1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
|
//===-- TypeConverter.h -- type conversion ----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#ifndef FORTRAN_OPTIMIZER_CODEGEN_TYPECONVERTER_H
#define FORTRAN_OPTIMIZER_CODEGEN_TYPECONVERTER_H
#include "DescriptorModel.h"
#include "Target.h"
#include "flang/Lower/Todo.h" // remove when TODO's are done
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Support/FIRContext.h"
#include "flang/Optimizer/Support/KindMapping.h"
#include "mlir/Conversion/LLVMCommon/TypeConverter.h"
#include "llvm/Support/Debug.h"
// Position of the different values in a `fir.box`.
static constexpr unsigned kAddrPosInBox = 0;
static constexpr unsigned kElemLenPosInBox = 1;
static constexpr unsigned kVersionPosInBox = 2;
static constexpr unsigned kRankPosInBox = 3;
static constexpr unsigned kTypePosInBox = 4;
static constexpr unsigned kAttributePosInBox = 5;
static constexpr unsigned kF18AddendumPosInBox = 6;
static constexpr unsigned kDimsPosInBox = 7;
static constexpr unsigned kOptTypePtrPosInBox = 8;
static constexpr unsigned kOptRowTypePosInBox = 9;
// Position of the different values in [dims]
static constexpr unsigned kDimLowerBoundPos = 0;
static constexpr unsigned kDimExtentPos = 1;
static constexpr unsigned kDimStridePos = 2;
namespace fir {
/// FIR type converter
/// This converts FIR types to LLVM types (for now)
class LLVMTypeConverter : public mlir::LLVMTypeConverter {
public:
LLVMTypeConverter(mlir::ModuleOp module)
: mlir::LLVMTypeConverter(module.getContext()),
kindMapping(getKindMapping(module)),
specifics(CodeGenSpecifics::get(module.getContext(),
getTargetTriple(module),
getKindMapping(module))) {
LLVM_DEBUG(llvm::dbgs() << "FIR type converter\n");
// Each conversion should return a value of type mlir::Type.
addConversion([&](BoxType box) { return convertBoxType(box); });
addConversion([&](BoxCharType boxchar) {
LLVM_DEBUG(llvm::dbgs() << "type convert: " << boxchar << '\n');
return convertType(specifics->boxcharMemoryType(boxchar.getEleTy()));
});
addConversion([&](BoxProcType boxproc) {
// TODO: Support for this type will be added later when the Fortran 2003
// procedure pointer feature is implemented.
return llvm::None;
});
addConversion(
[&](fir::CharacterType charTy) { return convertCharType(charTy); });
addConversion([&](HeapType heap) { return convertPointerLike(heap); });
addConversion([&](fir::IntegerType intTy) {
return mlir::IntegerType::get(
&getContext(), kindMapping.getIntegerBitsize(intTy.getFKind()));
});
addConversion([&](fir::LogicalType boolTy) {
return mlir::IntegerType::get(
&getContext(), kindMapping.getLogicalBitsize(boolTy.getFKind()));
});
addConversion([&](fir::LLVMPointerType pointer) {
return convertPointerLike(pointer);
});
addConversion(
[&](fir::PointerType pointer) { return convertPointerLike(pointer); });
addConversion([&](fir::RecordType derived, SmallVectorImpl<Type> &results,
ArrayRef<Type> callStack) {
return convertRecordType(derived, results, callStack);
});
addConversion([&](fir::FieldType field) {
// Convert to i32 because of LLVM GEP indexing restriction.
return mlir::IntegerType::get(field.getContext(), 32);
});
addConversion([&](fir::LenType field) {
// Get size of len paramter from the descriptor.
return getModel<Fortran::runtime::typeInfo::TypeParameterValue>()(
&getContext());
});
addConversion(
[&](fir::ComplexType cmplx) { return convertComplexType(cmplx); });
addConversion(
[&](fir::RealType real) { return convertRealType(real.getFKind()); });
addConversion(
[&](fir::ReferenceType ref) { return convertPointerLike(ref); });
addConversion([&](fir::SequenceType sequence) {
return convertSequenceType(sequence);
});
addConversion([&](fir::TypeDescType tdesc) {
return convertTypeDescType(tdesc.getContext());
});
addConversion([&](fir::VectorType vecTy) {
return mlir::VectorType::get(llvm::ArrayRef<int64_t>(vecTy.getLen()),
convertType(vecTy.getEleTy()));
});
addConversion([&](mlir::TupleType tuple) {
LLVM_DEBUG(llvm::dbgs() << "type convert: " << tuple << '\n');
llvm::SmallVector<mlir::Type> inMembers;
tuple.getFlattenedTypes(inMembers);
llvm::SmallVector<mlir::Type> members;
for (auto mem : inMembers)
members.push_back(convertType(mem).cast<mlir::Type>());
return mlir::LLVM::LLVMStructType::getLiteral(&getContext(), members,
/*isPacked=*/false);
});
}
// i32 is used here because LLVM wants i32 constants when indexing into struct
// types. Indexing into other aggregate types is more flexible.
