1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
//===-- Target.cpp --------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "Target.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Support/KindMapping.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/TypeRange.h"
#define DEBUG_TYPE "flang-codegen-target"
using namespace fir;
// Reduce a REAL/float type to the floating point semantics.
static const llvm::fltSemantics &floatToSemantics(const KindMapping &kindMap,
mlir::Type type) {
assert(isa_real(type));
if (auto ty = type.dyn_cast<fir::RealType>())
return kindMap.getFloatSemantics(ty.getFKind());
return type.cast<mlir::FloatType>().getFloatSemantics();
}
namespace {
template <typename S>
struct GenericTarget : public CodeGenSpecifics {
using CodeGenSpecifics::CodeGenSpecifics;
using AT = CodeGenSpecifics::Attributes;
mlir::Type complexMemoryType(mlir::Type eleTy) const override {
assert(fir::isa_real(eleTy));
// Use a type that will be translated into LLVM as:
// { t, t } struct of 2 eleTy
mlir::TypeRange range = {eleTy, eleTy};
return mlir::TupleType::get(eleTy.getContext(), range);
}
mlir::Type boxcharMemoryType(mlir::Type eleTy) const override {
auto idxTy = mlir::IntegerType::get(eleTy.getContext(), S::defaultWidth);
auto ptrTy = fir::ReferenceType::get(eleTy);
// Use a type that will be translated into LLVM as:
// { t*, index }
mlir::TypeRange range = {ptrTy, idxTy};
return mlir::TupleType::get(eleTy.getContext(), range);
}
Marshalling boxcharArgumentType(mlir::Type eleTy, bool sret) const override {
CodeGenSpecifics::Marshalling marshal;
auto idxTy = mlir::IntegerType::get(eleTy.getContext(), S::defaultWidth);
auto ptrTy = fir::ReferenceType::get(eleTy);
marshal.emplace_back(ptrTy, AT{});
// Return value arguments are grouped as a pair. Others are passed in a
// split format with all pointers first (in the declared position) and all
// LEN arguments appended after all of the dummy arguments.
// NB: Other conventions/ABIs can/should be supported via options.
marshal.emplace_back(idxTy, AT{/*alignment=*/0, /*byval=*/false,
/*sret=*/sret, /*append=*/!sret});
return marshal;
}
};
} // namespace
//===----------------------------------------------------------------------===//
// i386 (x86 32 bit) linux target specifics.
//===----------------------------------------------------------------------===//
namespace {
struct TargetI386 : public GenericTarget<TargetI386> {
using GenericTarget::GenericTarget;
static constexpr int defaultWidth = 32;
CodeGenSpecifics::Marshalling
complexArgumentType(mlir::Type eleTy) const override {
assert(fir::isa_real(eleTy));
CodeGenSpecifics::Marshalling marshal;
// Use a type that will be translated into LLVM as:
// { t, t } struct of 2 eleTy, byval, align 4
mlir::TypeRange range = {eleTy, eleTy};
auto structTy = mlir::TupleType::get(eleTy.getContext(), range);
marshal.emplace_back(fir::ReferenceType::get(structTy),
AT{/*alignment=*/4, /*byval=*/true});
return marshal;
}
CodeGenSpecifics::Marshalling
complexReturnType(mlir::Type eleTy) const override {
assert(fir::isa_real(eleTy));
CodeGenSpecifics::Marshalling marshal;
const auto *sem = &floatToSemantics(kindMap, eleTy);
if (sem == &llvm::APFloat::IEEEsingle()) {
// i64 pack both floats in a 64-bit GPR
marshal.emplace_back(mlir::IntegerType::get(eleTy.getContext(), 64),
AT{});
} else if (sem == &llvm::APFloat::IEEEdouble()) {
// Use a type that will be translated into LLVM as:
// { t, t } struct of 2 eleTy, sret, align 4
mlir::TypeRange range = {eleTy, eleTy};
auto structTy = mlir::TupleType::get(eleTy.getContext(), range);
marshal.emplace_back(fir::ReferenceType::get(structTy),
AT{/*alignment=*/4, /*byval=*/false, /*sret=*/true});
} else {
llvm::report_fatal_error("complex for this precision not implemented");
}
return marshal;
}
};
} // namespace
//===----------------------------------------------------------------------===//
// x86_64 (x86 64 bit) linux target specifics.
