1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
|
//===-- ArrayValueCopy.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Factory.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Support/FIRContext.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "flang-array-value-copy"
using namespace fir;
using OperationUseMapT = llvm::DenseMap<mlir::Operation *, mlir::Operation *>;
namespace {
/// Array copy analysis.
/// Perform an interference analysis between array values.
///
/// Lowering will generate a sequence of the following form.
/// ```mlir
/// %a_1 = fir.array_load %array_1(%shape) : ...
/// ...
/// %a_j = fir.array_load %array_j(%shape) : ...
/// ...
/// %a_n = fir.array_load %array_n(%shape) : ...
/// ...
/// %v_i = fir.array_fetch %a_i, ...
/// %a_j1 = fir.array_update %a_j, ...
/// ...
/// fir.array_merge_store %a_j, %a_jn to %array_j : ...
/// ```
///
/// The analysis is to determine if there are any conflicts. A conflict is when
/// one the following cases occurs.
///
/// 1. There is an `array_update` to an array value, a_j, such that a_j was
/// loaded from the same array memory reference (array_j) but with a different
/// shape as the other array values a_i, where i != j. [Possible overlapping
/// arrays.]
///
/// 2. There is either an array_fetch or array_update of a_j with a different
/// set of index values. [Possible loop-carried dependence.]
///
/// If none of the array values overlap in storage and the accesses are not
/// loop-carried, then the arrays are conflict-free and no copies are required.
class ArrayCopyAnalysis {
public:
using ConflictSetT = llvm::SmallPtrSet<mlir::Operation *, 16>;
using UseSetT = llvm::SmallPtrSet<mlir::OpOperand *, 8>;
using LoadMapSetsT =
llvm::DenseMap<mlir::Operation *, SmallVector<Operation *>>;
ArrayCopyAnalysis(mlir::Operation *op) : operation{op} { construct(op); }
mlir::Operation *getOperation() const { return operation; }
/// Return true iff the `array_merge_store` has potential conflicts.
bool hasPotentialConflict(mlir::Operation *op) const {
LLVM_DEBUG(llvm::dbgs()
<< "looking for a conflict on " << *op
<< " and the set has a total of " << conflicts.size() << '\n');
return conflicts.contains(op);
}
/// Return the use map. The use map maps array fetch and update operations
/// back to the array load that is the original source of the array value.
const OperationUseMapT &getUseMap() const { return useMap; }
/// Find all the array operations that access the array value that is loaded
/// by the array load operation, `load`.
const llvm::SmallVector<mlir::Operation *> &arrayAccesses(ArrayLoadOp load);
private:
void construct(mlir::Operation *topLevelOp);
mlir::Operation *operation; // operation that analysis ran upon
ConflictSetT conflicts; // set of conflicts (loads and merge stores)
OperationUseMapT useMap;
LoadMapSetsT loadMapSets;
};
} // namespace
namespace {
/// Helper class to collect all array operations that produced an array value.
class ReachCollector {
private:
// If provided, the `loopRegion` is the body of a loop that produces the array
// of interest.
ReachCollector(llvm::SmallVectorImpl<mlir::Operation *> &reach,
mlir::Region *loopRegion)
: reach{reach}, loopRegion{loopRegion} {}
void collectArrayAccessFrom(mlir::Operation *op, mlir::ValueRange range) {
llvm::errs() << "COLLECT " << *op << "\n";
if (range.empty()) {
collectArrayAccessFrom(op, mlir::Value{});
return;
}
for (mlir::Value v : range)
collectArrayAccessFrom(v);
}
// TODO: Replace recursive algorithm on def-use chain with an iterative one
// with an explicit stack.
void collectArrayAccessFrom(mlir::Operation *op, mlir::Value val) {
// `val` is defined by an Op, process the defining Op.