mlir::Type offsetType() { return mlir::IntegerType::get(&getContext(), 32); }
// i64 can be used to index into aggregates like arrays
mlir::Type indexType() { return mlir::IntegerType::get(&getContext(), 64); }
// fir.type<name(p : TY'...){f : TY...}> --> llvm<"%name = { ty... }">
llvm::Optional<LogicalResult>
convertRecordType(fir::RecordType derived, SmallVectorImpl<Type> &results,
ArrayRef<Type> callStack) {
auto name = derived.getName();
auto st = mlir::LLVM::LLVMStructType::getIdentified(&getContext(), name);
if (llvm::count(callStack, derived) > 1) {
results.push_back(st);
return success();
}
llvm::SmallVector<mlir::Type> members;
for (auto mem : derived.getTypeList()) {
members.push_back(convertType(mem.second).cast<mlir::Type>());
}
if (mlir::failed(st.setBody(members, /*isPacked=*/false)))
return failure();
results.push_back(st);
return success();
}
// Is an extended descriptor needed given the element type of a fir.box type ?
// Extended descriptors are required for derived types.
bool requiresExtendedDesc(mlir::Type boxElementType) {
auto eleTy = fir::unwrapSequenceType(boxElementType);
return eleTy.isa<fir::RecordType>();
}
// Magic value to indicate we do not know the rank of an entity, either
// because it is assumed rank or because we have not determined it yet.
static constexpr int unknownRank() { return -1; }
// This corresponds to the descriptor as defined in ISO_Fortran_binding.h and
// the addendum defined in descriptor.h.
mlir::Type convertBoxType(BoxType box, int rank = unknownRank()) {
// (base_addr*, elem_len, version, rank, type, attribute, f18Addendum, [dim]
llvm::SmallVector<mlir::Type> dataDescFields;
mlir::Type ele = box.getEleTy();
// remove fir.heap/fir.ref/fir.ptr
if (auto removeIndirection = fir::dyn_cast_ptrEleTy(ele))
ele = removeIndirection;
auto eleTy = convertType(ele);
// base_addr*
if (ele.isa<SequenceType>() && eleTy.isa<mlir::LLVM::LLVMPointerType>())
dataDescFields.push_back(eleTy);
else
dataDescFields.push_back(mlir::LLVM::LLVMPointerType::get(eleTy));
// elem_len
dataDescFields.push_back(
getDescFieldTypeModel<kElemLenPosInBox>()(&getContext()));
// version
dataDescFields.push_back(
getDescFieldTypeModel<kVersionPosInBox>()(&getContext()));
// rank
dataDescFields.push_back(
getDescFieldTypeModel<kRankPosInBox>()(&getContext()));
// type
dataDescFields.push_back(
getDescFieldTypeModel<kTypePosInBox>()(&getContext()));
// attribute
dataDescFields.push_back(
getDescFieldTypeModel<kAttributePosInBox>()(&getContext()));
// f18Addendum
dataDescFields.push_back(
getDescFieldTypeModel<kF18AddendumPosInBox>()(&getContext()));
// [dims]
if (rank == unknownRank()) {
if (auto seqTy = ele.dyn_cast<SequenceType>())
rank = seqTy.getDimension();
else
rank = 0;
}
if (rank > 0) {
auto rowTy = getDescFieldTypeModel<kDimsPosInBox>()(&getContext());
dataDescFields.push_back(mlir::LLVM::LLVMArrayType::get(rowTy, rank));
}
// opt-type-ptr: i8* (see fir.tdesc)
if (requiresExtendedDesc(ele)) {
dataDescFields.push_back(
getExtendedDescFieldTypeModel<kOptTypePtrPosInBox>()(&getContext()));
auto rowTy =
getExtendedDescFieldTypeModel<kOptRowTypePosInBox>()(&getContext());
dataDescFields.push_back(mlir::LLVM::LLVMArrayType::get(rowTy, 1));
if (auto recTy = fir::unwrapSequenceType(ele).dyn_cast<fir::RecordType>())
if (recTy.getNumLenParams() > 0) {
// The descriptor design needs to be clarified regarding the number of
// length parameters in the addendum. Since it can change for
// polymorphic allocatables, it seems all length parameters cannot
// always possibly be placed in the addendum.
