DummyDataObject::Attr::Target},
});
result->intent = GetIntent(symbol.attrs());
return result;
}
}
return std::nullopt;
}
bool DummyDataObject::CanBePassedViaImplicitInterface() const {
if ((attrs &
Attrs{Attr::Allocatable, Attr::Asynchronous, Attr::Optional,
Attr::Pointer, Attr::Target, Attr::Value, Attr::Volatile})
.any()) {
return false; // 15.4.2.2(3)(a)
} else if ((type.attrs() &
TypeAndShape::Attrs{TypeAndShape::Attr::AssumedShape,
TypeAndShape::Attr::AssumedRank,
TypeAndShape::Attr::Coarray})
.any()) {
return false; // 15.4.2.2(3)(b-d)
} else if (type.type().IsPolymorphic()) {
return false; // 15.4.2.2(3)(f)
} else if (const auto *derived{GetDerivedTypeSpec(type.type())}) {
return derived->parameters().empty(); // 15.4.2.2(3)(e)
} else {
return true;
}
}
llvm::raw_ostream &DummyDataObject::Dump(llvm::raw_ostream &o) const {
attrs.Dump(o, EnumToString);
if (intent != common::Intent::Default) {
o << "INTENT(" << common::EnumToString(intent) << ')';
}
type.Dump(o);
if (!coshape.empty()) {
char sep{'['};
for (const auto &expr : coshape) {
expr.AsFortran(o << sep);
sep = ',';
}
}
return o;
}
DummyProcedure::DummyProcedure(Procedure &&p)
: procedure{new Procedure{std::move(p)}} {}
bool DummyProcedure::operator==(const DummyProcedure &that) const {
return attrs == that.attrs && intent == that.intent &&
procedure.value() == that.procedure.value();
}
static std::string GetSeenProcs(
const semantics::UnorderedSymbolSet &seenProcs) {
// Sort the symbols so that they appear in the same order on all platforms
auto ordered{semantics::OrderBySourcePosition(seenProcs)};
std::string result;
llvm::interleave(
ordered,
[&](const SymbolRef p) { result += '\'' + p->name().ToString() + '\''; },
[&]() { result += ", "; });
return result;
}
// These functions with arguments of type UnorderedSymbolSet are used with
// mutually recursive calls when characterizing a Procedure, a DummyArgument,
// or a DummyProcedure to detect circularly defined procedures as required by
// 15.4.3.6, paragraph 2.
static std::optional<DummyArgument> CharacterizeDummyArgument(
const semantics::Symbol &symbol, FoldingContext &context,
semantics::UnorderedSymbolSet &seenProcs);
static std::optional<Procedure> CharacterizeProcedure(
const semantics::Symbol &original, FoldingContext &context,
semantics::UnorderedSymbolSet &seenProcs) {
Procedure result;
const auto &symbol{ResolveAssociations(original)};
if (seenProcs.find(symbol) != seenProcs.end()) {
std::string procsList{GetSeenProcs(seenProcs)};
context.messages().Say(symbol.name(),
"Procedure '%s' is recursively defined. Procedures in the cycle:"
" %s"_err_en_US,
symbol.name(), procsList);
return std::nullopt;
}
seenProcs.insert(symbol);
CopyAttrs<Procedure, Procedure::Attr>(symbol, result,
{
{semantics::Attr::PURE, Procedure::Attr::Pure},
{semantics::Attr::ELEMENTAL, Procedure::Attr::Elemental},
{semantics::Attr::BIND_C, Procedure::Attr::BindC},
});
if (result.attrs.test(Procedure::Attr::Elemental) &&
!symbol.attrs().test(semantics::Attr::IMPURE)) {
result.attrs.set(Procedure::Attr::Pure); // explicitly flag pure procedures
}
return std::visit(
common::visitors{
[&](const semantics::SubprogramDetails &subp)
-> std::optional<Procedure> {
if (subp.isFunction()) {
if (auto fr{
FunctionResult::Characterize(subp.result(), context)}) {
result.functionResult = std::move(fr);
} else {
return std::nullopt;
}
} else {
result.attrs.set(Procedure::Attr::Subroutine);
}
for (const semantics::Symbol *arg : subp.dummyArgs()) {
if (!arg) {
if (subp.isFunction()) {
return std::nullopt;
} else {
result.dummyArguments.emplace_back(AlternateReturn{});
}
} else if (auto argCharacteristics{CharacterizeDummyArgument(
*arg, context, seenProcs)}) {
result.dummyArguments.emplace_back(
std::move(argCharacteristics.value()));
} else {
return std::nullopt;
}
}
return result;
},
[&](const semantics::ProcEntityDetails &proc)
-> std::optional<Procedure> {
if (symbol.attrs().test(semantics::Attr::INTRINSIC)) {
// Fails when the intrinsic is not a specific intrinsic function
// from F'2018 table 16.2. In order to handle forward references,
// attempts to use impermissible intrinsic procedures as the
// interfaces of procedure pointers are caught and flagged in
// declaration checking in Semantics.