// If `val` is defined by a region containing Op, we want to drill down
// and through that Op's region(s).
llvm::errs() << "COLLECT " << *op << "\n";
LLVM_DEBUG(llvm::dbgs() << "popset: " << *op << '\n');
auto popFn = [&](auto rop) {
assert(val && "op must have a result value");
auto resNum = val.cast<mlir::OpResult>().getResultNumber();
llvm::SmallVector<mlir::Value> results;
rop.resultToSourceOps(results, resNum);
for (auto u : results)
collectArrayAccessFrom(u);
};
if (auto rop = mlir::dyn_cast<fir::DoLoopOp>(op)) {
popFn(rop);
return;
}
if (auto rop = mlir::dyn_cast<fir::IfOp>(op)) {
popFn(rop);
return;
}
if (auto mergeStore = mlir::dyn_cast<ArrayMergeStoreOp>(op)) {
if (opIsInsideLoops(mergeStore))
collectArrayAccessFrom(mergeStore.sequence());
return;
}
if (mlir::isa<AllocaOp, AllocMemOp>(op)) {
// Look for any stores inside the loops, and collect an array operation
// that produced the value being stored to it.
for (mlir::Operation *user : op->getUsers())
if (auto store = mlir::dyn_cast<fir::StoreOp>(user))
if (opIsInsideLoops(store))
collectArrayAccessFrom(store.value());
return;
}
// Otherwise, Op does not contain a region so just chase its operands.
if (mlir::isa<ArrayLoadOp, ArrayUpdateOp, ArrayModifyOp, ArrayFetchOp>(
op)) {
LLVM_DEBUG(llvm::dbgs() << "add " << *op << " to reachable set\n");
reach.emplace_back(op);
}
// Array modify assignment is performed on the result. So the analysis
// must look at the what is done with the result.
if (mlir::isa<ArrayModifyOp>(op))
for (mlir::Operation *user : op->getResult(0).getUsers())
followUsers(user);
for (auto u : op->getOperands())
collectArrayAccessFrom(u);
}
void collectArrayAccessFrom(mlir::BlockArgument ba) {
auto *parent = ba.getOwner()->getParentOp();
// If inside an Op holding a region, the block argument corresponds to an
// argument passed to the containing Op.
auto popFn = [&](auto rop) {
collectArrayAccessFrom(rop.blockArgToSourceOp(ba.getArgNumber()));
};
if (auto rop = mlir::dyn_cast<DoLoopOp>(parent)) {
popFn(rop);
return;
}
if (auto rop = mlir::dyn_cast<IterWhileOp>(parent)) {
popFn(rop);
return;
}
// Otherwise, a block argument is provided via the pred blocks.
for (auto *pred : ba.getOwner()->getPredecessors()) {
auto u = pred->getTerminator()->getOperand(ba.getArgNumber());
collectArrayAccessFrom(u);
}
}
// Recursively trace operands to find all array operations relating to the
// values merged.
void collectArrayAccessFrom(mlir::Value val) {
if (!val || visited.contains(val))
return;
visited.insert(val);
// Process a block argument.
if (auto ba = val.dyn_cast<mlir::BlockArgument>()) {
collectArrayAccessFrom(ba);
return;
}
// Process an Op.
if (auto *op = val.getDefiningOp()) {
collectArrayAccessFrom(op, val);
return;
}
fir::emitFatalError(val.getLoc(), "unhandled value");
}
/// Is \op inside the loop nest region ?
bool opIsInsideLoops(mlir::Operation *op) const {
return loopRegion && loopRegion->isAncestor(op->getParentRegion());
}
/// Recursively trace the use of an operation results, calling
/// collectArrayAccessFrom on the direct and indirect user operands.
/// TODO: Replace recursive algorithm on def-use chain with an iterative one
/// with an explicit stack.
void followUsers(mlir::Operation *op) {
for (auto userOperand : op->getOperands())
collectArrayAccessFrom(userOperand);
// Go through potential converts/coordinate_op.
for (mlir::Operation *indirectUser : op->getUsers())
followUsers(indirectUser);
}
llvm::SmallVectorImpl<mlir::Operation *> &reach;
llvm::SmallPtrSet<mlir::Value, 16> visited;
/// Region of the loops nest that produced the array value.
mlir::Region *loopRegion;
public:
/// Return all ops that produce the array value that is stored into the
/// `array_merge_store`.
static void reachingValues(llvm::SmallVectorImpl<mlir::Operation *> &reach,
mlir::Value seq) {
reach.clear();
mlir::Region *loopRegion = nullptr;
// Only `DoLoopOp` is tested here since array operations are currently only
// associated with this kind of loop.
