1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
|
//===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements some simple delegations needed for call lowering.
///
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Target/TargetMachine.h"
#define DEBUG_TYPE "call-lowering"
using namespace llvm;
void CallLowering::anchor() {}
/// Helper function which updates \p Flags when \p AttrFn returns true.
static void
addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
const std::function<bool(Attribute::AttrKind)> &AttrFn) {
if (AttrFn(Attribute::SExt))
Flags.setSExt();
if (AttrFn(Attribute::ZExt))
Flags.setZExt();
if (AttrFn(Attribute::InReg))
Flags.setInReg();
if (AttrFn(Attribute::StructRet))
Flags.setSRet();
if (AttrFn(Attribute::Nest))
Flags.setNest();
if (AttrFn(Attribute::ByVal))
Flags.setByVal();
if (AttrFn(Attribute::Preallocated))
Flags.setPreallocated();
if (AttrFn(Attribute::InAlloca))
Flags.setInAlloca();
if (AttrFn(Attribute::Returned))
Flags.setReturned();
if (AttrFn(Attribute::SwiftSelf))
Flags.setSwiftSelf();
if (AttrFn(Attribute::SwiftAsync))
Flags.setSwiftAsync();
if (AttrFn(Attribute::SwiftError))
Flags.setSwiftError();
}
ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
unsigned ArgIdx) const {
ISD::ArgFlagsTy Flags;
addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
return Call.paramHasAttr(ArgIdx, Attr);
});
return Flags;
}
void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
const AttributeList &Attrs,
unsigned OpIdx) const {
addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
return Attrs.hasAttributeAtIndex(OpIdx, Attr);
});
}
bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
ArrayRef<Register> ResRegs,
ArrayRef<ArrayRef<Register>> ArgRegs,
Register SwiftErrorVReg,
std::function<unsigned()> GetCalleeReg) const {
CallLoweringInfo Info;
const DataLayout &DL = MIRBuilder.getDataLayout();
MachineFunction &MF = MIRBuilder.getMF();
MachineRegisterInfo &MRI = MF.getRegInfo();
bool CanBeTailCalled = CB.isTailCall() &&
isInTailCallPosition(CB, MF.getTarget()) &&
(MF.getFunction()
.getFnAttribute("disable-tail-calls")
.getValueAsString() != "true");
CallingConv::ID CallConv = CB.getCallingConv();
Type *RetTy = CB.getType();
bool IsVarArg = CB.getFunctionType()->isVarArg();
SmallVector<BaseArgInfo, 4> SplitArgs;
getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
if (!Info.CanLowerReturn) {
// Callee requires sret demotion.
insertSRetOutgoingArgument(MIRBuilder, CB, Info);
// The sret demotion isn't compatible with tail-calls, since the sret
// argument points into the caller's stack frame.
CanBeTailCalled = false;
}
// First step is to marshall all the function's parameters into the correct
// physregs and memory locations. Gather the sequence of argument types that
// we'll pass to the assigner function.
unsigned i = 0;
unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
for (auto &Arg : CB.args()) {
ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
i < NumFixedArgs};
setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
// If we have an explicit sret argument that is an Instruction, (i.e., it
// might point to function-local memory), we can't meaningfully tail-call.
if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
CanBeTailCalled = false;
Info.OrigArgs.push_back(OrigArg);
++i;
}
// Try looking through a bitcast from one function type to another.
// Commonly happens with calls to objc_msgSend().