auto intrinsic{context.intrinsics().IsSpecificIntrinsicFunction(
symbol.name().ToString())};
if (intrinsic && intrinsic->isRestrictedSpecific) {
intrinsic.reset(); // Exclude intrinsics from table 16.3.
}
return intrinsic;
}
const semantics::ProcInterface &interface{proc.interface()};
if (const semantics::Symbol * interfaceSymbol{interface.symbol()}) {
return CharacterizeProcedure(
*interfaceSymbol, context, seenProcs);
} else {
result.attrs.set(Procedure::Attr::ImplicitInterface);
const semantics::DeclTypeSpec *type{interface.type()};
if (symbol.test(semantics::Symbol::Flag::Subroutine)) {
// ignore any implicit typing
result.attrs.set(Procedure::Attr::Subroutine);
} else if (type) {
if (auto resultType{DynamicType::From(*type)}) {
result.functionResult = FunctionResult{*resultType};
} else {
return std::nullopt;
}
} else if (symbol.test(semantics::Symbol::Flag::Function)) {
return std::nullopt;
}
// The PASS name, if any, is not a characteristic.
return result;
}
},
[&](const semantics::ProcBindingDetails &binding) {
if (auto result{CharacterizeProcedure(
binding.symbol(), context, seenProcs)}) {
if (!symbol.attrs().test(semantics::Attr::NOPASS)) {
auto passName{binding.passName()};
for (auto &dummy : result->dummyArguments) {
if (!passName || dummy.name.c_str() == *passName) {
dummy.pass = true;
return result;
}
}
DIE("PASS argument missing");
}
return result;
} else {
return std::optional<Procedure>{};
}
},
[&](const semantics::UseDetails &use) {
return CharacterizeProcedure(use.symbol(), context, seenProcs);
},
[&](const semantics::HostAssocDetails &assoc) {
return CharacterizeProcedure(assoc.symbol(), context, seenProcs);
},
[&](const semantics::EntityDetails &) {
context.messages().Say(
"Procedure '%s' is referenced before being sufficiently defined in a context where it must be so"_err_en_US,
symbol.name());
return std::optional<Procedure>{};
},
[&](const semantics::SubprogramNameDetails &) {
context.messages().Say(
"Procedure '%s' is referenced before being sufficiently defined in a context where it must be so"_err_en_US,
symbol.name());
return std::optional<Procedure>{};
},
[&](const auto &) {
context.messages().Say(
"'%s' is not a procedure"_err_en_US, symbol.name());
return std::optional<Procedure>{};
},
},
symbol.details());
}
static std::optional<DummyProcedure> CharacterizeDummyProcedure(
const semantics::Symbol &symbol, FoldingContext &context,
semantics::UnorderedSymbolSet &seenProcs) {
if (auto procedure{CharacterizeProcedure(symbol, context, seenProcs)}) {
// Dummy procedures may not be elemental. Elemental dummy procedure
// interfaces are errors when the interface is not intrinsic, and that
// error is caught elsewhere. Elemental intrinsic interfaces are
// made non-elemental.