if (auto doLoop =
mlir::dyn_cast_or_null<fir::DoLoopOp>(seq.getDefiningOp()))
loopRegion = &doLoop->getRegion(0);
ReachCollector collector(reach, loopRegion);
collector.collectArrayAccessFrom(seq);
}
};
} // namespace
/// Find all the array operations that access the array value that is loaded by
/// the array load operation, `load`.
const llvm::SmallVector<mlir::Operation *> &
ArrayCopyAnalysis::arrayAccesses(ArrayLoadOp load) {
auto lmIter = loadMapSets.find(load);
if (lmIter != loadMapSets.end())
return lmIter->getSecond();
llvm::SmallVector<mlir::Operation *> accesses;
UseSetT visited;
llvm::SmallVector<mlir::OpOperand *> queue; // uses of ArrayLoad[orig]
auto appendToQueue = [&](mlir::Value val) {
for (mlir::OpOperand &use : val.getUses())
if (!visited.count(&use)) {
visited.insert(&use);
queue.push_back(&use);
}
};
// Build the set of uses of `original`.
// let USES = { uses of original fir.load }
appendToQueue(load);
// Process the worklist until done.
while (!queue.empty()) {
mlir::OpOperand *operand = queue.pop_back_val();
mlir::Operation *owner = operand->getOwner();
auto structuredLoop = [&](auto ro) {
if (auto blockArg = ro.iterArgToBlockArg(operand->get())) {
int64_t arg = blockArg.getArgNumber();
mlir::Value output = ro.getResult(ro.finalValue() ? arg : arg - 1);
appendToQueue(output);
appendToQueue(blockArg);
}
};
// TODO: this need to be updated to use the control-flow interface.
auto branchOp = [&](mlir::Block *dest, OperandRange operands) {
if (operands.empty())
return;
// Check if this operand is within the range.
unsigned operandIndex = operand->getOperandNumber();
unsigned operandsStart = operands.getBeginOperandIndex();
if (operandIndex < operandsStart ||
operandIndex >= (operandsStart + operands.size()))
return;
// Index the successor.
unsigned argIndex = operandIndex - operandsStart;
appendToQueue(dest->getArgument(argIndex));
};
// Thread uses into structured loop bodies and return value uses.
if (auto ro = mlir::dyn_cast<DoLoopOp>(owner)) {
structuredLoop(ro);
} else if (auto ro = mlir::dyn_cast<IterWhileOp>(owner)) {
structuredLoop(ro);
} else if (auto rs = mlir::dyn_cast<ResultOp>(owner)) {
// Thread any uses of fir.if that return the marked array value.
if (auto ifOp = rs->getParentOfType<fir::IfOp>())
appendToQueue(ifOp.getResult(operand->getOperandNumber()));
} else if (mlir::isa<ArrayFetchOp>(owner)) {
// Keep track of array value fetches.
LLVM_DEBUG(llvm::dbgs()
<< "add fetch {" << *owner << "} to array value set\n");
accesses.push_back(owner);
} else if (auto update = mlir::dyn_cast<ArrayUpdateOp>(owner)) {
// Keep track of array value updates and thread the return value uses.
LLVM_DEBUG(llvm::dbgs()
<< "add update {" << *owner << "} to array value set\n");
accesses.push_back(owner);
appendToQueue(update.getResult());
} else if (auto update = mlir::dyn_cast<ArrayModifyOp>(owner)) {
// Keep track of array value modification and thread the return value
// uses.
LLVM_DEBUG(llvm::dbgs()
<< "add modify {" << *owner << "} to array value set\n");
accesses.push_back(owner);
appendToQueue(update.getResult(1));
} else if (auto br = mlir::dyn_cast<mlir::BranchOp>(owner)) {
branchOp(br.getDest(), br.getDestOperands());
} else if (auto br = mlir::dyn_cast<mlir::CondBranchOp>(owner)) {
branchOp(br.getTrueDest(), br.getTrueOperands());
branchOp(br.getFalseDest(), br.getFalseOperands());
} else if (mlir::isa<ArrayMergeStoreOp>(owner)) {
// do nothing
} else {
llvm::report_fatal_error("array value reached unexpected op");
}
}
return loadMapSets.insert({load, accesses}).first->getSecond();
}
/// Is there a conflict between the array value that was updated and to be
/// stored to `st` and the set of arrays loaded (`reach`) and used to compute
/// the updated value?