const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
if (const Function *F = dyn_cast<Function>(CalleeV))
Info.Callee = MachineOperand::CreateGA(F, 0);
else
Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
Register ReturnHintAlignReg;
Align ReturnHintAlign;
Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}};
if (!Info.OrigRet.Ty->isVoidTy()) {
setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
if (MaybeAlign Alignment = CB.getRetAlign()) {
if (*Alignment > Align(1)) {
ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
Info.OrigRet.Regs[0] = ReturnHintAlignReg;
ReturnHintAlign = *Alignment;
}
}
}
Info.CB = &CB;
Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
Info.CallConv = CallConv;
Info.SwiftErrorVReg = SwiftErrorVReg;
Info.IsMustTailCall = CB.isMustTailCall();
Info.IsTailCall = CanBeTailCalled;
Info.IsVarArg = IsVarArg;
if (!lowerCall(MIRBuilder, Info))
return false;
if (ReturnHintAlignReg && !Info.IsTailCall) {
MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg,
ReturnHintAlign);
}
return true;
}
template <typename FuncInfoTy>
void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
const DataLayout &DL,
const FuncInfoTy &FuncInfo) const {
auto &Flags = Arg.Flags[0];
const AttributeList &Attrs = FuncInfo.getAttributes();
addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
if (PtrTy) {
Flags.setPointer();
Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
}
Align MemAlign = DL.getABITypeAlign(Arg.Ty);
if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
assert(OpIdx >= AttributeList::FirstArgIndex);
unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
if (!ElementTy)
ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
if (!ElementTy)
ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
assert(ElementTy && "Must have byval, inalloca or preallocated type");
Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
// For ByVal, alignment should be passed from FE. BE will guess if
// this info is not there but there are cases it cannot get right.
if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
MemAlign = *ParamAlign;
else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
MemAlign = *ParamAlign;
else
MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
} else if (OpIdx >= AttributeList::FirstArgIndex) {
if (auto ParamAlign =
FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
MemAlign = *ParamAlign;
}
Flags.setMemAlign(MemAlign);
Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
// Don't try to use the returned attribute if the argument is marked as
// swiftself, since it won't be passed in x0.
if (Flags.isSwiftSelf())
Flags.setReturned(false);
}
template void
CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
const DataLayout &DL,
const Function &FuncInfo) const;
template void
CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
const DataLayout &DL,
const CallBase &FuncInfo) const;
void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
SmallVectorImpl<ArgInfo> &SplitArgs,
const DataLayout &DL,
CallingConv::ID CallConv,
SmallVectorImpl<uint64_t> *Offsets) const {
LLVMContext &Ctx = OrigArg.Ty->getContext();
SmallVector<EVT, 4> SplitVTs;
ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
if (SplitVTs.size() == 0)
return;
if (SplitVTs.size() == 1) {
// No splitting to do, but we want to replace the original type (e.g. [1 x
// double] -> double).
SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
OrigArg.OrigArgIndex, OrigArg.Flags[0],
OrigArg.IsFixed, OrigArg.OrigValue);
return;
}
// Create one ArgInfo for each virtual register in the original ArgInfo.
assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
OrigArg.Ty, CallConv, false, DL);
for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
OrigArg.Flags[0], OrigArg.IsFixed);
if (NeedsRegBlock)
SplitArgs.back().Flags[0].setInConsecutiveRegs();
}
SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
}
/// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
static MachineInstrBuilder
mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
ArrayRef<Register> SrcRegs) {
MachineRegisterInfo &MRI = *B.getMRI();
LLT LLTy = MRI.getType(DstRegs[0]);
LLT PartLLT = MRI.getType(SrcRegs[0]);
// Deal with v3s16 split into v2s16
LLT LCMTy = getCoverTy(LLTy, PartLLT);
if (LCMTy == LLTy) {
// Common case where no padding is needed.
assert(DstRegs.size() == 1);
return B.buildConcatVectors(DstRegs[0], SrcRegs);
}
// We need to create an unmerge to the result registers, which may require
// widening the original value.
Register UnmergeSrcReg;
if (LCMTy != PartLLT) {
assert(DstRegs.size() == 1);
return B.buildDeleteTrailingVectorElements(DstRegs[0],
B.buildMerge(LCMTy, SrcRegs));
} else {
// We don't need to widen anything if we're extracting a scalar which was
// promoted to a vector e.g. s8 -> v4s8 -> s8
assert(SrcRegs.size() == 1);
UnmergeSrcReg = SrcRegs[0];
}
int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
SmallVector<Register, 8> PadDstRegs(NumDst);
std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
// Create the excess dead defs for the unmerge.