procedure->attrs.reset(Procedure::Attr::Elemental);
DummyProcedure result{std::move(procedure.value())};
CopyAttrs<DummyProcedure, DummyProcedure::Attr>(symbol, result,
{
{semantics::Attr::OPTIONAL, DummyProcedure::Attr::Optional},
{semantics::Attr::POINTER, DummyProcedure::Attr::Pointer},
});
result.intent = GetIntent(symbol.attrs());
return result;
} else {
return std::nullopt;
}
}
llvm::raw_ostream &DummyProcedure::Dump(llvm::raw_ostream &o) const {
attrs.Dump(o, EnumToString);
if (intent != common::Intent::Default) {
o << "INTENT(" << common::EnumToString(intent) << ')';
}
procedure.value().Dump(o);
return o;
}
llvm::raw_ostream &AlternateReturn::Dump(llvm::raw_ostream &o) const {
return o << '*';
}
DummyArgument::~DummyArgument() {}
bool DummyArgument::operator==(const DummyArgument &that) const {
return u == that.u; // name and passed-object usage are not characteristics
}
static std::optional<DummyArgument> CharacterizeDummyArgument(
const semantics::Symbol &symbol, FoldingContext &context,
semantics::UnorderedSymbolSet &seenProcs) {
auto name{symbol.name().ToString()};
if (symbol.has<semantics::ObjectEntityDetails>() ||
symbol.has<semantics::EntityDetails>()) {
if (auto obj{DummyDataObject::Characterize(symbol, context)}) {
return DummyArgument{std::move(name), std::move(obj.value())};
}
} else if (auto proc{
CharacterizeDummyProcedure(symbol, context, seenProcs)}) {
return DummyArgument{std::move(name), std::move(proc.value())};
}
return std::nullopt;
}
std::optional<DummyArgument> DummyArgument::FromActual(
std::string &&name, const Expr<SomeType> &expr, FoldingContext &context) {
return std::visit(
common::visitors{
[&](const BOZLiteralConstant &) {
return std::make_optional<DummyArgument>(std::move(name),
DummyDataObject{
TypeAndShape{DynamicType::TypelessIntrinsicArgument()}});
},
[&](const NullPointer &) {
return std::make_optional<DummyArgument>(std::move(name),
DummyDataObject{
TypeAndShape{DynamicType::TypelessIntrinsicArgument()}});
},
[&](const ProcedureDesignator &designator) {
if (auto proc{Procedure::Characterize(designator, context)}) {
return std::make_optional<DummyArgument>(
std::move(name), DummyProcedure{std::move(*proc)});
} else {
return std::optional<DummyArgument>{};
}
},
[&](const ProcedureRef &call) {
if (auto proc{Procedure::Characterize(call, context)}) {
return std::make_optional<DummyArgument>(
std::move(name), DummyProcedure{std::move(*proc)});
} else {
return std::optional<DummyArgument>{};
}
},
[&](const auto &) {
if (auto type{TypeAndShape::Characterize(expr, context)}) {
return std::make_optional<DummyArgument>(
std::move(name), DummyDataObject{std::move(*type)});
} else {
return std::optional<DummyArgument>{};
}
},
},
expr.u);
}
bool DummyArgument::IsOptional() const {
return std::visit(
common::visitors{
[](const DummyDataObject &data) {
return data.attrs.test(DummyDataObject::Attr::Optional);
},
[](const DummyProcedure &proc) {
return proc.attrs.test(DummyProcedure::Attr::Optional);
},
[](const AlternateReturn &) { return false; },
},
u);
}
void DummyArgument::SetOptional(bool value) {
std::visit(common::visitors{
[value](DummyDataObject &data) {
data.attrs.set(DummyDataObject::Attr::Optional, value);
},
[value](DummyProcedure &proc) {
proc.attrs.set(DummyProcedure::Attr::Optional, value);
},
[](AlternateReturn &) { DIE("cannot set optional"); },
},
u);
}
void DummyArgument::SetIntent(common::Intent intent) {
std::visit(common::visitors{
[intent](DummyDataObject &data) { data.intent = intent; },
[intent](DummyProcedure &proc) { proc.intent = intent; },