static bool conflictOnLoad(llvm::ArrayRef<mlir::Operation *> reach,
ArrayMergeStoreOp st) {
mlir::Value load;
mlir::Value addr = st.memref();
auto stEleTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType());
for (auto *op : reach) {
auto ld = mlir::dyn_cast<ArrayLoadOp>(op);
if (!ld)
continue;
mlir::Type ldTy = ld.memref().getType();
if (auto boxTy = ldTy.dyn_cast<fir::BoxType>())
ldTy = boxTy.getEleTy();
if (ldTy.isa<fir::PointerType>() && stEleTy == dyn_cast_ptrEleTy(ldTy))
return true;
if (ld.memref() == addr) {
if (ld.getResult() != st.original())
return true;
if (load)
return true;
load = ld;
}
}
return false;
}
/// Check if there is any potential conflict in the chained update operations
/// (ArrayFetchOp, ArrayUpdateOp, ArrayModifyOp) while merging back to the
/// array. A potential conflict is detected if two operations work on the same
/// indices.
static bool conflictOnMerge(llvm::ArrayRef<mlir::Operation *> accesses) {
if (accesses.size() < 2)
return false;
llvm::SmallVector<mlir::Value> indices;
LLVM_DEBUG(llvm::dbgs() << "check merge conflict on with " << accesses.size()
<< " accesses on the list\n");
for (auto *op : accesses) {
assert((mlir::isa<ArrayFetchOp, ArrayUpdateOp, ArrayModifyOp>(op)) &&
"unexpected operation in analysis");
llvm::SmallVector<mlir::Value> compareVector;
if (auto u = mlir::dyn_cast<ArrayUpdateOp>(op)) {
if (indices.empty()) {
indices = u.indices();
continue;
}
compareVector = u.indices();
} else if (auto f = mlir::dyn_cast<ArrayModifyOp>(op)) {
if (indices.empty()) {
indices = f.indices();
continue;
}
compareVector = f.indices();
} else if (auto f = mlir::dyn_cast<ArrayFetchOp>(op)) {
if (indices.empty()) {
indices = f.indices();
continue;
}
compareVector = f.indices();
}
if (compareVector != indices)
return true;
LLVM_DEBUG(llvm::dbgs() << "vectors compare equal\n");
}
return false;
}
// Are either of types of conflicts present?
inline bool conflictDetected(llvm::ArrayRef<mlir::Operation *> reach,
llvm::ArrayRef<mlir::Operation *> accesses,
ArrayMergeStoreOp st) {
return conflictOnLoad(reach, st) || conflictOnMerge(accesses);
}
/// Constructor of the array copy analysis.
/// This performs the analysis and saves the intermediate results.