for (int I = DstRegs.size(); I != NumDst; ++I)
PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
if (PadDstRegs.size() == 1)
return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
}
/// Create a sequence of instructions to combine pieces split into register
/// typed values to the original IR value. \p OrigRegs contains the destination
/// value registers of type \p LLTy, and \p Regs contains the legalized pieces
/// with type \p PartLLT. This is used for incoming values (physregs to vregs).
static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
const ISD::ArgFlagsTy Flags) {
MachineRegisterInfo &MRI = *B.getMRI();
if (PartLLT == LLTy) {
// We should have avoided introducing a new virtual register, and just
// directly assigned here.
assert(OrigRegs[0] == Regs[0]);
return;
}
if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
Regs.size() == 1) {
B.buildBitcast(OrigRegs[0], Regs[0]);
return;
}
// A vector PartLLT needs extending to LLTy's element size.
// E.g. <2 x s64> = G_SEXT <2 x s32>.
if (PartLLT.isVector() == LLTy.isVector() &&
PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
(!PartLLT.isVector() ||
PartLLT.getNumElements() == LLTy.getNumElements()) &&
OrigRegs.size() == 1 && Regs.size() == 1) {
Register SrcReg = Regs[0];
LLT LocTy = MRI.getType(SrcReg);
if (Flags.isSExt()) {
SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
.getReg(0);
} else if (Flags.isZExt()) {
SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
.getReg(0);
}
// Sometimes pointers are passed zero extended.
LLT OrigTy = MRI.getType(OrigRegs[0]);
if (OrigTy.isPointer()) {
LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
return;
}
B.buildTrunc(OrigRegs[0], SrcReg);
return;
}
if (!LLTy.isVector() && !PartLLT.isVector()) {
assert(OrigRegs.size() == 1);
LLT OrigTy = MRI.getType(OrigRegs[0]);
unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size();
if (SrcSize == OrigTy.getSizeInBits())
B.buildMerge(OrigRegs[0], Regs);
else {
auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
B.buildTrunc(OrigRegs[0], Widened);
}
return;
}
if (PartLLT.isVector()) {
assert(OrigRegs.size() == 1);
SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
// If PartLLT is a mismatched vector in both number of elements and element
// size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
// have the same elt type, i.e. v4s32.
if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() &&
PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
Regs.size() == 1) {
LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
.changeElementCount(PartLLT.getElementCount() * 2);
CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
PartLLT = NewTy;
}
if (LLTy.getScalarType() == PartLLT.getElementType()) {
mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
} else {
unsigned I = 0;
LLT GCDTy = getGCDType(LLTy, PartLLT);
// We are both splitting a vector, and bitcasting its element types. Cast
// the source pieces into the appropriate number of pieces with the result
// element type.
for (Register SrcReg : CastRegs)
CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
}
return;
}
assert(LLTy.isVector() && !PartLLT.isVector());
LLT DstEltTy = LLTy.getElementType();
// Pointer information was discarded. We'll need to coerce some register types
// to avoid violating type constraints.
LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
if (DstEltTy == PartLLT) {
// Vector was trivially scalarized.
if (RealDstEltTy.isPointer()) {
for (Register Reg : Regs)
MRI.setType(Reg, RealDstEltTy);
}
B.buildBuildVector(OrigRegs[0], Regs);
} else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
// Deal with vector with 64-bit elements decomposed to 32-bit
// registers. Need to create intermediate 64-bit elements.
SmallVector<Register, 8> EltMerges;
int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
// Fix the type in case this is really a vector of pointers.
MRI.setType(Merge.getReg(0), RealDstEltTy);
EltMerges.push_back(Merge.getReg(0));
Regs = Regs.drop_front(PartsPerElt);
}
B.buildBuildVector(OrigRegs[0], EltMerges);
} else {
// Vector was split, and elements promoted to a wider type.
// FIXME: Should handle floating point promotions.
LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT);
auto BV = B.buildBuildVector(BVType, Regs);
B.buildTrunc(OrigRegs[0], BV);
}
}
/// Create a sequence of instructions to expand the value in \p SrcReg (of type
/// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
/// contain the type of scalar value extension if necessary.