[](AlternateReturn &) { DIE("cannot set intent"); },
},
u);
}
common::Intent DummyArgument::GetIntent() const {
return std::visit(common::visitors{
[](const DummyDataObject &data) { return data.intent; },
[](const DummyProcedure &proc) { return proc.intent; },
[](const AlternateReturn &) -> common::Intent {
DIE("Alternate returns have no intent");
},
},
u);
}
bool DummyArgument::CanBePassedViaImplicitInterface() const {
if (const auto *object{std::get_if<DummyDataObject>(&u)}) {
return object->CanBePassedViaImplicitInterface();
} else {
return true;
}
}
bool DummyArgument::IsTypelessIntrinsicDummy() const {
const auto *argObj{std::get_if<characteristics::DummyDataObject>(&u)};
return argObj && argObj->type.type().IsTypelessIntrinsicArgument();
}
llvm::raw_ostream &DummyArgument::Dump(llvm::raw_ostream &o) const {
if (!name.empty()) {
o << name << '=';
}
if (pass) {
o << " PASS";
}
std::visit([&](const auto &x) { x.Dump(o); }, u);
return o;
}
FunctionResult::FunctionResult(DynamicType t) : u{TypeAndShape{t}} {}
FunctionResult::FunctionResult(TypeAndShape &&t) : u{std::move(t)} {}
FunctionResult::FunctionResult(Procedure &&p) : u{std::move(p)} {}
FunctionResult::~FunctionResult() {}
bool FunctionResult::operator==(const FunctionResult &that) const {
return attrs == that.attrs && u == that.u;
}
std::optional<FunctionResult> FunctionResult::Characterize(
const Symbol &symbol, FoldingContext &context) {
if (symbol.has<semantics::ObjectEntityDetails>()) {
if (auto type{TypeAndShape::Characterize(symbol, context)}) {
FunctionResult result{std::move(*type)};
CopyAttrs<FunctionResult, FunctionResult::Attr>(symbol, result,
{
{semantics::Attr::ALLOCATABLE, FunctionResult::Attr::Allocatable},
{semantics::Attr::CONTIGUOUS, FunctionResult::Attr::Contiguous},
{semantics::Attr::POINTER, FunctionResult::Attr::Pointer},
});
return result;
}
} else if (auto maybeProc{Procedure::Characterize(symbol, context)}) {
FunctionResult result{std::move(*maybeProc)};
result.attrs.set(FunctionResult::Attr::Pointer);
return result;
}
return std::nullopt;
}
bool FunctionResult::IsAssumedLengthCharacter() const {
if (const auto *ts{std::get_if<TypeAndShape>(&u)}) {
return ts->type().IsAssumedLengthCharacter();
} else {
return false;
}
}
bool FunctionResult::CanBeReturnedViaImplicitInterface() const {
if (attrs.test(Attr::Pointer) || attrs.test(Attr::Allocatable)) {
return false; // 15.4.2.2(4)(b)
} else if (const auto *typeAndShape{GetTypeAndShape()}) {
if (typeAndShape->Rank() > 0) {
return false; // 15.4.2.2(4)(a)
} else {
const DynamicType &type{typeAndShape->type()};
switch (type.category()) {
case TypeCategory::Character:
if (type.knownLength()) {
return true;
} else if (const auto *param{type.charLengthParamValue()}) {
if (const auto &expr{param->GetExplicit()}) {
return IsConstantExpr(*expr); // 15.4.2.2(4)(c)
} else if (param->isAssumed()) {
return true;
}
}
return false;
case TypeCategory::Derived:
if (!type.IsPolymorphic()) {
const auto &spec{type.GetDerivedTypeSpec()};
for (const auto &pair : spec.parameters()) {
if (const auto &expr{pair.second.GetExplicit()}) {
if (!IsConstantExpr(*expr)) {
return false; // 15.4.2.2(4)(c)
}
}
}
return true;
}
return false;
default:
return true;
}
}
} else {
return false; // 15.4.2.2(4)(b) - procedure pointer
}
}
llvm::raw_ostream &FunctionResult::Dump(llvm::raw_ostream &o) const {
attrs.Dump(o, EnumToString);
std::visit(common::visitors{
[&](const TypeAndShape &ts) { ts.Dump(o); },
[&](const CopyableIndirection<Procedure> &p) {
