1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
|
//===-- lib/Evaluate/fold-integer.cpp -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "fold-implementation.h"
#include "fold-reduction.h"
#include "flang/Evaluate/check-expression.h"
namespace Fortran::evaluate {
// Class to retrieve the constant lower bound of an expression which is an
// array that devolves to a type of Constant<T>
class GetConstantArrayLboundHelper {
public:
GetConstantArrayLboundHelper(ConstantSubscript dim) : dim_{dim} {}
template <typename T> ConstantSubscript GetLbound(const T &) {
// The method is needed for template expansion, but we should never get
// here in practice.
CHECK(false);
return 0;
}
template <typename T> ConstantSubscript GetLbound(const Constant<T> &x) {
// Return the lower bound
return x.lbounds()[dim_];
}
template <typename T> ConstantSubscript GetLbound(const Parentheses<T> &x) {
// Strip off the parentheses
return GetLbound(x.left());
}
template <typename T> ConstantSubscript GetLbound(const Expr<T> &x) {
// recurse through Expr<T>'a until we hit a constant
return std::visit([&](const auto &inner) { return GetLbound(inner); },
// [&](const auto &) { return 0; },
x.u);
}
private:
ConstantSubscript dim_;
};
template <int KIND>
Expr<Type<TypeCategory::Integer, KIND>> LBOUND(FoldingContext &context,
FunctionRef<Type<TypeCategory::Integer, KIND>> &&funcRef) {
using T = Type<TypeCategory::Integer, KIND>;
ActualArguments &args{funcRef.arguments()};
if (const auto *array{UnwrapExpr<Expr<SomeType>>(args[0])}) {
if (int rank{array->Rank()}; rank > 0) {
std::optional<int> dim;
if (funcRef.Rank() == 0) {
// Optional DIM= argument is present: result is scalar.
if (auto dim64{GetInt64Arg(args[1])}) {
if (*dim64 < 1 || *dim64 > rank) {
context.messages().Say("DIM=%jd dimension is out of range for "
"rank-%d array"_err_en_US,
*dim64, rank);
return MakeInvalidIntrinsic<T>(std::move(funcRef));
} else {
dim = *dim64 - 1; // 1-based to 0-based
}
} else {
// DIM= is present but not constant
return Expr<T>{std::move(funcRef)};
}
}
bool lowerBoundsAreOne{true};
if (auto named{ExtractNamedEntity(*array)}) {
const Symbol &symbol{named->GetLastSymbol()};
if (symbol.Rank() == rank) {
lowerBoundsAreOne = false;
if (dim) {
return Fold(context,
ConvertToType<T>(GetLowerBound(context, *named, *dim)));
} else if (auto extents{
AsExtentArrayExpr(GetLowerBounds(context, *named))}) {
return Fold(context,
ConvertToType<T>(Expr<ExtentType>{std::move(*extents)}));
}
} else {
lowerBoundsAreOne = symbol.Rank() == 0; // LBOUND(array%component)
}
}
if (IsActuallyConstant(*array)) {
return Expr<T>{GetConstantArrayLboundHelper{*dim}.GetLbound(*array)};
}
if (lowerBoundsAreOne) {
if (dim) {
return Expr<T>{1};
} else {
std::vector<Scalar<T>> ones(rank, Scalar<T>{1});
return Expr<T>{
Constant<T>{std::move(ones), ConstantSubscripts{rank}}};
}
}
}
}
return Expr<T>{std::move(funcRef)};
}
template <int KIND>
Expr<Type<TypeCategory::Integer, KIND>> UBOUND(FoldingContext &context,
FunctionRef<Type<TypeCategory::Integer, KIND>> &&funcRef) {
using T = Type<TypeCategory::Integer, KIND>;
ActualArguments &args{funcRef.arguments()};
if (auto *array{UnwrapExpr<Expr<SomeType>>(args[0])}) {
if (int rank{array->Rank()}; rank > 0) {
std::optional<int> dim;
if (funcRef.Rank() == 0) {
// Optional DIM= argument is present: result is scalar.