///
/// This is used for outgoing values (vregs to physregs)
static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
Register SrcReg, LLT SrcTy, LLT PartTy,
unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
// We could just insert a regular copy, but this is unreachable at the moment.
assert(SrcTy != PartTy && "identical part types shouldn't reach here");
const unsigned PartSize = PartTy.getSizeInBits();
if (PartTy.isVector() == SrcTy.isVector() &&
PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
assert(DstRegs.size() == 1);
B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
return;
}
if (SrcTy.isVector() && !PartTy.isVector() &&
PartSize > SrcTy.getElementType().getSizeInBits()) {
// Vector was scalarized, and the elements extended.
auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
for (int i = 0, e = DstRegs.size(); i != e; ++i)
B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
return;
}
LLT GCDTy = getGCDType(SrcTy, PartTy);
if (GCDTy == PartTy) {
// If this already evenly divisible, we can create a simple unmerge.
B.buildUnmerge(DstRegs, SrcReg);
return;
}
MachineRegisterInfo &MRI = *B.getMRI();
LLT DstTy = MRI.getType(DstRegs[0]);
LLT LCMTy = getCoverTy(SrcTy, PartTy);
const unsigned DstSize = DstTy.getSizeInBits();
const unsigned SrcSize = SrcTy.getSizeInBits();
unsigned CoveringSize = LCMTy.getSizeInBits();
Register UnmergeSrc = SrcReg;
if (!LCMTy.isVector() && CoveringSize != SrcSize) {
// For scalars, it's common to be able to use a simple extension.
if (SrcTy.isScalar() && DstTy.isScalar()) {
CoveringSize = alignTo(SrcSize, DstSize);
LLT CoverTy = LLT::scalar(CoveringSize);
UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
} else {
// Widen to the common type.
// FIXME: This should respect the extend type
Register Undef = B.buildUndef(SrcTy).getReg(0);
SmallVector<Register, 8> MergeParts(1, SrcReg);
for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
MergeParts.push_back(Undef);
UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
}
}
if (LCMTy.isVector() && CoveringSize != SrcSize)
UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
B.buildUnmerge(DstRegs, UnmergeSrc);
}
bool CallLowering::determineAndHandleAssignments(
ValueHandler &Handler, ValueAssigner &Assigner,
SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
CallingConv::ID CallConv, bool IsVarArg,
ArrayRef<Register> ThisReturnRegs) const {
MachineFunction &MF = MIRBuilder.getMF();
const Function &F = MF.getFunction();
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
if (!determineAssignments(Assigner, Args, CCInfo))
return false;
return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
ThisReturnRegs);
}
static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
if (Flags.isSExt())
return TargetOpcode::G_SEXT;
if (Flags.isZExt())
return TargetOpcode::G_ZEXT;
return TargetOpcode::G_ANYEXT;
}
bool CallLowering::determineAssignments(ValueAssigner &Assigner,
SmallVectorImpl<ArgInfo> &Args,
CCState &CCInfo) const {
LLVMContext &Ctx = CCInfo.getContext();
const CallingConv::ID CallConv = CCInfo.getCallingConv();
unsigned NumArgs = Args.size();
for (unsigned i = 0; i != NumArgs; ++i) {
EVT CurVT = EVT::getEVT(Args[i].Ty);
MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
// If we need to split the type over multiple regs, check it's a scenario
// we currently support.
unsigned NumParts =
TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
if (NumParts == 1) {
// Try to use the register type if we couldn't assign the VT.
if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
Args[i].Flags[0], CCInfo))
return false;
continue;
}
// For incoming arguments (physregs to vregs), we could have values in
// physregs (or memlocs) which we want to extract and copy to vregs.
// During this, we might have to deal with the LLT being split across
// multiple regs, so we have to record this information for later.
//
// If we have outgoing args, then we have the opposite case. We have a
// vreg with an LLT which we want to assign to a physical location, and
// we might have to record that the value has to be split later.
// We're handling an incoming arg which is split over multiple regs.
// E.g. passing an s128 on AArch64.
ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
Args[i].Flags.clear();
for (unsigned Part = 0; Part < NumParts; ++Part) {
ISD::ArgFlagsTy Flags = OrigFlags;
if (Part == 0) {
Flags.setSplit();
} else {
Flags.setOrigAlign(Align(1));
if (Part == NumParts - 1)
Flags.setSplitEnd();
}
Args[i].Flags.push_back(Flags);
if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
Args[i].Flags[Part], CCInfo)) {
// Still couldn't assign this smaller part type for some reason.
return false;
}
}
}
return true;
}
bool CallLowering::handleAssignments(ValueHandler &Handler,
SmallVectorImpl<ArgInfo> &Args,
CCState &CCInfo,
SmallVectorImpl<CCValAssign> &ArgLocs,
MachineIRBuilder &MIRBuilder,
ArrayRef<Register> ThisReturnRegs) const {
MachineFunction &MF = MIRBuilder.getMF();
MachineRegisterInfo &MRI = MF.getRegInfo();
const Function &F = MF.getFunction();
const DataLayout &DL = F.getParent()->getDataLayout();
const unsigned NumArgs = Args.size();
// Stores thunks for outgoing register assignments. This is used so we delay
// generating register copies until mem loc assignments are done. We do this
// so that if the target is using the delayed stack protector feature, we can
// find the split point of the block accurately. E.g. if we have:
// G_STORE %val, %memloc
// $x0 = COPY %foo
// $x1 = COPY %bar
// CALL func
// ... then the split point for the block will correctly be at, and including,
// the copy to $x0. If instead the G_STORE instruction immediately precedes
// the CALL, then we'd prematurely choose the CALL as the split point, thus
// generating a split block with a CALL that uses undefined physregs.
SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
assert(j < ArgLocs.size() && "Skipped too many arg locs");
CCValAssign &VA = ArgLocs[j];
assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
if (VA.needsCustom()) {
std::function<void()> Thunk;
unsigned NumArgRegs = Handler.assignCustomValue(
Args[i], makeArrayRef(ArgLocs).slice(j), &Thunk);
if (Thunk)
DelayedOutgoingRegAssignments.emplace_back(Thunk);
if (!NumArgRegs)
return false;
j += NumArgRegs;
continue;
}
const MVT ValVT = VA.getValVT();
const MVT LocVT = VA.getLocVT();
const LLT LocTy(LocVT);
const LLT ValTy(ValVT);
const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
const EVT OrigVT = EVT::getEVT(Args[i].Ty);
const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
// Expected to be multiple regs for a single incoming arg.
// There should be Regs.size() ArgLocs per argument.
// This should be the same as getNumRegistersForCallingConv
const unsigned NumParts = Args[i].Flags.size();
// Now split the registers into the assigned types.
Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
if (NumParts != 1 || NewLLT != OrigTy) {
// If we can't directly assign the register, we need one or more
// intermediate values.
Args[i].Regs.resize(NumParts);
// For each split register, create and assign a vreg that will store
// the incoming component of the larger value. These will later be
// merged to form the final vreg.
for (unsigned Part = 0; Part < NumParts; ++Part)
Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
}
assert((j + (NumParts - 1)) < ArgLocs.size() &&
"Too many regs for number of args");
// Coerce into outgoing value types before register assignment.
if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
assert(Args[i].OrigRegs.size() == 1);
buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
ValTy, extendOpFromFlags(Args[i].Flags[0]));
}
for (unsigned Part = 0; Part < NumParts; ++Part) {
Register ArgReg = Args[i].Regs[Part];
// There should be Regs.size() ArgLocs per argument.
VA = ArgLocs[j + Part];
const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
if (VA.isMemLoc() && !Flags.isByVal()) {
// Individual pieces may have been spilled to the stack and others
// passed in registers.
// TODO: The memory size may be larger than the value we need to
// store. We may need to adjust the offset for big endian targets.
LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
MachinePointerInfo MPO;
Register StackAddr = Handler.getStackAddress(
MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
continue;
}
if (VA.isMemLoc() && Flags.isByVal()) {
assert(Args[i].Regs.size() == 1 &&
"didn't expect split byval pointer");
if (Handler.isIncomingArgumentHandler()) {
// We just need to copy the frame index value to the pointer.
