1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872
|
//===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This file implements the LegalizerHelper class to legalize
/// individual instructions and the LegalizeMachineIR wrapper pass for the
/// primary legalization.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#define DEBUG_TYPE "legalizer"
using namespace llvm;
using namespace LegalizeActions;
using namespace MIPatternMatch;
/// Try to break down \p OrigTy into \p NarrowTy sized pieces.
///
/// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
/// with any leftover piece as type \p LeftoverTy
///
/// Returns -1 in the first element of the pair if the breakdown is not
/// satisfiable.
static std::pair<int, int>
getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
assert(!LeftoverTy.isValid() && "this is an out argument");
unsigned Size = OrigTy.getSizeInBits();
unsigned NarrowSize = NarrowTy.getSizeInBits();
unsigned NumParts = Size / NarrowSize;
unsigned LeftoverSize = Size - NumParts * NarrowSize;
assert(Size > NarrowSize);
if (LeftoverSize == 0)
return {NumParts, 0};
if (NarrowTy.isVector()) {
unsigned EltSize = OrigTy.getScalarSizeInBits();
if (LeftoverSize % EltSize != 0)
return {-1, -1};
LeftoverTy = LLT::scalarOrVector(
ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
} else {
LeftoverTy = LLT::scalar(LeftoverSize);
}
int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
return std::make_pair(NumParts, NumLeftover);
}
static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
if (!Ty.isScalar())
return nullptr;
switch (Ty.getSizeInBits()) {
case 16:
return Type::getHalfTy(Ctx);
case 32:
return Type::getFloatTy(Ctx);
case 64:
return Type::getDoubleTy(Ctx);
case 80:
return Type::getX86_FP80Ty(Ctx);
case 128:
return Type::getFP128Ty(Ctx);
default:
return nullptr;
}
}
LegalizerHelper::LegalizerHelper(MachineFunction &MF,
GISelChangeObserver &Observer,
MachineIRBuilder &Builder)
: MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
LI(*MF.getSubtarget().getLegalizerInfo()),
TLI(*MF.getSubtarget().getTargetLowering()) { }
LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
GISelChangeObserver &Observer,
MachineIRBuilder &B)
: MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
TLI(*MF.getSubtarget().getTargetLowering()) { }
LegalizerHelper::LegalizeResult
LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
LostDebugLocObserver &LocObserver) {
LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
MIRBuilder.setInstrAndDebugLoc(MI);
if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
auto Step = LI.getAction(MI, MRI);
switch (Step.Action) {
case Legal:
LLVM_DEBUG(dbgs() << ".. Already legal\n");
return AlreadyLegal;
case Libcall:
LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
return libcall(MI, LocObserver);
case NarrowScalar:
LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
return narrowScalar(MI, Step.TypeIdx, Step.NewType);
case WidenScalar:
LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
return widenScalar(MI, Step.TypeIdx, Step.NewType);
case Bitcast:
LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
return bitcast(MI, Step.TypeIdx, Step.NewType);
case Lower:
LLVM_DEBUG(dbgs() << ".. Lower\n");
return lower(MI, Step.TypeIdx, Step.NewType);
case FewerElements:
LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
case MoreElements:
LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
case Custom:
LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
default:
LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
return UnableToLegalize;
}
}
void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
SmallVectorImpl<Register> &VRegs) {
for (int i = 0; i < NumParts; ++i)
VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
MIRBuilder.buildUnmerge(VRegs, Reg);
}
bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
LLT MainTy, LLT &LeftoverTy,
SmallVectorImpl<Register> &VRegs,
SmallVectorImpl<Register> &LeftoverRegs) {
assert(!LeftoverTy.isValid() && "this is an out argument");
unsigned RegSize = RegTy.getSizeInBits();
unsigned MainSize = MainTy.getSizeInBits();
unsigned NumParts = RegSize / MainSize;
unsigned LeftoverSize = RegSize - NumParts * MainSize;
// Use an unmerge when possible.
if (LeftoverSize == 0) {
for (unsigned I = 0; I < NumParts; ++I)
VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
MIRBuilder.buildUnmerge(VRegs, Reg);
return true;
}
// Perform irregular split. Leftover is last element of RegPieces.
if (MainTy.isVector()) {
SmallVector<Register, 8> RegPieces;
extractVectorParts(Reg, MainTy.getNumElements(), RegPieces);
for (unsigned i = 0; i < RegPieces.size() - 1; ++i)
VRegs.push_back(RegPieces[i]);
LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]);
LeftoverTy = MRI.getType(LeftoverRegs[0]);
return true;
}
LeftoverTy = LLT::scalar(LeftoverSize);
// For irregular sizes, extract the individual parts.