if (auto dim64{GetInt64Arg(args[1])}) {
if (*dim64 < 1 || *dim64 > rank) {
context.messages().Say("DIM=%jd dimension is out of range for "
"rank-%d array"_err_en_US,
*dim64, rank);
return MakeInvalidIntrinsic<T>(std::move(funcRef));
} else {
dim = *dim64 - 1; // 1-based to 0-based
}
} else {
// DIM= is present but not constant
return Expr<T>{std::move(funcRef)};
}
}
bool takeBoundsFromShape{true};
if (auto named{ExtractNamedEntity(*array)}) {
const Symbol &symbol{named->GetLastSymbol()};
if (symbol.Rank() == rank) {
takeBoundsFromShape = false;
if (dim) {
if (semantics::IsAssumedSizeArray(symbol) && *dim == rank - 1) {
context.messages().Say("DIM=%jd dimension is out of range for "
"rank-%d assumed-size array"_err_en_US,
rank, rank);
return MakeInvalidIntrinsic<T>(std::move(funcRef));
} else if (auto ub{GetUpperBound(context, *named, *dim)}) {
return Fold(context, ConvertToType<T>(std::move(*ub)));
}
} else {
Shape ubounds{GetUpperBounds(context, *named)};
if (semantics::IsAssumedSizeArray(symbol)) {
CHECK(!ubounds.back());
ubounds.back() = ExtentExpr{-1};
}
if (auto extents{AsExtentArrayExpr(ubounds)}) {
return Fold(context,
ConvertToType<T>(Expr<ExtentType>{std::move(*extents)}));
}
}
} else {
takeBoundsFromShape = symbol.Rank() == 0; // UBOUND(array%component)
}
}
if (takeBoundsFromShape) {
if (auto shape{GetContextFreeShape(context, *array)}) {
if (dim) {
if (auto &dimSize{shape->at(*dim)}) {
return Fold(context,
ConvertToType<T>(Expr<ExtentType>{std::move(*dimSize)}));
}
} else if (auto shapeExpr{AsExtentArrayExpr(*shape)}) {
return Fold(context, ConvertToType<T>(std::move(*shapeExpr)));
}
}
}
}
}
return Expr<T>{std::move(funcRef)};
}
// COUNT()
template <typename T>
static Expr<T> FoldCount(FoldingContext &context, FunctionRef<T> &&ref) {
static_assert(T::category == TypeCategory::Integer);
ActualArguments &arg{ref.arguments()};
if (const Constant<LogicalResult> *mask{arg.empty()
? nullptr
: Folder<LogicalResult>{context}.Folding(arg[0])}) {
std::optional<int> dim;
if (CheckReductionDIM(dim, context, arg, 1, mask->Rank())) {
auto accumulator{[&](Scalar<T> &element, const ConstantSubscripts &at) {
if (mask->At(at).IsTrue()) {
element = element.AddSigned(Scalar<T>{1}).value;
}
}};
return Expr<T>{DoReduction<T>(*mask, dim, Scalar<T>{}, accumulator)};
}
}
return Expr<T>{std::move(ref)};
}
// FINDLOC(), MAXLOC(), & MINLOC()
enum class WhichLocation { Findloc, Maxloc, Minloc };
template <WhichLocation WHICH> class LocationHelper {
public:
LocationHelper(
DynamicType &&type, ActualArguments &arg, FoldingContext &context)
: type_{type}, arg_{arg}, context_{context} {}
using Result = std::optional<Constant<SubscriptInteger>>;
using Types = std::conditional_t<WHICH == WhichLocation::Findloc,
AllIntrinsicTypes, RelationalTypes>;
template <typename T> Result Test() const {
if (T::category != type_.category() || T::kind != type_.kind()) {
return std::nullopt;
}
CHECK(arg_.size() == (WHICH == WhichLocation::Findloc ? 6 : 5));
Folder<T> folder{context_};
Constant<T> *array{folder.Folding(arg_[0])};
if (!array) {
return std::nullopt;
}
std::optional<Constant<T>> value;
if constexpr (WHICH == WhichLocation::Findloc) {
if (const Constant<T> *p{folder.Folding(arg_[1])}) {
value.emplace(*p);
} else {
return std::nullopt;
}
}
std::optional<int> dim;
Constant<LogicalResult> *mask{
GetReductionMASK(arg_[maskArg], array->shape(), context_)};
if ((!mask && arg_[maskArg]) ||
!CheckReductionDIM(dim, context_, arg_, dimArg, array->Rank())) {
return std::nullopt;
}
bool back{false};
if (arg_[backArg]) {
const auto *backConst{
Folder<LogicalResult>{context_}.Folding(arg_[backArg])};
if (backConst) {
back = backConst->GetScalarValue().value().IsTrue();
} else {
return std::nullopt;
}
}
const RelationalOperator relation{WHICH == WhichLocation::Findloc
? RelationalOperator::EQ
: WHICH == WhichLocation::Maxloc
? (back ? RelationalOperator::GE : RelationalOperator::GT)
: back ? RelationalOperator::LE
: RelationalOperator::LT};
// Use lower bounds of 1 exclusively.