MachinePointerInfo MPO;
Register StackAddr = Handler.getStackAddress(
Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
} else {
// For outgoing byval arguments, insert the implicit copy byval
// implies, such that writes in the callee do not modify the caller's
// value.
uint64_t MemSize = Flags.getByValSize();
int64_t Offset = VA.getLocMemOffset();
MachinePointerInfo DstMPO;
Register StackAddr =
Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
MachinePointerInfo SrcMPO(Args[i].OrigValue);
if (!Args[i].OrigValue) {
// We still need to accurately track the stack address space if we
// don't know the underlying value.
const LLT PtrTy = MRI.getType(StackAddr);
SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
}
Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
inferAlignFromPtrInfo(MF, DstMPO));
Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
inferAlignFromPtrInfo(MF, SrcMPO));
Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
DstMPO, DstAlign, SrcMPO, SrcAlign,
MemSize, VA);
}
continue;
}
assert(!VA.needsCustom() && "custom loc should have been handled already");
if (i == 0 && !ThisReturnRegs.empty() &&
Handler.isIncomingArgumentHandler() &&
isTypeIsValidForThisReturn(ValVT)) {
Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA);
continue;
}
if (Handler.isIncomingArgumentHandler())
Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
else {
DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
});
}
}
// Now that all pieces have been assigned, re-pack the register typed values
// into the original value typed registers.
if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
// Merge the split registers into the expected larger result vregs of
// the original call.
buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
LocTy, Args[i].Flags[0]);
}
j += NumParts - 1;
}
for (auto &Fn : DelayedOutgoingRegAssignments)
Fn();
return true;
}
void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
ArrayRef<Register> VRegs, Register DemoteReg,
int FI) const {
MachineFunction &MF = MIRBuilder.getMF();
MachineRegisterInfo &MRI = MF.getRegInfo();
const DataLayout &DL = MF.getDataLayout();
SmallVector<EVT, 4> SplitVTs;
SmallVector<uint64_t, 4> Offsets;
ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
assert(VRegs.size() == SplitVTs.size());
unsigned NumValues = SplitVTs.size();
Align BaseAlign = DL.getPrefTypeAlign(RetTy);
Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
for (unsigned I = 0; I < NumValues; ++I) {
Register Addr;
MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
MRI.getType(VRegs[I]),
commonAlignment(BaseAlign, Offsets[I]));
MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
}
}
void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
ArrayRef<Register> VRegs,
Register DemoteReg) const {
MachineFunction &MF = MIRBuilder.getMF();
MachineRegisterInfo &MRI = MF.getRegInfo();
const DataLayout &DL = MF.getDataLayout();
SmallVector<EVT, 4> SplitVTs;
SmallVector<uint64_t, 4> Offsets;
ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
assert(VRegs.size() == SplitVTs.size());
unsigned NumValues = SplitVTs.size();
Align BaseAlign = DL.getPrefTypeAlign(RetTy);
unsigned AS = DL.getAllocaAddrSpace();
LLT OffsetLLTy =
getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
MachinePointerInfo PtrInfo(AS);
for (unsigned I = 0; I < NumValues; ++I) {
Register Addr;
MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
MRI.getType(VRegs[I]),
commonAlignment(BaseAlign, Offsets[I]));
MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
}
}
void CallLowering::insertSRetIncomingArgument(
const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
MachineRegisterInfo &MRI, const DataLayout &DL) const {
unsigned AS = DL.getAllocaAddrSpace();
DemoteReg = MRI.createGenericVirtualRegister(
LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
Type *PtrTy = PointerType::get(F.getReturnType(), AS);
SmallVector<EVT, 1> ValueVTs;
ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
// NOTE: Assume that a pointer won't get split into more than one VT.