p.value().Dump(o << " procedure(") << ')';
},
},
u);
return o;
}
Procedure::Procedure(FunctionResult &&fr, DummyArguments &&args, Attrs a)
: functionResult{std::move(fr)}, dummyArguments{std::move(args)}, attrs{a} {
}
Procedure::Procedure(DummyArguments &&args, Attrs a)
: dummyArguments{std::move(args)}, attrs{a} {}
Procedure::~Procedure() {}
bool Procedure::operator==(const Procedure &that) const {
return attrs == that.attrs && functionResult == that.functionResult &&
dummyArguments == that.dummyArguments;
}
int Procedure::FindPassIndex(std::optional<parser::CharBlock> name) const {
int argCount{static_cast<int>(dummyArguments.size())};
int index{0};
if (name) {
while (index < argCount && *name != dummyArguments[index].name.c_str()) {
++index;
}
}
CHECK(index < argCount);
return index;
}
bool Procedure::CanOverride(
const Procedure &that, std::optional<int> passIndex) const {
// A pure procedure may override an impure one (7.5.7.3(2))
if ((that.attrs.test(Attr::Pure) && !attrs.test(Attr::Pure)) ||
that.attrs.test(Attr::Elemental) != attrs.test(Attr::Elemental) ||
functionResult != that.functionResult) {
return false;
}
int argCount{static_cast<int>(dummyArguments.size())};
if (argCount != static_cast<int>(that.dummyArguments.size())) {
return false;
}
for (int j{0}; j < argCount; ++j) {
if ((!passIndex || j != *passIndex) &&
dummyArguments[j] != that.dummyArguments[j]) {
return false;
}
}
return true;
}
std::optional<Procedure> Procedure::Characterize(
const semantics::Symbol &original, FoldingContext &context) {
semantics::UnorderedSymbolSet seenProcs;
return CharacterizeProcedure(original, context, seenProcs);
}
std::optional<Procedure> Procedure::Characterize(
const ProcedureDesignator &proc, FoldingContext &context) {
if (const auto *symbol{proc.GetSymbol()}) {
if (auto result{characteristics::Procedure::Characterize(
ResolveAssociations(*symbol), context)}) {
return result;
}
} else if (const auto *intrinsic{proc.GetSpecificIntrinsic()}) {
return intrinsic->characteristics.value();
}
return std::nullopt;
}
std::optional<Procedure> Procedure::Characterize(
const ProcedureRef &ref, FoldingContext &context) {
if (auto callee{Characterize(ref.proc(), context)}) {
if (callee->functionResult) {
if (const Procedure *
proc{callee->functionResult->IsProcedurePointer()}) {
return {*proc};
}
}
}
return std::nullopt;
}
bool Procedure::CanBeCalledViaImplicitInterface() const {
// TODO: Pass back information on why we return false
if (attrs.test(Attr::Elemental) || attrs.test(Attr::BindC)) {
return false; // 15.4.2.2(5,6)
} else if (IsFunction() &&
!functionResult->CanBeReturnedViaImplicitInterface()) {
return false;
} else {
for (const DummyArgument &arg : dummyArguments) {
if (!arg.CanBePassedViaImplicitInterface()) {
return false;
}
}
return true;
}
}
llvm::raw_ostream &Procedure::Dump(llvm::raw_ostream &o) const {
attrs.Dump(o, EnumToString);
if (functionResult) {
functionResult->Dump(o << "TYPE(") << ") FUNCTION";
} else {
o << "SUBROUTINE";
}
char sep{'('};
for (const auto &dummy : dummyArguments) {
dummy.Dump(o << sep);
sep = ',';
}
return o << (sep == '(' ? "()" : ")");
}
// Utility class to determine if Procedures, etc. are distinguishable
class DistinguishUtils {
public:
explicit DistinguishUtils(const common::LanguageFeatureControl &features)
: features_{features} {}
// Are these procedures distinguishable for a generic name?
bool Distinguishable(const Procedure &, const Procedure &) const;
// Are these procedures distinguishable for a generic operator or assignment?