array->SetLowerBoundsToOne();
ConstantSubscripts at{array->lbounds()}, maskAt, resultIndices, resultShape;
if (mask) {
mask->SetLowerBoundsToOne();
maskAt = mask->lbounds();
}
if (dim) { // DIM=
if (*dim < 1 || *dim > array->Rank()) {
context_.messages().Say("DIM=%d is out of range"_err_en_US, *dim);
return std::nullopt;
}
int zbDim{*dim - 1};
resultShape = array->shape();
resultShape.erase(
resultShape.begin() + zbDim); // scalar if array is vector
ConstantSubscript dimLength{array->shape()[zbDim]};
ConstantSubscript n{GetSize(resultShape)};
for (ConstantSubscript j{0}; j < n; ++j) {
ConstantSubscript hit{0};
if constexpr (WHICH == WhichLocation::Maxloc ||
WHICH == WhichLocation::Minloc) {
value.reset();
}
for (ConstantSubscript k{0}; k < dimLength;
++k, ++at[zbDim], mask && ++maskAt[zbDim]) {
if ((!mask || mask->At(maskAt).IsTrue()) &&
IsHit(array->At(at), value, relation)) {
hit = at[zbDim];
if constexpr (WHICH == WhichLocation::Findloc) {
if (!back) {
break;
}
}
}
}
resultIndices.emplace_back(hit);
at[zbDim] = dimLength;
array->IncrementSubscripts(at);
at[zbDim] = 1;
if (mask) {
maskAt[zbDim] = mask->lbounds()[zbDim] + dimLength - 1;
mask->IncrementSubscripts(maskAt);
maskAt[zbDim] = mask->lbounds()[zbDim];
}
}
} else { // no DIM=
resultShape = ConstantSubscripts{array->Rank()}; // always a vector
ConstantSubscript n{GetSize(array->shape())};
resultIndices = ConstantSubscripts(array->Rank(), 0);
for (ConstantSubscript j{0}; j < n; ++j, array->IncrementSubscripts(at),
mask && mask->IncrementSubscripts(maskAt)) {
if ((!mask || mask->At(maskAt).IsTrue()) &&
IsHit(array->At(at), value, relation)) {
resultIndices = at;
if constexpr (WHICH == WhichLocation::Findloc) {
if (!back) {
break;
}
}
}
}
}
std::vector<Scalar<SubscriptInteger>> resultElements;
for (ConstantSubscript j : resultIndices) {
resultElements.emplace_back(j);
}
return Constant<SubscriptInteger>{
std::move(resultElements), std::move(resultShape)};
}
private:
template <typename T>
bool IsHit(typename Constant<T>::Element element,
std::optional<Constant<T>> &value,
[[maybe_unused]] RelationalOperator relation) const {
std::optional<Expr<LogicalResult>> cmp;
bool result{true};
if (value) {
if constexpr (T::category == TypeCategory::Logical) {
// array(at) .EQV. value?
static_assert(WHICH == WhichLocation::Findloc);
cmp.emplace(
ConvertToType<LogicalResult>(Expr<T>{LogicalOperation<T::kind>{
LogicalOperator::Eqv, Expr<T>{Constant<T>{std::move(element)}},
Expr<T>{Constant<T>{*value}}}}));
} else { // compare array(at) to value
cmp.emplace(
PackageRelation(relation, Expr<T>{Constant<T>{std::move(element)}},
Expr<T>{Constant<T>{*value}}));
}
Expr<LogicalResult> folded{Fold(context_, std::move(*cmp))};
result = GetScalarConstantValue<LogicalResult>(folded).value().IsTrue();
} else {
// first unmasked element for MAXLOC/MINLOC - always take it
}
if constexpr (WHICH == WhichLocation::Maxloc ||
WHICH == WhichLocation::Minloc) {
if (result) {
value.emplace(std::move(element));
}
}
return result;
}
static constexpr int dimArg{WHICH == WhichLocation::Findloc ? 2 : 1};
static constexpr int maskArg{dimArg + 1};
static constexpr int backArg{maskArg + 2};
DynamicType type_;
ActualArguments &arg_;
FoldingContext &context_;
};
template <WhichLocation which>
static std::optional<Constant<SubscriptInteger>> FoldLocationCall(
ActualArguments &arg, FoldingContext &context) {
if (arg[0]) {
if (auto type{arg[0]->GetType()}) {
return common::SearchTypes(
LocationHelper<which>{std::move(*type), arg, context});
}
}
return std::nullopt;
}
template <WhichLocation which, typename T>
static Expr<T> FoldLocation(FoldingContext &context, FunctionRef<T> &&ref) {
static_assert(T::category == TypeCategory::Integer);
if (std::optional<Constant<SubscriptInteger>> found{
FoldLocationCall<which>(ref.arguments(), context)}) {
return Expr<T>{Fold(
context, ConvertToType<T>(Expr<SubscriptInteger>{std::move(*found)}))};
} else {
return Expr<T>{std::move(ref)};
}
}
// for IALL, IANY, & IPARITY
template <typename T>
static Expr<T> FoldBitReduction(FoldingContext &context, FunctionRef<T> &&ref,
Scalar<T> (Scalar<T>::*operation)(const Scalar<T> &) const,
Scalar<T> identity) {
static_assert(T::category == TypeCategory::Integer);
std::optional<int> dim;
if (std::optional<Constant<T>> array{
ProcessReductionArgs<T>(context, ref.arguments(), dim, identity,
/*ARRAY=*/0, /*DIM=*/1, /*MASK=*/2)}) {
auto accumulator{[&](Scalar<T> &element, const ConstantSubscripts &at) {
element = (element.*operation)(array->At(at));
}};
return Expr<T>{DoReduction<T>(*array, dim, identity, accumulator)};
}
return Expr<T>{std::move(ref)};
}
template <int KIND>
Expr<Type<TypeCategory::Integer, KIND>> FoldIntrinsicFunction(
FoldingContext &context,
FunctionRef<Type<TypeCategory::Integer, KIND>> &&funcRef) {