void ArrayCopyAnalysis::construct(mlir::Operation *topLevelOp) {
topLevelOp->walk([&](Operation *op) {
if (auto st = mlir::dyn_cast<fir::ArrayMergeStoreOp>(op)) {
llvm::SmallVector<Operation *> values;
ReachCollector::reachingValues(values, st.sequence());
const llvm::SmallVector<Operation *> &accesses =
arrayAccesses(mlir::cast<ArrayLoadOp>(st.original().getDefiningOp()));
if (conflictDetected(values, accesses, st)) {
LLVM_DEBUG(llvm::dbgs()
<< "CONFLICT: copies required for " << st << '\n'
<< " adding conflicts on: " << op << " and "
<< st.original() << '\n');
conflicts.insert(op);
conflicts.insert(st.original().getDefiningOp());
}
auto *ld = st.original().getDefiningOp();
LLVM_DEBUG(llvm::dbgs()
<< "map: adding {" << *ld << " -> " << st << "}\n");
useMap.insert({ld, op});
} else if (auto load = mlir::dyn_cast<ArrayLoadOp>(op)) {
const llvm::SmallVector<mlir::Operation *> &accesses =
arrayAccesses(load);
LLVM_DEBUG(llvm::dbgs() << "process load: " << load
<< ", accesses: " << accesses.size() << '\n');
for (auto *acc : accesses) {
LLVM_DEBUG(llvm::dbgs() << " access: " << *acc << '\n');
assert((mlir::isa<ArrayFetchOp, ArrayUpdateOp, ArrayModifyOp>(acc)));
if (!useMap.insert({acc, op}).second) {
mlir::emitError(
load.getLoc(),
"The parallel semantics of multiple array_merge_stores per "
"array_load are not supported.");
return;
}
LLVM_DEBUG(llvm::dbgs()
<< "map: adding {" << *acc << "} -> {" << load << "}\n");
}
}
});
}
namespace {
class ArrayLoadConversion : public mlir::OpRewritePattern<ArrayLoadOp> {
public:
using OpRewritePattern::OpRewritePattern;
mlir::LogicalResult
matchAndRewrite(ArrayLoadOp load,
mlir::PatternRewriter &rewriter) const override {
LLVM_DEBUG(llvm::dbgs() << "replace load " << load << " with undef.\n");
rewriter.replaceOpWithNewOp<UndefOp>(load, load.getType());
return mlir::success();
}
};
class ArrayMergeStoreConversion
: public mlir::OpRewritePattern<ArrayMergeStoreOp> {
public:
using OpRewritePattern::OpRewritePattern;
mlir::LogicalResult
matchAndRewrite(ArrayMergeStoreOp store,
mlir::PatternRewriter &rewriter) const override {
LLVM_DEBUG(llvm::dbgs() << "marking store " << store << " as dead.\n");
rewriter.eraseOp(store);
return mlir::success();
}
};
} // namespace
static mlir::Type getEleTy(mlir::Type ty) {
if (auto t = dyn_cast_ptrEleTy(ty))
ty = t;
if (auto t = ty.dyn_cast<SequenceType>())
ty = t.getEleTy();
// FIXME: keep ptr/heap/ref information.
return ReferenceType::get(ty);
}
// Extract extents from the ShapeOp/ShapeShiftOp into the result vector.
// TODO: getExtents on op should return a ValueRange instead of a vector.
static void getExtents(llvm::SmallVectorImpl<mlir::Value> &result,
mlir::Value shape) {
auto *shapeOp = shape.getDefiningOp();
if (auto s = mlir::dyn_cast<fir::ShapeOp>(shapeOp)) {
auto e = s.getExtents();
result.insert(result.end(), e.begin(), e.end());
return;
}
if (auto s = mlir::dyn_cast<fir::ShapeShiftOp>(shapeOp)) {
auto e = s.getExtents();
result.insert(result.end(), e.begin(), e.end());
return;
}
llvm::report_fatal_error("not a fir.shape/fir.shape_shift op");
}
// Place the extents of the array loaded by an ArrayLoadOp into the result
// vector and return a ShapeOp/ShapeShiftOp with the corresponding extents. If
// the ArrayLoadOp is loading a fir.box, code will be generated to read the
// extents from the fir.box, and a the retunred ShapeOp is built with the read
// extents.
// Otherwise, the extents will be extracted from the ShapeOp/ShapeShiftOp
// argument of the ArrayLoadOp that is returned.