bool DistinguishableOpOrAssign(const Procedure &, const Procedure &) const;
private:
struct CountDummyProcedures {
CountDummyProcedures(const DummyArguments &args) {
for (const DummyArgument &arg : args) {
if (std::holds_alternative<DummyProcedure>(arg.u)) {
total += 1;
notOptional += !arg.IsOptional();
}
}
}
int total{0};
int notOptional{0};
};
bool Rule3Distinguishable(const Procedure &, const Procedure &) const;
const DummyArgument *Rule1DistinguishingArg(
const DummyArguments &, const DummyArguments &) const;
int FindFirstToDistinguishByPosition(
const DummyArguments &, const DummyArguments &) const;
int FindLastToDistinguishByName(
const DummyArguments &, const DummyArguments &) const;
int CountCompatibleWith(const DummyArgument &, const DummyArguments &) const;
int CountNotDistinguishableFrom(
const DummyArgument &, const DummyArguments &) const;
bool Distinguishable(const DummyArgument &, const DummyArgument &) const;
bool Distinguishable(const DummyDataObject &, const DummyDataObject &) const;
bool Distinguishable(const DummyProcedure &, const DummyProcedure &) const;
bool Distinguishable(const FunctionResult &, const FunctionResult &) const;
bool Distinguishable(const TypeAndShape &, const TypeAndShape &) const;
bool IsTkrCompatible(const DummyArgument &, const DummyArgument &) const;
bool IsTkrCompatible(const TypeAndShape &, const TypeAndShape &) const;
const DummyArgument *GetAtEffectivePosition(
const DummyArguments &, int) const;
const DummyArgument *GetPassArg(const Procedure &) const;
const common::LanguageFeatureControl &features_;
};
// Simpler distinguishability rules for operators and assignment
bool DistinguishUtils::DistinguishableOpOrAssign(
const Procedure &proc1, const Procedure &proc2) const {
auto &args1{proc1.dummyArguments};
auto &args2{proc2.dummyArguments};
if (args1.size() != args2.size()) {
return true; // C1511: distinguishable based on number of arguments
}
for (std::size_t i{0}; i < args1.size(); ++i) {
if (Distinguishable(args1[i], args2[i])) {
return true; // C1511, C1512: distinguishable based on this arg
}
}
return false;
}
bool DistinguishUtils::Distinguishable(
const Procedure &proc1, const Procedure &proc2) const {
auto &args1{proc1.dummyArguments};
auto &args2{proc2.dummyArguments};
auto count1{CountDummyProcedures(args1)};
auto count2{CountDummyProcedures(args2)};
if (count1.notOptional > count2.total || count2.notOptional > count1.total) {
return true; // distinguishable based on C1514 rule 2
}
if (Rule3Distinguishable(proc1, proc2)) {
return true; // distinguishable based on C1514 rule 3
}
if (Rule1DistinguishingArg(args1, args2)) {
return true; // distinguishable based on C1514 rule 1
}
int pos1{FindFirstToDistinguishByPosition(args1, args2)};
int name1{FindLastToDistinguishByName(args1, args2)};
if (pos1 >= 0 && pos1 <= name1) {
return true; // distinguishable based on C1514 rule 4
}
int pos2{FindFirstToDistinguishByPosition(args2, args1)};
int name2{FindLastToDistinguishByName(args2, args1)};
if (pos2 >= 0 && pos2 <= name2) {
return true; // distinguishable based on C1514 rule 4
}
return false;
}
// C1514 rule 3: Procedures are distinguishable if both have a passed-object
// dummy argument and those are distinguishable.