using T = Type<TypeCategory::Integer, KIND>;
using Int4 = Type<TypeCategory::Integer, 4>;
ActualArguments &args{funcRef.arguments()};
auto *intrinsic{std::get_if<SpecificIntrinsic>(&funcRef.proc().u)};
CHECK(intrinsic);
std::string name{intrinsic->name};
if (name == "abs") { // incl. babs, iiabs, jiaabs, & kiabs
return FoldElementalIntrinsic<T, T>(context, std::move(funcRef),
ScalarFunc<T, T>([&context](const Scalar<T> &i) -> Scalar<T> {
typename Scalar<T>::ValueWithOverflow j{i.ABS()};
if (j.overflow) {
context.messages().Say(
"abs(integer(kind=%d)) folding overflowed"_en_US, KIND);
}
return j.value;
}));
} else if (name == "bit_size") {
return Expr<T>{Scalar<T>::bits};
} else if (name == "ceiling" || name == "floor" || name == "nint") {
if (const auto *cx{UnwrapExpr<Expr<SomeReal>>(args[0])}) {
// NINT rounds ties away from zero, not to even
common::RoundingMode mode{name == "ceiling" ? common::RoundingMode::Up
: name == "floor" ? common::RoundingMode::Down
: common::RoundingMode::TiesAwayFromZero};
return std::visit(
[&](const auto &kx) {
using TR = ResultType<decltype(kx)>;
return FoldElementalIntrinsic<T, TR>(context, std::move(funcRef),
ScalarFunc<T, TR>([&](const Scalar<TR> &x) {
auto y{x.template ToInteger<Scalar<T>>(mode)};
if (y.flags.test(RealFlag::Overflow)) {
context.messages().Say(
"%s intrinsic folding overflow"_en_US, name);
}
return y.value;
}));
},
cx->u);
}
} else if (name == "count") {
return FoldCount<T>(context, std::move(funcRef));
} else if (name == "digits") {
if (const auto *cx{UnwrapExpr<Expr<SomeInteger>>(args[0])}) {
return Expr<T>{std::visit(
[](const auto &kx) {
return Scalar<ResultType<decltype(kx)>>::DIGITS;
},
cx->u)};
} else if (const auto *cx{UnwrapExpr<Expr<SomeReal>>(args[0])}) {
return Expr<T>{std::visit(
[](const auto &kx) {
return Scalar<ResultType<decltype(kx)>>::DIGITS;
},
cx->u)};
} else if (const auto *cx{UnwrapExpr<Expr<SomeComplex>>(args[0])}) {
return Expr<T>{std::visit(
[](const auto &kx) {
return Scalar<typename ResultType<decltype(kx)>::Part>::DIGITS;
},
cx->u)};
}
} else if (name == "dim") {
return FoldElementalIntrinsic<T, T, T>(
context, std::move(funcRef), &Scalar<T>::DIM);
} else if (name == "dshiftl" || name == "dshiftr") {
const auto fptr{
name == "dshiftl" ? &Scalar<T>::DSHIFTL : &Scalar<T>::DSHIFTR};
// Third argument can be of any kind. However, it must be smaller or equal
// than BIT_SIZE. It can be converted to Int4 to simplify.
return FoldElementalIntrinsic<T, T, T, Int4>(context, std::move(funcRef),
ScalarFunc<T, T, T, Int4>(
[&fptr](const Scalar<T> &i, const Scalar<T> &j,
const Scalar<Int4> &shift) -> Scalar<T> {
return std::invoke(fptr, i, j, static_cast<int>(shift.ToInt64()));
}));
} else if (name == "exponent") {
if (auto *sx{UnwrapExpr<Expr<SomeReal>>(args[0])}) {
return std::visit(
[&funcRef, &context](const auto &x) -> Expr<T> {
using TR = typename std::decay_t<decltype(x)>::Result;
return FoldElementalIntrinsic<T, TR>(context, std::move(funcRef),
&Scalar<TR>::template EXPONENT<Scalar<T>>);
},
sx->u);
} else {
DIE("exponent argument must be real");
}
} else if (name == "findloc") {
return FoldLocation<WhichLocation::Findloc, T>(context, std::move(funcRef));
} else if (name == "huge") {
return Expr<T>{Scalar<T>::HUGE()};
} else if (name == "iachar" || name == "ichar") {
auto *someChar{UnwrapExpr<Expr<SomeCharacter>>(args[0])};
CHECK(someChar);
if (auto len{ToInt64(someChar->LEN())}) {
if (len.value() != 1) {
// Do not die, this was not checked before
context.messages().Say(
"Character in intrinsic function %s must have length one"_en_US,
name);
} else {
return std::visit(
[&funcRef, &context](const auto &str) -> Expr<T> {
using Char = typename std::decay_t<decltype(str)>::Result;
return FoldElementalIntrinsic<T, Char>(context,
std::move(funcRef),
ScalarFunc<T, Char>([](const Scalar<Char> &c) {
return Scalar<T>{CharacterUtils<Char::kind>::ICHAR(c)};
}));
},
someChar->u);
}
}
} else if (name == "iand" || name == "ior" || name == "ieor") {
auto fptr{&Scalar<T>::IAND};
if (name == "iand") { // done in fptr declaration
} else if (name == "ior") {
fptr = &Scalar<T>::IOR;
} else if (name == "ieor") {
fptr = &Scalar<T>::IEOR;
} else {
common::die("missing case to fold intrinsic function %s", name.c_str());
}
return FoldElementalIntrinsic<T, T, T>(
context, std::move(funcRef), ScalarFunc<T, T, T>(fptr));
} else if (name == "iall") {
return FoldBitReduction(
context, std::move(funcRef), &Scalar<T>::IAND, Scalar<T>{}.NOT());
} else if (name == "iany") {
return FoldBitReduction(
context, std::move(funcRef), &Scalar<T>::IOR, Scalar<T>{});
} else if (name == "ibclr" || name == "ibset") {
// Second argument can be of any kind. However, it must be smaller
// than BIT_SIZE. It can be converted to Int4 to simplify.