for (unsigned I = 0; I != NumParts; ++I) {
Register NewReg = MRI.createGenericVirtualRegister(MainTy);
VRegs.push_back(NewReg);
MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
}
for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
Offset += LeftoverSize) {
Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
LeftoverRegs.push_back(NewReg);
MIRBuilder.buildExtract(NewReg, Reg, Offset);
}
return true;
}
void LegalizerHelper::extractVectorParts(Register Reg, unsigned NumElts,
SmallVectorImpl<Register> &VRegs) {
LLT RegTy = MRI.getType(Reg);
assert(RegTy.isVector() && "Expected a vector type");
LLT EltTy = RegTy.getElementType();
LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy);
unsigned RegNumElts = RegTy.getNumElements();
unsigned LeftoverNumElts = RegNumElts % NumElts;
unsigned NumNarrowTyPieces = RegNumElts / NumElts;
// Perfect split without leftover
if (LeftoverNumElts == 0)
return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs);
// Irregular split. Provide direct access to all elements for artifact
// combiner using unmerge to elements. Then build vectors with NumElts
// elements. Remaining element(s) will be (used to build vector) Leftover.
SmallVector<Register, 8> Elts;
extractParts(Reg, EltTy, RegNumElts, Elts);
unsigned Offset = 0;
// Requested sub-vectors of NarrowTy.
for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) {
ArrayRef<Register> Pieces(&Elts[Offset], NumElts);
VRegs.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0));
}
// Leftover element(s).
if (LeftoverNumElts == 1) {
VRegs.push_back(Elts[Offset]);
} else {
LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy);
ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts);
VRegs.push_back(MIRBuilder.buildMerge(LeftoverTy, Pieces).getReg(0));
}
}
void LegalizerHelper::insertParts(Register DstReg,
LLT ResultTy, LLT PartTy,
ArrayRef<Register> PartRegs,
LLT LeftoverTy,
ArrayRef<Register> LeftoverRegs) {
if (!LeftoverTy.isValid()) {
assert(LeftoverRegs.empty());
if (!ResultTy.isVector()) {
MIRBuilder.buildMerge(DstReg, PartRegs);
return;
}
if (PartTy.isVector())
MIRBuilder.buildConcatVectors(DstReg, PartRegs);
else
MIRBuilder.buildBuildVector(DstReg, PartRegs);
return;
}
// Merge sub-vectors with different number of elements and insert into DstReg.
if (ResultTy.isVector()) {
assert(LeftoverRegs.size() == 1 && "Expected one leftover register");
SmallVector<Register, 8> AllRegs;
for (auto Reg : concat<const Register>(PartRegs, LeftoverRegs))
AllRegs.push_back(Reg);
return mergeMixedSubvectors(DstReg, AllRegs);
}
SmallVector<Register> GCDRegs;
LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy);
for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs))
extractGCDType(GCDRegs, GCDTy, PartReg);
LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs);
buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs);
}
void LegalizerHelper::appendVectorElts(SmallVectorImpl<Register> &Elts,
Register Reg) {
LLT Ty = MRI.getType(Reg);
SmallVector<Register, 8> RegElts;
extractParts(Reg, Ty.getScalarType(), Ty.getNumElements(), RegElts);
Elts.append(RegElts);
}
/// Merge \p PartRegs with different types into \p DstReg.
void LegalizerHelper::mergeMixedSubvectors(Register DstReg,
ArrayRef<Register> PartRegs) {
SmallVector<Register, 8> AllElts;
for (unsigned i = 0; i < PartRegs.size() - 1; ++i)
appendVectorElts(AllElts, PartRegs[i]);
Register Leftover = PartRegs[PartRegs.size() - 1];
if (MRI.getType(Leftover).isScalar())
AllElts.push_back(Leftover);
else
appendVectorElts(AllElts, Leftover);
MIRBuilder.buildMerge(DstReg, AllElts);
}
/// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
const MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
const int StartIdx = Regs.size();
const int NumResults = MI.getNumOperands() - 1;
Regs.resize(Regs.size() + NumResults);
for (int I = 0; I != NumResults; ++I)
Regs[StartIdx + I] = MI.getOperand(I).getReg();
}
void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
LLT GCDTy, Register SrcReg) {
LLT SrcTy = MRI.getType(SrcReg);
if (SrcTy == GCDTy) {
// If the source already evenly divides the result type, we don't need to do
// anything.