bool DistinguishUtils::Rule3Distinguishable(
const Procedure &proc1, const Procedure &proc2) const {
const DummyArgument *pass1{GetPassArg(proc1)};
const DummyArgument *pass2{GetPassArg(proc2)};
return pass1 && pass2 && Distinguishable(*pass1, *pass2);
}
// Find a non-passed-object dummy data object in one of the argument lists
// that satisfies C1514 rule 1. I.e. x such that:
// - m is the number of dummy data objects in one that are nonoptional,
// are not passed-object, that x is TKR compatible with
// - n is the number of non-passed-object dummy data objects, in the other
// that are not distinguishable from x
// - m is greater than n
const DummyArgument *DistinguishUtils::Rule1DistinguishingArg(
const DummyArguments &args1, const DummyArguments &args2) const {
auto size1{args1.size()};
auto size2{args2.size()};
for (std::size_t i{0}; i < size1 + size2; ++i) {
const DummyArgument &x{i < size1 ? args1[i] : args2[i - size1]};
if (!x.pass && std::holds_alternative<DummyDataObject>(x.u)) {
if (CountCompatibleWith(x, args1) >
CountNotDistinguishableFrom(x, args2) ||
CountCompatibleWith(x, args2) >
CountNotDistinguishableFrom(x, args1)) {
return &x;
}
}
}
return nullptr;
}
// Find the index of the first nonoptional non-passed-object dummy argument
// in args1 at an effective position such that either:
// - args2 has no dummy argument at that effective position
// - the dummy argument at that position is distinguishable from it
int DistinguishUtils::FindFirstToDistinguishByPosition(
const DummyArguments &args1, const DummyArguments &args2) const {
int effective{0}; // position of arg1 in list, ignoring passed arg
for (std::size_t i{0}; i < args1.size(); ++i) {
const DummyArgument &arg1{args1.at(i)};
if (!arg1.pass && !arg1.IsOptional()) {
const DummyArgument *arg2{GetAtEffectivePosition(args2, effective)};
if (!arg2 || Distinguishable(arg1, *arg2)) {
return i;
}
}
effective += !arg1.pass;
}
return -1;
}
// Find the index of the last nonoptional non-passed-object dummy argument
// in args1 whose name is such that either:
// - args2 has no dummy argument with that name
// - the dummy argument with that name is distinguishable from it
int DistinguishUtils::FindLastToDistinguishByName(
const DummyArguments &args1, const DummyArguments &args2) const {
std::map<std::string, const DummyArgument *> nameToArg;
for (const auto &arg2 : args2) {
nameToArg.emplace(arg2.name, &arg2);
}
for (int i = args1.size() - 1; i >= 0; --i) {
const DummyArgument &arg1{args1.at(i)};
if (!arg1.pass && !arg1.IsOptional()) {
auto it{nameToArg.find(arg1.name)};
if (it == nameToArg.end() || Distinguishable(arg1, *it->second)) {
return i;
}
}
}
return -1;
}
// Count the dummy data objects in args that are nonoptional, are not
// passed-object, and that x is TKR compatible with
int DistinguishUtils::CountCompatibleWith(
const DummyArgument &x, const DummyArguments &args) const {
return std::count_if(args.begin(), args.end(), [&](const DummyArgument &y) {
return !y.pass && !y.IsOptional() && IsTkrCompatible(x, y);
});
}
// Return the number of dummy data objects in args that are not
// distinguishable from x and not passed-object.
int DistinguishUtils::CountNotDistinguishableFrom(
const DummyArgument &x, const DummyArguments &args) const {
return std::count_if(args.begin(), args.end(), [&](const DummyArgument &y) {
return !y.pass && std::holds_alternative<DummyDataObject>(y.u) &&
!Distinguishable(y, x);
});
}
bool DistinguishUtils::Distinguishable(
const DummyArgument &x, const DummyArgument &y) const {
if (x.u.index() != y.u.index()) {
return true; // different kind: data/proc/alt-return
}
return std::visit(
common::visitors{
[&](const DummyDataObject &z) {
return Distinguishable(z, std::get<DummyDataObject>(y.u));
},
[&](const DummyProcedure &z) {
return Distinguishable(z, std::get<DummyProcedure>(y.u));
},
[&](const AlternateReturn &) { return false; },
},
x.u);
}
bool DistinguishUtils::Distinguishable(
const DummyDataObject &x, const DummyDataObject &y) const {
using Attr = DummyDataObject::Attr;
if (Distinguishable(x.type, y.type)) {
return true;
} else if (x.attrs.test(Attr::Allocatable) && y.attrs.test(Attr::Pointer) &&
y.intent != common::Intent::In) {
return true;
} else if (y.attrs.test(Attr::Allocatable) && x.attrs.test(Attr::Pointer) &&
x.intent != common::Intent::In) {
return true;
} else if (features_.IsEnabled(
common::LanguageFeature::DistinguishableSpecifics) &&
(x.attrs.test(Attr::Allocatable) || x.attrs.test(Attr::Pointer)) &&
(y.attrs.test(Attr::Allocatable) || y.attrs.test(Attr::Pointer)) &&
(x.type.type().IsUnlimitedPolymorphic() !=
y.type.type().IsUnlimitedPolymorphic() ||
x.type.type().IsPolymorphic() != y.type.type().IsPolymorphic())) {
// Extension: Per 15.5.2.5(2), an allocatable/pointer dummy and its
// corresponding actual argument must both or neither be polymorphic,
// and must both or neither be unlimited polymorphic. So when exactly
// one of two dummy arguments is polymorphic or unlimited polymorphic,
// any actual argument that is admissible to one of them cannot also match
// the other one.