auto fptr{&Scalar<T>::IBCLR};
if (name == "ibclr") { // done in fptr definition
} else if (name == "ibset") {
fptr = &Scalar<T>::IBSET;
} else {
common::die("missing case to fold intrinsic function %s", name.c_str());
}
return FoldElementalIntrinsic<T, T, Int4>(context, std::move(funcRef),
ScalarFunc<T, T, Int4>([&](const Scalar<T> &i,
const Scalar<Int4> &pos) -> Scalar<T> {
auto posVal{static_cast<int>(pos.ToInt64())};
if (posVal < 0) {
context.messages().Say(
"bit position for %s (%d) is negative"_err_en_US, name, posVal);
} else if (posVal >= i.bits) {
context.messages().Say(
"bit position for %s (%d) is not less than %d"_err_en_US, name,
posVal, i.bits);
}
return std::invoke(fptr, i, posVal);
}));
} else if (name == "index" || name == "scan" || name == "verify") {
if (auto *charExpr{UnwrapExpr<Expr<SomeCharacter>>(args[0])}) {
return std::visit(
[&](const auto &kch) -> Expr<T> {
using TC = typename std::decay_t<decltype(kch)>::Result;
if (UnwrapExpr<Expr<SomeLogical>>(args[2])) { // BACK=
return FoldElementalIntrinsic<T, TC, TC, LogicalResult>(context,
std::move(funcRef),
ScalarFunc<T, TC, TC, LogicalResult>{
[&name](const Scalar<TC> &str, const Scalar<TC> &other,
const Scalar<LogicalResult> &back) -> Scalar<T> {
return name == "index"
? CharacterUtils<TC::kind>::INDEX(
str, other, back.IsTrue())
: name == "scan" ? CharacterUtils<TC::kind>::SCAN(
str, other, back.IsTrue())
: CharacterUtils<TC::kind>::VERIFY(
str, other, back.IsTrue());
}});
} else {
return FoldElementalIntrinsic<T, TC, TC>(context,
std::move(funcRef),
ScalarFunc<T, TC, TC>{
[&name](const Scalar<TC> &str,
const Scalar<TC> &other) -> Scalar<T> {
return name == "index"
? CharacterUtils<TC::kind>::INDEX(str, other)
: name == "scan"
? CharacterUtils<TC::kind>::SCAN(str, other)
: CharacterUtils<TC::kind>::VERIFY(str, other);
}});
}
},
charExpr->u);
} else {
DIE("first argument must be CHARACTER");
}
} else if (name == "int") {
if (auto *expr{UnwrapExpr<Expr<SomeType>>(args[0])}) {
return std::visit(
[&](auto &&x) -> Expr<T> {
using From = std::decay_t<decltype(x)>;
if constexpr (std::is_same_v<From, BOZLiteralConstant> ||
IsNumericCategoryExpr<From>()) {
return Fold(context, ConvertToType<T>(std::move(x)));
}
DIE("int() argument type not valid");
},
std::move(expr->u));
}
} else if (name == "int_ptr_kind") {
return Expr<T>{8};
} else if (name == "kind") {
if constexpr (common::HasMember<T, IntegerTypes>) {
return Expr<T>{args[0].value().GetType()->kind()};
} else {
DIE("kind() result not integral");
}
} else if (name == "iparity") {
return FoldBitReduction(
context, std::move(funcRef), &Scalar<T>::IEOR, Scalar<T>{});
} else if (name == "ishft") {
return FoldElementalIntrinsic<T, T, Int4>(context, std::move(funcRef),
ScalarFunc<T, T, Int4>([&](const Scalar<T> &i,
const Scalar<Int4> &pos) -> Scalar<T> {
auto posVal{static_cast<int>(pos.ToInt64())};
if (posVal < -i.bits) {
context.messages().Say(
"SHIFT=%d count for ishft is less than %d"_err_en_US, posVal,
-i.bits);
} else if (posVal > i.bits) {
context.messages().Say(
"SHIFT=%d count for ishft is greater than %d"_err_en_US, posVal,
i.bits);
}
return i.ISHFT(posVal);
}));
} else if (name == "lbound") {
return LBOUND(context, std::move(funcRef));
} else if (name == "leadz" || name == "trailz" || name == "poppar" ||
name == "popcnt") {
if (auto *sn{UnwrapExpr<Expr<SomeInteger>>(args[0])}) {
return std::visit(
[&funcRef, &context, &name](const auto &n) -> Expr<T> {
using TI = typename std::decay_t<decltype(n)>::Result;
if (name == "poppar") {
return FoldElementalIntrinsic<T, TI>(context, std::move(funcRef),
ScalarFunc<T, TI>([](const Scalar<TI> &i) -> Scalar<T> {
return Scalar<T>{i.POPPAR() ? 1 : 0};
}));
}
auto fptr{&Scalar<TI>::LEADZ};
if (name == "leadz") { // done in fptr definition
} else if (name == "trailz") {
fptr = &Scalar<TI>::TRAILZ;
} else if (name == "popcnt") {
fptr = &Scalar<TI>::POPCNT;
} else {
common::die(
"missing case to fold intrinsic function %s", name.c_str());
}
return FoldElementalIntrinsic<T, TI>(context, std::move(funcRef),
ScalarFunc<T, TI>([&fptr](const Scalar<TI> &i) -> Scalar<T> {