static mlir::Value
getOrReadExtentsAndShapeOp(mlir::Location loc, mlir::PatternRewriter &rewriter,
fir::ArrayLoadOp loadOp,
llvm::SmallVectorImpl<mlir::Value> &result) {
assert(result.empty());
if (auto boxTy = loadOp.memref().getType().dyn_cast<fir::BoxType>()) {
auto rank = fir::dyn_cast_ptrOrBoxEleTy(boxTy)
.cast<fir::SequenceType>()
.getDimension();
auto idxTy = rewriter.getIndexType();
for (decltype(rank) dim = 0; dim < rank; ++dim) {
auto dimVal = rewriter.create<arith::ConstantIndexOp>(loc, dim);
auto dimInfo = rewriter.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy,
loadOp.memref(), dimVal);
result.emplace_back(dimInfo.getResult(1));
}
auto shapeType = fir::ShapeType::get(rewriter.getContext(), rank);
return rewriter.create<fir::ShapeOp>(loc, shapeType, result);
}
getExtents(result, loadOp.shape());
return loadOp.shape();
}
static mlir::Type toRefType(mlir::Type ty) {
if (fir::isa_ref_type(ty))
return ty;
return fir::ReferenceType::get(ty);
}
static mlir::Value
genCoorOp(mlir::PatternRewriter &rewriter, mlir::Location loc, mlir::Type eleTy,
mlir::Type resTy, mlir::Value alloc, mlir::Value shape,
mlir::Value slice, mlir::ValueRange indices,
mlir::ValueRange typeparams, bool skipOrig = false) {
llvm::SmallVector<mlir::Value> originated;
if (skipOrig)
originated.assign(indices.begin(), indices.end());
else
originated = fir::factory::originateIndices(loc, rewriter, alloc.getType(),
shape, indices);
auto seqTy = fir::dyn_cast_ptrOrBoxEleTy(alloc.getType());
assert(seqTy && seqTy.isa<fir::SequenceType>());
const auto dimension = seqTy.cast<fir::SequenceType>().getDimension();
mlir::Value result = rewriter.create<fir::ArrayCoorOp>(
loc, eleTy, alloc, shape, slice,
llvm::ArrayRef<mlir::Value>{originated}.take_front(dimension),
typeparams);
if (dimension < originated.size())
result = rewriter.create<fir::CoordinateOp>(
loc, resTy, result,
llvm::ArrayRef<mlir::Value>{originated}.drop_front(dimension));
return result;
}
namespace {
/// Conversion of fir.array_update and fir.array_modify Ops.
/// If there is a conflict for the update, then we need to perform a
/// copy-in/copy-out to preserve the original values of the array. If there is
/// no conflict, then it is save to eschew making any copies.
template <typename ArrayOp>
class ArrayUpdateConversionBase : public mlir::OpRewritePattern<ArrayOp> {
public:
explicit ArrayUpdateConversionBase(mlir::MLIRContext *ctx,
const ArrayCopyAnalysis &a,
const OperationUseMapT &m)
: mlir::OpRewritePattern<ArrayOp>{ctx}, analysis{a}, useMap{m} {}
void genArrayCopy(mlir::Location loc, mlir::PatternRewriter &rewriter,
mlir::Value dst, mlir::Value src, mlir::Value shapeOp,
mlir::Type arrTy) const {
auto insPt = rewriter.saveInsertionPoint();
llvm::SmallVector<mlir::Value> indices;
llvm::SmallVector<mlir::Value> extents;
getExtents(extents, shapeOp);
// Build loop nest from column to row.
for (auto sh : llvm::reverse(extents)) {
auto idxTy = rewriter.getIndexType();
auto ubi = rewriter.create<fir::ConvertOp>(loc, idxTy, sh);
auto zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
auto one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
auto ub = rewriter.create<arith::SubIOp>(loc, idxTy, ubi, one);
auto loop = rewriter.create<fir::DoLoopOp>(loc, zero, ub, one);
rewriter.setInsertionPointToStart(loop.getBody());
indices.push_back(loop.getInductionVar());
}
// Reverse the indices so they are in column-major order.
std::reverse(indices.begin(), indices.end());
auto ty = getEleTy(arrTy);
auto fromAddr = rewriter.create<fir::ArrayCoorOp>(
loc, ty, src, shapeOp, mlir::Value{},
fir::factory::originateIndices(loc, rewriter, src.getType(), shapeOp,
indices),
mlir::ValueRange{});
auto load = rewriter.create<fir::LoadOp>(loc, fromAddr);
auto toAddr = rewriter.create<fir::ArrayCoorOp>(
loc, ty, dst, shapeOp, mlir::Value{},
fir::factory::originateIndices(loc, rewriter, dst.getType(), shapeOp,
indices),
mlir::ValueRange{});
rewriter.create<fir::StoreOp>(loc, load, toAddr);
rewriter.restoreInsertionPoint(insPt);
}
/// Copy the RHS element into the LHS and insert copy-in/copy-out between a
/// temp and the LHS if the analysis found potential overlaps between the RHS
/// and LHS arrays. The element copy generator must be provided through \p
/// assignElement. \p update must be the ArrayUpdateOp or the ArrayModifyOp.