Parts.push_back(SrcReg);
} else {
// Need to split into common type sized pieces.
auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
getUnmergeResults(Parts, *Unmerge);
}
}
LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
LLT NarrowTy, Register SrcReg) {
LLT SrcTy = MRI.getType(SrcReg);
LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
extractGCDType(Parts, GCDTy, SrcReg);
return GCDTy;
}
LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
SmallVectorImpl<Register> &VRegs,
unsigned PadStrategy) {
LLT LCMTy = getLCMType(DstTy, NarrowTy);
int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
int NumOrigSrc = VRegs.size();
Register PadReg;
// Get a value we can use to pad the source value if the sources won't evenly
// cover the result type.
if (NumOrigSrc < NumParts * NumSubParts) {
if (PadStrategy == TargetOpcode::G_ZEXT)
PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
else if (PadStrategy == TargetOpcode::G_ANYEXT)
PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
else {
assert(PadStrategy == TargetOpcode::G_SEXT);
// Shift the sign bit of the low register through the high register.
auto ShiftAmt =
MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
}
}
// Registers for the final merge to be produced.
SmallVector<Register, 4> Remerge(NumParts);
// Registers needed for intermediate merges, which will be merged into a
// source for Remerge.
SmallVector<Register, 4> SubMerge(NumSubParts);
// Once we've fully read off the end of the original source bits, we can reuse
// the same high bits for remaining padding elements.
Register AllPadReg;
// Build merges to the LCM type to cover the original result type.
for (int I = 0; I != NumParts; ++I) {
bool AllMergePartsArePadding = true;
// Build the requested merges to the requested type.
for (int J = 0; J != NumSubParts; ++J) {
int Idx = I * NumSubParts + J;
if (Idx >= NumOrigSrc) {
SubMerge[J] = PadReg;
continue;
}
SubMerge[J] = VRegs[Idx];
// There are meaningful bits here we can't reuse later.
AllMergePartsArePadding = false;
}
// If we've filled up a complete piece with padding bits, we can directly
// emit the natural sized constant if applicable, rather than a merge of
// smaller constants.
if (AllMergePartsArePadding && !AllPadReg) {
if (PadStrategy == TargetOpcode::G_ANYEXT)
AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
else if (PadStrategy == TargetOpcode::G_ZEXT)
AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
// If this is a sign extension, we can't materialize a trivial constant
// with the right type and have to produce a merge.
}
if (AllPadReg) {
// Avoid creating additional instructions if we're just adding additional
// copies of padding bits.
Remerge[I] = AllPadReg;
continue;
}
if (NumSubParts == 1)
Remerge[I] = SubMerge[0];
else
Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
// In the sign extend padding case, re-use the first all-signbit merge.
if (AllMergePartsArePadding && !AllPadReg)
AllPadReg = Remerge[I];
}
VRegs = std::move(Remerge);
return LCMTy;
}
void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
ArrayRef<Register> RemergeRegs) {
LLT DstTy = MRI.getType(DstReg);
// Create the merge to the widened source, and extract the relevant bits into
// the result.
if (DstTy == LCMTy) {
MIRBuilder.buildMerge(DstReg, RemergeRegs);
return;
}
auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
if (DstTy.isScalar() && LCMTy.isScalar()) {
MIRBuilder.buildTrunc(DstReg, Remerge);
return;
}
if (LCMTy.isVector()) {
unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
SmallVector<Register, 8> UnmergeDefs(NumDefs);
UnmergeDefs[0] = DstReg;
for (unsigned I = 1; I != NumDefs; ++I)
UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
MIRBuilder.buildUnmerge(UnmergeDefs,
MIRBuilder.buildMerge(LCMTy, RemergeRegs));
return;
}
llvm_unreachable("unhandled case");
}
static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
#define RTLIBCASE_INT(LibcallPrefix) \
do { \
switch (Size) { \
case 32: \
return RTLIB::LibcallPrefix##32; \