return Scalar<T>{std::invoke(fptr, i)};
}));
},
sn->u);
} else {
DIE("leadz argument must be integer");
}
} else if (name == "len") {
if (auto *charExpr{UnwrapExpr<Expr<SomeCharacter>>(args[0])}) {
return std::visit(
[&](auto &kx) {
if (auto len{kx.LEN()}) {
return Fold(context, ConvertToType<T>(*std::move(len)));
} else {
return Expr<T>{std::move(funcRef)};
}
},
charExpr->u);
} else {
DIE("len() argument must be of character type");
}
} else if (name == "len_trim") {
if (auto *charExpr{UnwrapExpr<Expr<SomeCharacter>>(args[0])}) {
return std::visit(
[&](const auto &kch) -> Expr<T> {
using TC = typename std::decay_t<decltype(kch)>::Result;
return FoldElementalIntrinsic<T, TC>(context, std::move(funcRef),
ScalarFunc<T, TC>{[](const Scalar<TC> &str) -> Scalar<T> {
return CharacterUtils<TC::kind>::LEN_TRIM(str);
}});
},
charExpr->u);
} else {
DIE("len_trim() argument must be of character type");
}
} else if (name == "maskl" || name == "maskr") {
// Argument can be of any kind but value has to be smaller than BIT_SIZE.
// It can be safely converted to Int4 to simplify.
const auto fptr{name == "maskl" ? &Scalar<T>::MASKL : &Scalar<T>::MASKR};
return FoldElementalIntrinsic<T, Int4>(context, std::move(funcRef),
ScalarFunc<T, Int4>([&fptr](const Scalar<Int4> &places) -> Scalar<T> {
return fptr(static_cast<int>(places.ToInt64()));
}));
} else if (name == "max") {
return FoldMINorMAX(context, std::move(funcRef), Ordering::Greater);
} else if (name == "max0" || name == "max1") {
return RewriteSpecificMINorMAX(context, std::move(funcRef));
} else if (name == "maxexponent") {
if (auto *sx{UnwrapExpr<Expr<SomeReal>>(args[0])}) {
return std::visit(
[](const auto &x) {
using TR = typename std::decay_t<decltype(x)>::Result;
return Expr<T>{Scalar<TR>::MAXEXPONENT};
},
sx->u);
}
} else if (name == "maxloc") {
return FoldLocation<WhichLocation::Maxloc, T>(context, std::move(funcRef));
} else if (name == "maxval") {
return FoldMaxvalMinval<T>(context, std::move(funcRef),
RelationalOperator::GT, T::Scalar::Least());
} else if (name == "merge") {
return FoldMerge<T>(context, std::move(funcRef));
} else if (name == "merge_bits") {
return FoldElementalIntrinsic<T, T, T, T>(
context, std::move(funcRef), &Scalar<T>::MERGE_BITS);
} else if (name == "min") {
return FoldMINorMAX(context, std::move(funcRef), Ordering::Less);
} else if (name == "min0" || name == "min1") {
return RewriteSpecificMINorMAX(context, std::move(funcRef));
} else if (name == "minexponent") {
if (auto *sx{UnwrapExpr<Expr<SomeReal>>(args[0])}) {
return std::visit(
[](const auto &x) {
using TR = typename std::decay_t<decltype(x)>::Result;
return Expr<T>{Scalar<TR>::MINEXPONENT};
},
sx->u);
}
} else if (name == "minloc") {
return FoldLocation<WhichLocation::Minloc, T>(context, std::move(funcRef));
} else if (name == "minval") {
return FoldMaxvalMinval<T>(
context, std::move(funcRef), RelationalOperator::LT, T::Scalar::HUGE());
} else if (name == "mod") {
return FoldElementalIntrinsic<T, T, T>(context, std::move(funcRef),
ScalarFuncWithContext<T, T, T>(
[](FoldingContext &context, const Scalar<T> &x,
const Scalar<T> &y) -> Scalar<T> {
auto quotRem{x.DivideSigned(y)};
if (quotRem.divisionByZero) {
context.messages().Say("mod() by zero"_en_US);
} else if (quotRem.overflow) {
context.messages().Say("mod() folding overflowed"_en_US);
}
return quotRem.remainder;
}));
} else if (name == "modulo") {
return FoldElementalIntrinsic<T, T, T>(context, std::move(funcRef),
ScalarFuncWithContext<T, T, T>(
[](FoldingContext &context, const Scalar<T> &x,
const Scalar<T> &y) -> Scalar<T> {
auto result{x.MODULO(y)};
if (result.overflow) {
context.messages().Say("modulo() folding overflowed"_en_US);
}
return result.value;
}));
} else if (name == "not") {
return FoldElementalIntrinsic<T, T>(
context, std::move(funcRef), &Scalar<T>::NOT);
} else if (name == "precision") {
if (const auto *cx{UnwrapExpr<Expr<SomeReal>>(args[0])}) {
return Expr<T>{std::visit(
[](const auto &kx) {
return Scalar<ResultType<decltype(kx)>>::PRECISION;
},
cx->u)};
} else if (const auto *cx{UnwrapExpr<Expr<SomeComplex>>(args[0])}) {