/// Returns the address of the LHS element inside the loop and the LHS
/// ArrayLoad result.
std::pair<mlir::Value, mlir::Value>
materializeAssignment(mlir::Location loc, mlir::PatternRewriter &rewriter,
ArrayOp update,
llvm::function_ref<void(mlir::Value)> assignElement,
mlir::Type lhsEltRefType) const {
auto *op = update.getOperation();
mlir::Operation *loadOp = useMap.lookup(op);
auto load = mlir::cast<ArrayLoadOp>(loadOp);
LLVM_DEBUG(llvm::outs() << "does " << load << " have a conflict?\n");
if (analysis.hasPotentialConflict(loadOp)) {
// If there is a conflict between the arrays, then we copy the lhs array
// to a temporary, update the temporary, and copy the temporary back to
// the lhs array. This yields Fortran's copy-in copy-out array semantics.
LLVM_DEBUG(llvm::outs() << "Yes, conflict was found\n");
rewriter.setInsertionPoint(loadOp);
// Copy in.
llvm::SmallVector<mlir::Value> extents;
mlir::Value shapeOp =
getOrReadExtentsAndShapeOp(loc, rewriter, load, extents);
auto allocmem = rewriter.create<AllocMemOp>(
loc, dyn_cast_ptrOrBoxEleTy(load.memref().getType()),
load.typeparams(), extents);
genArrayCopy(load.getLoc(), rewriter, allocmem, load.memref(), shapeOp,
load.getType());
rewriter.setInsertionPoint(op);
mlir::Value coor = genCoorOp(
rewriter, loc, getEleTy(load.getType()), lhsEltRefType, allocmem,
shapeOp, load.slice(), update.indices(), load.typeparams(),
update->hasAttr(fir::factory::attrFortranArrayOffsets()));
assignElement(coor);
mlir::Operation *storeOp = useMap.lookup(loadOp);
auto store = mlir::cast<ArrayMergeStoreOp>(storeOp);
rewriter.setInsertionPoint(storeOp);
// Copy out.
genArrayCopy(store.getLoc(), rewriter, store.memref(), allocmem, shapeOp,
load.getType());
rewriter.create<FreeMemOp>(loc, allocmem);
return {coor, load.getResult()};
}
// Otherwise, when there is no conflict (a possible loop-carried
// dependence), the lhs array can be updated in place.
LLVM_DEBUG(llvm::outs() << "No, conflict wasn't found\n");
rewriter.setInsertionPoint(op);
auto coorTy = getEleTy(load.getType());
mlir::Value coor = genCoorOp(
rewriter, loc, coorTy, lhsEltRefType, load.memref(), load.shape(),
load.slice(), update.indices(), load.typeparams(),
update->hasAttr(fir::factory::attrFortranArrayOffsets()));
assignElement(coor);
return {coor, load.getResult()};
}
private:
const ArrayCopyAnalysis &analysis;
const OperationUseMapT &useMap;
};
class ArrayUpdateConversion : public ArrayUpdateConversionBase<ArrayUpdateOp> {
public:
explicit ArrayUpdateConversion(mlir::MLIRContext *ctx,
const ArrayCopyAnalysis &a,
const OperationUseMapT &m)
: ArrayUpdateConversionBase{ctx, a, m} {}
mlir::LogicalResult
matchAndRewrite(ArrayUpdateOp update,
mlir::PatternRewriter &rewriter) const override {
auto loc = update.getLoc();
auto assignElement = [&](mlir::Value coor) {
rewriter.create<fir::StoreOp>(loc, update.merge(), coor);
};
auto lhsEltRefType = toRefType(update.merge().getType());
auto [_, lhsLoadResult] = materializeAssignment(
loc, rewriter, update, assignElement, lhsEltRefType);
update.replaceAllUsesWith(lhsLoadResult);
rewriter.replaceOp(update, lhsLoadResult);
return mlir::success();
}
};
class ArrayModifyConversion : public ArrayUpdateConversionBase<ArrayModifyOp> {
public:
explicit ArrayModifyConversion(mlir::MLIRContext *ctx,
const ArrayCopyAnalysis &a,
const OperationUseMapT &m)
: ArrayUpdateConversionBase{ctx, a, m} {}
mlir::LogicalResult
matchAndRewrite(ArrayModifyOp modify,
mlir::PatternRewriter &rewriter) const override {
auto loc = modify.getLoc();
auto assignElement = [](mlir::Value) {
// Assignment already materialized by lowering using lhs element address.