TODO_NOLOC("extended descriptor derived with length parameters");
unsigned numLenParams = recTy.getNumLenParams();
dataDescFields.push_back(
mlir::LLVM::LLVMArrayType::get(rowTy, numLenParams));
}
}
return mlir::LLVM::LLVMPointerType::get(
mlir::LLVM::LLVMStructType::getLiteral(&getContext(), dataDescFields,
/*isPacked=*/false));
}
unsigned characterBitsize(fir::CharacterType charTy) {
return kindMapping.getCharacterBitsize(charTy.getFKind());
}
// fir.char<k,?> --> llvm<"ix"> where ix is scaled by kind mapping
// fir.char<k,n> --> llvm.array<n x "ix">
mlir::Type convertCharType(fir::CharacterType charTy) {
auto iTy = mlir::IntegerType::get(&getContext(), characterBitsize(charTy));
if (charTy.getLen() == fir::CharacterType::unknownLen())
return iTy;
return mlir::LLVM::LLVMArrayType::get(iTy, charTy.getLen());
}
// Use the target specifics to figure out how to map complex to LLVM IR. The
// use of complex values in function signatures is handled before conversion
// to LLVM IR dialect here.
//
// fir.complex<T> | std.complex<T> --> llvm<"{t,t}">
template <typename C>
mlir::Type convertComplexType(C cmplx) {
LLVM_DEBUG(llvm::dbgs() << "type convert: " << cmplx << '\n');
auto eleTy = cmplx.getElementType();
return convertType(specifics->complexMemoryType(eleTy));
}
// convert a front-end kind value to either a std or LLVM IR dialect type
// fir.real<n> --> llvm.anyfloat where anyfloat is a kind mapping
mlir::Type convertRealType(fir::KindTy kind) {
return fromRealTypeID(kindMapping.getRealTypeID(kind), kind);
}
template <typename A>
mlir::Type convertPointerLike(A &ty) {
mlir::Type eleTy = ty.getEleTy();
// A sequence type is a special case. A sequence of runtime size on its
// interior dimensions lowers to a memory reference. In that case, we
// degenerate the array and do not want a the type to become `T**` but
// merely `T*`.
if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) {
if (!seqTy.hasConstantShape() ||
characterWithDynamicLen(seqTy.getEleTy())) {
if (seqTy.hasConstantInterior())
return convertType(seqTy);
eleTy = seqTy.getEleTy();
}
}
// fir.ref<fir.box> is a special case because fir.box type is already
// a pointer to a Fortran descriptor at the LLVM IR level. This implies
// that a fir.ref<fir.box>, that is the address of fir.box is actually
// the same as a fir.box at the LLVM level.
// The distinction is kept in fir to denote when a descriptor is expected
// to be mutable (fir.ref<fir.box>) and when it is not (fir.box).
if (eleTy.isa<fir::BoxType>())
return convertType(eleTy);
return mlir::LLVM::LLVMPointerType::get(convertType(eleTy));
}
// fir.array<c ... :any> --> llvm<"[...[c x any]]">
mlir::Type convertSequenceType(SequenceType seq) {
auto baseTy = convertType(seq.getEleTy());
if (characterWithDynamicLen(seq.getEleTy()))
return mlir::LLVM::LLVMPointerType::get(baseTy);
auto shape = seq.getShape();
auto constRows = seq.getConstantRows();
if (constRows) {
decltype(constRows) i = constRows;
for (auto e : shape) {
baseTy = mlir::LLVM::LLVMArrayType::get(baseTy, e);
if (--i == 0)
break;
}
if (seq.hasConstantShape())
return baseTy;
}
return mlir::LLVM::LLVMPointerType::get(baseTy);
}
// fir.tdesc<any> --> llvm<"i8*">
// TODO: For now use a void*, however pointer identity is not sufficient for
// the f18 object v. class distinction (F2003).
mlir::Type convertTypeDescType(mlir::MLIRContext *ctx) {
return mlir::LLVM::LLVMPointerType::get(
mlir::IntegerType::get(&getContext(), 8));
}
/// Convert llvm::Type::TypeID to mlir::Type
mlir::Type fromRealTypeID(llvm::Type::TypeID typeID, fir::KindTy kind) {
switch (typeID) {
case llvm::Type::TypeID::HalfTyID:
return mlir::FloatType::getF16(&getContext());
case llvm::Type::TypeID::BFloatTyID:
return mlir::FloatType::getBF16(&getContext());
case llvm::Type::TypeID::FloatTyID:
return mlir::FloatType::getF32(&getContext());
case llvm::Type::TypeID::DoubleTyID:
return mlir::FloatType::getF64(&getContext());
case llvm::Type::TypeID::X86_FP80TyID:
return mlir::FloatType::getF80(&getContext());
case llvm::Type::TypeID::FP128TyID:
return mlir::FloatType::getF128(&getContext());
default:
mlir::emitError(mlir::UnknownLoc::get(&getContext()))
<< "unsupported type: !fir.real<" << kind << ">";
return {};
}
}
KindMapping &getKindMap() { return kindMapping; }
private:
KindMapping kindMapping;
std::unique_ptr<CodeGenSpecifics> specifics;
};
} // namespace fir
#endif // FORTRAN_OPTIMIZER_CODEGEN_TYPECONVERTER_H
|