return Expr<T>{std::visit(
[](const auto &kx) {
return Scalar<typename ResultType<decltype(kx)>::Part>::PRECISION;
},
cx->u)};
}
} else if (name == "product") {
return FoldProduct<T>(context, std::move(funcRef), Scalar<T>{1});
} else if (name == "radix") {
return Expr<T>{2};
} else if (name == "range") {
if (const auto *cx{UnwrapExpr<Expr<SomeInteger>>(args[0])}) {
return Expr<T>{std::visit(
[](const auto &kx) {
return Scalar<ResultType<decltype(kx)>>::RANGE;
},
cx->u)};
} else if (const auto *cx{UnwrapExpr<Expr<SomeReal>>(args[0])}) {
return Expr<T>{std::visit(
[](const auto &kx) {
return Scalar<ResultType<decltype(kx)>>::RANGE;
},
cx->u)};
} else if (const auto *cx{UnwrapExpr<Expr<SomeComplex>>(args[0])}) {
return Expr<T>{std::visit(
[](const auto &kx) {
return Scalar<typename ResultType<decltype(kx)>::Part>::RANGE;
},
cx->u)};
}
} else if (name == "rank") {
if (const auto *array{UnwrapExpr<Expr<SomeType>>(args[0])}) {
if (auto named{ExtractNamedEntity(*array)}) {
const Symbol &symbol{named->GetLastSymbol()};
if (IsAssumedRank(symbol)) {
// DescriptorInquiry can only be placed in expression of kind
// DescriptorInquiry::Result::kind.
return ConvertToType<T>(Expr<
Type<TypeCategory::Integer, DescriptorInquiry::Result::kind>>{
DescriptorInquiry{*named, DescriptorInquiry::Field::Rank}});
}
}
return Expr<T>{args[0].value().Rank()};
}
return Expr<T>{args[0].value().Rank()};
} else if (name == "selected_char_kind") {
if (const auto *chCon{UnwrapExpr<Constant<TypeOf<std::string>>>(args[0])}) {
if (std::optional<std::string> value{chCon->GetScalarValue()}) {
int defaultKind{
context.defaults().GetDefaultKind(TypeCategory::Character)};
return Expr<T>{SelectedCharKind(*value, defaultKind)};
}
}
} else if (name == "selected_int_kind") {
if (auto p{GetInt64Arg(args[0])}) {
return Expr<T>{SelectedIntKind(*p)};
}
} else if (name == "selected_real_kind" ||
name == "__builtin_ieee_selected_real_kind") {
if (auto p{GetInt64ArgOr(args[0], 0)}) {
if (auto r{GetInt64ArgOr(args[1], 0)}) {
if (auto radix{GetInt64ArgOr(args[2], 2)}) {
return Expr<T>{SelectedRealKind(*p, *r, *radix)};
}
}
}
} else if (name == "shape") {
if (auto shape{GetContextFreeShape(context, args[0])}) {
if (auto shapeExpr{AsExtentArrayExpr(*shape)}) {
return Fold(context, ConvertToType<T>(std::move(*shapeExpr)));
}
}
} else if (name == "shifta" || name == "shiftr" || name == "shiftl") {
// Second argument can be of any kind. However, it must be smaller or
// equal than BIT_SIZE. It can be converted to Int4 to simplify.
auto fptr{&Scalar<T>::SHIFTA};
if (name == "shifta") { // done in fptr definition
} else if (name == "shiftr") {
fptr = &Scalar<T>::SHIFTR;
} else if (name == "shiftl") {
fptr = &Scalar<T>::SHIFTL;
} else {
common::die("missing case to fold intrinsic function %s", name.c_str());
}
return FoldElementalIntrinsic<T, T, Int4>(context, std::move(funcRef),
ScalarFunc<T, T, Int4>([&](const Scalar<T> &i,
const Scalar<Int4> &pos) -> Scalar<T> {
auto posVal{static_cast<int>(pos.ToInt64())};
if (posVal < 0) {
context.messages().Say(
"SHIFT=%d count for %s is negative"_err_en_US, posVal, name);
} else if (posVal > i.bits) {
context.messages().Say(
"SHIFT=%d count for %s is greater than %d"_err_en_US, posVal,
name, i.bits);
}
return std::invoke(fptr, i, posVal);
}));
} else if (name == "sign") {
return FoldElementalIntrinsic<T, T, T>(context, std::move(funcRef),
ScalarFunc<T, T, T>(
[&context](const Scalar<T> &j, const Scalar<T> &k) -> Scalar<T> {
typename Scalar<T>::ValueWithOverflow result{j.SIGN(k)};
if (result.overflow) {
context.messages().Say(
"sign(integer(kind=%d)) folding overflowed"_en_US, KIND);
}
return result.value;
}));
} else if (name == "size") {
if (auto shape{GetContextFreeShape(context, args[0])}) {
if (auto &dimArg{args[1]}) { // DIM= is present, get one extent
if (auto dim{GetInt64Arg(args[1])}) {
int rank{GetRank(*shape)};
if (*dim >= 1 && *dim <= rank) {
const Symbol *symbol{UnwrapWholeSymbolDataRef(args[0])};
if (symbol && IsAssumedSizeArray(*symbol) && *dim == rank) {
context.messages().Say(
"size(array,dim=%jd) of last dimension is not available for rank-%d assumed-size array dummy argument"_err_en_US,