return true;
} else {
return false;
}
}
bool DistinguishUtils::Distinguishable(
const DummyProcedure &x, const DummyProcedure &y) const {
const Procedure &xProc{x.procedure.value()};
const Procedure &yProc{y.procedure.value()};
if (Distinguishable(xProc, yProc)) {
return true;
} else {
const std::optional<FunctionResult> &xResult{xProc.functionResult};
const std::optional<FunctionResult> &yResult{yProc.functionResult};
return xResult ? !yResult || Distinguishable(*xResult, *yResult)
: yResult.has_value();
}
}
bool DistinguishUtils::Distinguishable(
const FunctionResult &x, const FunctionResult &y) const {
if (x.u.index() != y.u.index()) {
return true; // one is data object, one is procedure
}
return std::visit(
common::visitors{
[&](const TypeAndShape &z) {
return Distinguishable(z, std::get<TypeAndShape>(y.u));
},
[&](const CopyableIndirection<Procedure> &z) {
return Distinguishable(z.value(),
std::get<CopyableIndirection<Procedure>>(y.u).value());
},
},
x.u);
}
bool DistinguishUtils::Distinguishable(
const TypeAndShape &x, const TypeAndShape &y) const {
return !IsTkrCompatible(x, y) && !IsTkrCompatible(y, x);
}
// Compatibility based on type, kind, and rank
bool DistinguishUtils::IsTkrCompatible(
const DummyArgument &x, const DummyArgument &y) const {
const auto *obj1{std::get_if<DummyDataObject>(&x.u)};
const auto *obj2{std::get_if<DummyDataObject>(&y.u)};
return obj1 && obj2 && IsTkrCompatible(obj1->type, obj2->type);
}
bool DistinguishUtils::IsTkrCompatible(
const TypeAndShape &x, const TypeAndShape &y) const {
return x.type().IsTkCompatibleWith(y.type()) &&
(x.attrs().test(TypeAndShape::Attr::AssumedRank) ||
y.attrs().test(TypeAndShape::Attr::AssumedRank) ||
x.Rank() == y.Rank());
}
// Return the argument at the given index, ignoring the passed arg
const DummyArgument *DistinguishUtils::GetAtEffectivePosition(
const DummyArguments &args, int index) const {
for (const DummyArgument &arg : args) {
if (!arg.pass) {
if (index == 0) {
return &arg;
}
--index;
}
}
return nullptr;
}
// Return the passed-object dummy argument of this procedure, if any
const DummyArgument *DistinguishUtils::GetPassArg(const Procedure &proc) const {
for (const auto &arg : proc.dummyArguments) {
if (arg.pass) {
return &arg;
}
}
return nullptr;
}
bool Distinguishable(const common::LanguageFeatureControl &features,
const Procedure &x, const Procedure &y) {
return DistinguishUtils{features}.Distinguishable(x, y);
}
bool DistinguishableOpOrAssign(const common::LanguageFeatureControl &features,
const Procedure &x, const Procedure &y) {
return DistinguishUtils{features}.DistinguishableOpOrAssign(x, y);
}
DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(DummyArgument)
DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(DummyProcedure)
DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(FunctionResult)
DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(Procedure)
} // namespace Fortran::evaluate::characteristics
template class Fortran::common::Indirection<
Fortran::evaluate::characteristics::Procedure, true>;
|