};
auto lhsEltRefType = modify.getResult(0).getType();
auto [lhsEltCoor, lhsLoadResult] = materializeAssignment(
loc, rewriter, modify, assignElement, lhsEltRefType);
modify.replaceAllUsesWith(mlir::ValueRange{lhsEltCoor, lhsLoadResult});
rewriter.replaceOp(modify, mlir::ValueRange{lhsEltCoor, lhsLoadResult});
return mlir::success();
}
};
class ArrayFetchConversion : public mlir::OpRewritePattern<ArrayFetchOp> {
public:
explicit ArrayFetchConversion(mlir::MLIRContext *ctx,
const OperationUseMapT &m)
: OpRewritePattern{ctx}, useMap{m} {}
mlir::LogicalResult
matchAndRewrite(ArrayFetchOp fetch,
mlir::PatternRewriter &rewriter) const override {
auto *op = fetch.getOperation();
rewriter.setInsertionPoint(op);
auto load = mlir::cast<ArrayLoadOp>(useMap.lookup(op));
auto loc = fetch.getLoc();
mlir::Value coor =
genCoorOp(rewriter, loc, getEleTy(load.getType()),
toRefType(fetch.getType()), load.memref(), load.shape(),
load.slice(), fetch.indices(), load.typeparams(),
fetch->hasAttr(fir::factory::attrFortranArrayOffsets()));
rewriter.replaceOpWithNewOp<fir::LoadOp>(fetch, coor);
return mlir::success();
}
private:
const OperationUseMapT &useMap;
};
} // namespace
namespace {
class ArrayValueCopyConverter
: public ArrayValueCopyBase<ArrayValueCopyConverter> {
public:
void runOnOperation() override {
auto func = getOperation();
LLVM_DEBUG(llvm::dbgs() << "\n\narray-value-copy pass on function '"
<< func.getName() << "'\n");
auto *context = &getContext();
// Perform the conflict analysis.
auto &analysis = getAnalysis<ArrayCopyAnalysis>();
const auto &useMap = analysis.getUseMap();
// Phase 1 is performing a rewrite on the array accesses. Once all the
// array accesses are rewritten we can go on phase 2.
// Phase 2 gets rid of the useless copy-in/copyout operations. The copy-in
// /copy-out refers the Fortran copy-in/copy-out semantics on statements.
mlir::RewritePatternSet patterns1(context);
patterns1.insert<ArrayFetchConversion>(context, useMap);
patterns1.insert<ArrayUpdateConversion>(context, analysis, useMap);
patterns1.insert<ArrayModifyConversion>(context, analysis, useMap);
mlir::ConversionTarget target(*context);
target.addLegalDialect<FIROpsDialect, mlir::scf::SCFDialect,
mlir::arith::ArithmeticDialect,
mlir::StandardOpsDialect>();
target.addIllegalOp<ArrayFetchOp, ArrayUpdateOp, ArrayModifyOp>();
// Rewrite the array fetch and array update ops.
if (mlir::failed(
mlir::applyPartialConversion(func, target, std::move(patterns1)))) {
mlir::emitError(mlir::UnknownLoc::get(context),
"failure in array-value-copy pass, phase 1");
signalPassFailure();
}
mlir::RewritePatternSet patterns2(context);
patterns2.insert<ArrayLoadConversion>(context);
patterns2.insert<ArrayMergeStoreConversion>(context);
target.addIllegalOp<ArrayLoadOp, ArrayMergeStoreOp>();
if (mlir::failed(
mlir::applyPartialConversion(func, target, std::move(patterns2)))) {
mlir::emitError(mlir::UnknownLoc::get(context),
"failure in array-value-copy pass, phase 2");
signalPassFailure();
}
}
};
} // namespace
std::unique_ptr<mlir::Pass> fir::createArrayValueCopyPass() {
return std::make_unique<ArrayValueCopyConverter>();
}
|