*dim, rank);
return MakeInvalidIntrinsic<T>(std::move(funcRef));
} else if (auto &extent{shape->at(*dim - 1)}) {
return Fold(context, ConvertToType<T>(std::move(*extent)));
}
} else {
context.messages().Say(
"size(array,dim=%jd) dimension is out of range for rank-%d array"_en_US,
*dim, rank);
}
}
} else if (auto extents{common::AllElementsPresent(std::move(*shape))}) {
// DIM= is absent; compute PRODUCT(SHAPE())
ExtentExpr product{1};
for (auto &&extent : std::move(*extents)) {
product = std::move(product) * std::move(extent);
}
return Expr<T>{ConvertToType<T>(Fold(context, std::move(product)))};
}
}
} else if (name == "sizeof") { // in bytes; extension
if (auto info{
characteristics::TypeAndShape::Characterize(args[0], context)}) {
if (auto bytes{info->MeasureSizeInBytes(context)}) {
return Expr<T>{Fold(context, ConvertToType<T>(std::move(*bytes)))};
}
}
} else if (name == "storage_size") { // in bits
if (auto info{
characteristics::TypeAndShape::Characterize(args[0], context)}) {
if (auto bytes{info->MeasureElementSizeInBytes(context, true)}) {
return Expr<T>{
Fold(context, Expr<T>{8} * ConvertToType<T>(std::move(*bytes)))};
}
}
} else if (name == "sum") {
return FoldSum<T>(context, std::move(funcRef));
} else if (name == "ubound") {
return UBOUND(context, std::move(funcRef));
}
// TODO: dot_product, ibits, ishftc, matmul, sign, transfer
return Expr<T>{std::move(funcRef)};
}
// Substitutes a bare type parameter reference with its value if it has one now
// in an instantiation. Bare LEN type parameters are substituted only when
// the known value is constant.
Expr<TypeParamInquiry::Result> FoldOperation(
FoldingContext &context, TypeParamInquiry &&inquiry) {
std::optional<NamedEntity> base{inquiry.base()};
parser::CharBlock parameterName{inquiry.parameter().name()};
if (base) {
// Handling "designator%typeParam". Get the value of the type parameter
// from the instantiation of the base
if (const semantics::DeclTypeSpec *
declType{base->GetLastSymbol().GetType()}) {
if (const semantics::ParamValue *
paramValue{
declType->derivedTypeSpec().FindParameter(parameterName)}) {
const semantics::MaybeIntExpr ¶mExpr{paramValue->GetExplicit()};
if (paramExpr && IsConstantExpr(*paramExpr)) {
Expr<SomeInteger> intExpr{*paramExpr};
return Fold(context,
ConvertToType<TypeParamInquiry::Result>(std::move(intExpr)));
}
}
}
} else {
// A "bare" type parameter: replace with its value, if that's now known
// in a current derived type instantiation, for KIND type parameters.
if (const auto *pdt{context.pdtInstance()}) {
bool isLen{false};
if (const semantics::Scope * scope{context.pdtInstance()->scope()}) {
auto iter{scope->find(parameterName)};
if (iter != scope->end()) {
const Symbol &symbol{*iter->second};
const auto *details{symbol.detailsIf<semantics::TypeParamDetails>()};
if (details) {
isLen = details->attr() == common::TypeParamAttr::Len;
const semantics::MaybeIntExpr &initExpr{details->init()};
if (initExpr && IsConstantExpr(*initExpr) &&
(!isLen || ToInt64(*initExpr))) {
Expr<SomeInteger> expr{*initExpr};
return Fold(context,
ConvertToType<TypeParamInquiry::Result>(std::move(expr)));
}
}
}
}
if (const auto *value{pdt->FindParameter(parameterName)}) {
if (value->isExplicit()) {
auto folded{Fold(context,
AsExpr(ConvertToType<TypeParamInquiry::Result>(
Expr<SomeInteger>{value->GetExplicit().value()})))};
if (!isLen || ToInt64(folded)) {
return folded;
}
}
}
}
}
return AsExpr(std::move(inquiry));
}
std::optional<std::int64_t> ToInt64(const Expr<SomeInteger> &expr) {
return std::visit(
[](const auto &kindExpr) { return ToInt64(kindExpr); }, expr.u);
}
std::optional<std::int64_t> ToInt64(const Expr<SomeType> &expr) {
if (const auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(expr)}) {
return ToInt64(*intExpr);
} else {
return std::nullopt;
}
}
#ifdef _MSC_VER // disable bogus warning about missing definitions
#pragma warning(disable : 4661)
#endif
FOR_EACH_INTEGER_KIND(template class ExpressionBase, )
template class ExpressionBase<SomeInteger>;
} // namespace Fortran::evaluate
|