assert(ValueVTs.size() == 1);
ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
ArgInfo::NoArgIndex);
setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
DemoteArg.Flags[0].setSRet();
SplitArgs.insert(SplitArgs.begin(), DemoteArg);
}
void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
const CallBase &CB,
CallLoweringInfo &Info) const {
const DataLayout &DL = MIRBuilder.getDataLayout();
Type *RetTy = CB.getType();
unsigned AS = DL.getAllocaAddrSpace();
LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
ArgInfo::NoArgIndex);
setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
DemoteArg.Flags[0].setSRet();
Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
Info.DemoteStackIndex = FI;
Info.DemoteRegister = DemoteReg;
}
bool CallLowering::checkReturn(CCState &CCInfo,
SmallVectorImpl<BaseArgInfo> &Outs,
CCAssignFn *Fn) const {
for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
MVT VT = MVT::getVT(Outs[I].Ty);
if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
return false;
}
return true;
}
void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
AttributeList Attrs,
SmallVectorImpl<BaseArgInfo> &Outs,
const DataLayout &DL) const {
LLVMContext &Context = RetTy->getContext();
ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
SmallVector<EVT, 4> SplitVTs;
ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
for (EVT VT : SplitVTs) {
unsigned NumParts =
TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
for (unsigned I = 0; I < NumParts; ++I) {
Outs.emplace_back(PartTy, Flags);
}
}
}
bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
const auto &F = MF.getFunction();
Type *ReturnType = F.getReturnType();
CallingConv::ID CallConv = F.getCallingConv();
SmallVector<BaseArgInfo, 4> SplitArgs;
getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
MF.getDataLayout());
return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
}
bool CallLowering::parametersInCSRMatch(
const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
const SmallVectorImpl<CCValAssign> &OutLocs,
const SmallVectorImpl<ArgInfo> &OutArgs) const {
for (unsigned i = 0; i < OutLocs.size(); ++i) {
auto &ArgLoc = OutLocs[i];
// If it's not a register, it's fine.
if (!ArgLoc.isRegLoc())
continue;
MCRegister PhysReg = ArgLoc.getLocReg();
// Only look at callee-saved registers.
if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
continue;
LLVM_DEBUG(
dbgs()
<< "... Call has an argument passed in a callee-saved register.\n");
// Check if it was copied from.
const ArgInfo &OutInfo = OutArgs[i];
if (OutInfo.Regs.size() > 1) {
LLVM_DEBUG(
dbgs() << "... Cannot handle arguments in multiple registers.\n");
return false;
}
// Check if we copy the register, walking through copies from virtual
// registers. Note that getDefIgnoringCopies does not ignore copies from
// physical registers.
MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
LLVM_DEBUG(
dbgs()
<< "... Parameter was not copied into a VReg, cannot tail call.\n");
return false;
}
// Got a copy. Verify that it's the same as the register we want.
Register CopyRHS = RegDef->getOperand(1).getReg();
if (CopyRHS != PhysReg) {
LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
"VReg, cannot tail call.\n");
return false;
}
}
return true;
}
bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
MachineFunction &MF,
SmallVectorImpl<ArgInfo> &InArgs,
ValueAssigner &CalleeAssigner,
ValueAssigner &CallerAssigner) const {
const Function &F = MF.getFunction();
CallingConv::ID CalleeCC = Info.CallConv;
CallingConv::ID CallerCC = F.getCallingConv();
if (CallerCC == CalleeCC)
return true;
SmallVector<CCValAssign, 16> ArgLocs1;
CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
return false;
SmallVector<CCValAssign, 16> ArgLocs2;
CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
return false;
// We need the argument locations to match up exactly. If there's more in
// one than the other, then we are done.
if (ArgLocs1.size() != ArgLocs2.size())
return false;
// Make sure that each location is passed in exactly the same way.
for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
const CCValAssign &Loc1 = ArgLocs1[i];
const CCValAssign &Loc2 = ArgLocs2[i];
// We need both of them to be the same. So if one is a register and one
// isn't, we're done.
if (Loc1.isRegLoc() != Loc2.isRegLoc())
return false;
if (Loc1.isRegLoc()) {
// If they don't have the same register location, we're done.
if (Loc1.getLocReg() != Loc2.getLocReg())
return false;
// They matched, so we can move to the next ArgLoc.