//===----------------------------------------------------------------------===//
namespace {
struct TargetX86_64 : public GenericTarget<TargetX86_64> {
using GenericTarget::GenericTarget;
static constexpr int defaultWidth = 64;
CodeGenSpecifics::Marshalling
complexArgumentType(mlir::Type eleTy) const override {
CodeGenSpecifics::Marshalling marshal;
const auto *sem = &floatToSemantics(kindMap, eleTy);
if (sem == &llvm::APFloat::IEEEsingle()) {
// <2 x t> vector of 2 eleTy
marshal.emplace_back(fir::VectorType::get(2, eleTy), AT{});
} else if (sem == &llvm::APFloat::IEEEdouble()) {
// two distinct double arguments
marshal.emplace_back(eleTy, AT{});
marshal.emplace_back(eleTy, AT{});
} else {
llvm::report_fatal_error("complex for this precision not implemented");
}
return marshal;
}
CodeGenSpecifics::Marshalling
complexReturnType(mlir::Type eleTy) const override {
CodeGenSpecifics::Marshalling marshal;
const auto *sem = &floatToSemantics(kindMap, eleTy);
if (sem == &llvm::APFloat::IEEEsingle()) {
// <2 x t> vector of 2 eleTy
marshal.emplace_back(fir::VectorType::get(2, eleTy), AT{});
} else if (sem == &llvm::APFloat::IEEEdouble()) {
// Use a type that will be translated into LLVM as:
// { double, double } struct of 2 double
mlir::TypeRange range = {eleTy, eleTy};
marshal.emplace_back(mlir::TupleType::get(eleTy.getContext(), range),
AT{});
} else {
llvm::report_fatal_error("complex for this precision not implemented");
}
return marshal;
}
};
} // namespace
//===----------------------------------------------------------------------===//
// AArch64 linux target specifics.
//===----------------------------------------------------------------------===//
namespace {
struct TargetAArch64 : public GenericTarget<TargetAArch64> {
using GenericTarget::GenericTarget;
static constexpr int defaultWidth = 64;
CodeGenSpecifics::Marshalling
complexArgumentType(mlir::Type eleTy) const override {
CodeGenSpecifics::Marshalling marshal;
const auto *sem = &floatToSemantics(kindMap, eleTy);
if (sem == &llvm::APFloat::IEEEsingle() ||
sem == &llvm::APFloat::IEEEdouble()) {
// [2 x t] array of 2 eleTy
marshal.emplace_back(fir::SequenceType::get({2}, eleTy), AT{});
} else {
llvm::report_fatal_error("complex for this precision not implemented");
}
return marshal;
}
CodeGenSpecifics::Marshalling
complexReturnType(mlir::Type eleTy) const override {
CodeGenSpecifics::Marshalling marshal;
const auto *sem = &floatToSemantics(kindMap, eleTy);
if (sem == &llvm::APFloat::IEEEsingle() ||
sem == &llvm::APFloat::IEEEdouble()) {
// Use a type that will be translated into LLVM as:
// { t, t } struct of 2 eleTy
mlir::TypeRange range = {eleTy, eleTy};
marshal.emplace_back(mlir::TupleType::get(eleTy.getContext(), range),
AT{});
} else {
llvm::report_fatal_error("complex for this precision not implemented");
}
return marshal;
}
};
} // namespace
//===----------------------------------------------------------------------===//
// PPC64le linux target specifics.
//===----------------------------------------------------------------------===//
namespace {
struct TargetPPC64le : public GenericTarget<TargetPPC64le> {
using GenericTarget::GenericTarget;
static constexpr int defaultWidth = 64;
CodeGenSpecifics::Marshalling
complexArgumentType(mlir::Type eleTy) const override {
CodeGenSpecifics::Marshalling marshal;
// two distinct element type arguments (re, im)
marshal.emplace_back(eleTy, AT{});
marshal.emplace_back(eleTy, AT{});
return marshal;
}
CodeGenSpecifics::Marshalling
complexReturnType(mlir::Type eleTy) const override {
CodeGenSpecifics::Marshalling marshal;
// Use a type that will be translated into LLVM as:
// { t, t } struct of 2 element type
mlir::TypeRange range = {eleTy, eleTy};
marshal.emplace_back(mlir::TupleType::get(eleTy.getContext(), range), AT{});
return marshal;
}
};
} // namespace
// Instantiate the overloaded target instance based on the triple value.
// Currently, the implementation only instantiates `i386-unknown-linux-gnu`,
// `x86_64-unknown-linux-gnu`, aarch64 and ppc64le like triples. Other targets
// should be added to this file as needed.
std::unique_ptr<fir::CodeGenSpecifics>
fir::CodeGenSpecifics::get(mlir::MLIRContext *ctx, llvm::Triple &&trp,
KindMapping &&kindMap) {
switch (trp.getArch()) {
default:
break;
case llvm::Triple::ArchType::x86:
switch (trp.getOS()) {
default:
break;
case llvm::Triple::OSType::Linux:
case llvm::Triple::OSType::Darwin:
return std::make_unique<TargetI386>(ctx, std::move(trp),
std::move(kindMap));
}
break;
case llvm::Triple::ArchType::x86_64:
switch (trp.getOS()) {
default:
break;
case llvm::Triple::OSType::Linux:
case llvm::Triple::OSType::Darwin:
return std::make_unique<TargetX86_64>(ctx, std::move(trp),
std::move(kindMap));
}
break;
case llvm::Triple::ArchType::aarch64:
switch (trp.getOS()) {
default:
break;
case llvm::Triple::OSType::Linux:
case llvm::Triple::OSType::Darwin:
return std::make_unique<TargetAArch64>(ctx, std::move(trp),
std::move(kindMap));
}
break;
case llvm::Triple::ArchType::ppc64le:
switch (trp.getOS()) {
default:
break;
case llvm::Triple::OSType::Linux:
return std::make_unique<TargetPPC64le>(ctx, std::move(trp),
std::move(kindMap));
}
break;
}
llvm::report_fatal_error("target not implemented");
}
|