continue;
}
// Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
return false;
}
return true;
}
LLT CallLowering::ValueHandler::getStackValueStoreType(
const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
const MVT ValVT = VA.getValVT();
if (ValVT != MVT::iPTR) {
LLT ValTy(ValVT);
// We lost the pointeriness going through CCValAssign, so try to restore it
// based on the flags.
if (Flags.isPointer()) {
LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
ValTy.getScalarSizeInBits());
if (ValVT.isVector())
return LLT::vector(ValTy.getElementCount(), PtrTy);
return PtrTy;
}
return ValTy;
}
unsigned AddrSpace = Flags.getPointerAddrSpace();
return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
}
void CallLowering::ValueHandler::copyArgumentMemory(
const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
const MachinePointerInfo &DstPtrInfo, Align DstAlign,
const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
CCValAssign &VA) const {
MachineFunction &MF = MIRBuilder.getMF();
MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
SrcPtrInfo,
MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
SrcAlign);
MachineMemOperand *DstMMO = MF.getMachineMemOperand(
DstPtrInfo,
MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
MemSize, DstAlign);
const LLT PtrTy = MRI.getType(DstPtr);
const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
}
Register CallLowering::ValueHandler::extendRegister(Register ValReg,
CCValAssign &VA,
unsigned MaxSizeBits) {
LLT LocTy{VA.getLocVT()};
LLT ValTy{VA.getValVT()};
if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
return ValReg;
if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
if (MaxSizeBits <= ValTy.getSizeInBits())
return ValReg;
LocTy = LLT::scalar(MaxSizeBits);
}
const LLT ValRegTy = MRI.getType(ValReg);
if (ValRegTy.isPointer()) {
// The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
// we have to cast to do the extension.
LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
}
switch (VA.getLocInfo()) {
default: break;
case CCValAssign::Full:
case CCValAssign::BCvt:
// FIXME: bitconverting between vector types may or may not be a
// nop in big-endian situations.
return ValReg;
case CCValAssign::AExt: {
auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
return MIB.getReg(0);
}
case CCValAssign::SExt: {
Register NewReg = MRI.createGenericVirtualRegister(LocTy);
MIRBuilder.buildSExt(NewReg, ValReg);
return NewReg;
}
case CCValAssign::ZExt: {
Register NewReg = MRI.createGenericVirtualRegister(LocTy);
MIRBuilder.buildZExt(NewReg, ValReg);
return NewReg;
}
}
llvm_unreachable("unable to extend register");
}
void CallLowering::ValueAssigner::anchor() {}
Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA,
Register SrcReg,
LLT NarrowTy) {
switch (VA.getLocInfo()) {
case CCValAssign::LocInfo::ZExt: {
return MIRBuilder
.buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
NarrowTy.getScalarSizeInBits())
.getReg(0);
}
case CCValAssign::LocInfo::SExt: {
return MIRBuilder
.buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
NarrowTy.getScalarSizeInBits())
.getReg(0);
break;
}
default:
return SrcReg;
}
}
/// Check if we can use a basic COPY instruction between the two types.
///
/// We're currently building on top of the infrastructure using MVT, which loses
/// pointer information in the CCValAssign. We accept copies from physical
/// registers that have been reported as integers if it's to an equivalent sized
/// pointer LLT.
static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
if (SrcTy == DstTy)
return true;
if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
return false;
SrcTy = SrcTy.getScalarType();
DstTy = DstTy.getScalarType();
return (SrcTy.isPointer() && DstTy.isScalar()) ||
(DstTy.isScalar() && SrcTy.isPointer());
}
void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg,
Register PhysReg,
CCValAssign VA) {
const MVT LocVT = VA.getLocVT();
const LLT LocTy(LocVT);
const LLT RegTy = MRI.getType(ValVReg);
if (isCopyCompatibleType(RegTy, LocTy)) {
MIRBuilder.buildCopy(ValVReg, PhysReg);
return;
}
auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
MIRBuilder.buildTrunc(ValVReg, Hint);
}
|