case 64: \
return RTLIB::LibcallPrefix##64; \
case 128: \
return RTLIB::LibcallPrefix##128; \
default: \
llvm_unreachable("unexpected size"); \
} \
} while (0)
#define RTLIBCASE(LibcallPrefix) \
do { \
switch (Size) { \
case 32: \
return RTLIB::LibcallPrefix##32; \
case 64: \
return RTLIB::LibcallPrefix##64; \
case 80: \
return RTLIB::LibcallPrefix##80; \
case 128: \
return RTLIB::LibcallPrefix##128; \
default: \
llvm_unreachable("unexpected size"); \
} \
} while (0)
switch (Opcode) {
case TargetOpcode::G_SDIV:
RTLIBCASE_INT(SDIV_I);
case TargetOpcode::G_UDIV:
RTLIBCASE_INT(UDIV_I);
case TargetOpcode::G_SREM:
RTLIBCASE_INT(SREM_I);
case TargetOpcode::G_UREM:
RTLIBCASE_INT(UREM_I);
case TargetOpcode::G_CTLZ_ZERO_UNDEF:
RTLIBCASE_INT(CTLZ_I);
case TargetOpcode::G_FADD:
RTLIBCASE(ADD_F);
case TargetOpcode::G_FSUB:
RTLIBCASE(SUB_F);
case TargetOpcode::G_FMUL:
RTLIBCASE(MUL_F);
case TargetOpcode::G_FDIV:
RTLIBCASE(DIV_F);
case TargetOpcode::G_FEXP:
RTLIBCASE(EXP_F);
case TargetOpcode::G_FEXP2:
RTLIBCASE(EXP2_F);
case TargetOpcode::G_FREM:
RTLIBCASE(REM_F);
case TargetOpcode::G_FPOW:
RTLIBCASE(POW_F);
case TargetOpcode::G_FMA:
RTLIBCASE(FMA_F);
case TargetOpcode::G_FSIN:
RTLIBCASE(SIN_F);
case TargetOpcode::G_FCOS:
RTLIBCASE(COS_F);
case TargetOpcode::G_FLOG10:
RTLIBCASE(LOG10_F);
case TargetOpcode::G_FLOG:
RTLIBCASE(LOG_F);
case TargetOpcode::G_FLOG2:
RTLIBCASE(LOG2_F);
case TargetOpcode::G_FCEIL:
RTLIBCASE(CEIL_F);
case TargetOpcode::G_FFLOOR:
RTLIBCASE(FLOOR_F);
case TargetOpcode::G_FMINNUM:
RTLIBCASE(FMIN_F);
case TargetOpcode::G_FMAXNUM:
RTLIBCASE(FMAX_F);
case TargetOpcode::G_FSQRT:
RTLIBCASE(SQRT_F);
case TargetOpcode::G_FRINT:
RTLIBCASE(RINT_F);
case TargetOpcode::G_FNEARBYINT:
RTLIBCASE(NEARBYINT_F);
case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
RTLIBCASE(ROUNDEVEN_F);
}
llvm_unreachable("Unknown libcall function");
}
/// True if an instruction is in tail position in its caller. Intended for
/// legalizing libcalls as tail calls when possible.
static bool isLibCallInTailPosition(MachineInstr &MI,
const TargetInstrInfo &TII,
MachineRegisterInfo &MRI) {
MachineBasicBlock &MBB = *MI.getParent();
const Function &F = MBB.getParent()->getFunction();
// Conservatively require the attributes of the call to match those of
// the return. Ignore NoAlias and NonNull because they don't affect the
// call sequence.
AttributeList CallerAttrs = F.getAttributes();
if (AttrBuilder(F.getContext(), CallerAttrs.getRetAttrs())
.removeAttribute(Attribute::NoAlias)
.removeAttribute(Attribute::NonNull)
.hasAttributes())
return false;
// It's not safe to eliminate the sign / zero extension of the return value.
if (CallerAttrs.hasRetAttr(Attribute::ZExt) ||
CallerAttrs.hasRetAttr(Attribute::SExt))
return false;
// Only tail call if the following instruction is a standard return or if we
// have a `thisreturn` callee, and a sequence like:
//
// G_MEMCPY %0, %1, %2
// $x0 = COPY %0
// RET_ReallyLR implicit $x0
auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
if (Next != MBB.instr_end() && Next->isCopy()) {
switch (MI.getOpcode()) {
default:
llvm_unreachable("unsupported opcode");
case TargetOpcode::G_BZERO:
return false;
case TargetOpcode::G_MEMCPY:
case TargetOpcode::G_MEMMOVE:
case TargetOpcode::G_MEMSET:
break;
}
Register VReg = MI.getOperand(0).getReg();
if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg())
return false;
Register PReg = Next->getOperand(0).getReg();
if (!PReg.isPhysical())
return false;
auto Ret = next_nodbg(Next, MBB.instr_end());
if (Ret == MBB.instr_end() || !Ret->isReturn())
return false;
if (Ret->getNumImplicitOperands() != 1)
return false;
if (PReg != Ret->getOperand(0).getReg())
return false;
// Skip over the COPY that we just validated.
Next = Ret;
}
if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
return false;
return true;
}
LegalizerHelper::LegalizeResult
llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
const CallLowering::ArgInfo &Result,
ArrayRef<CallLowering::ArgInfo> Args,
const CallingConv::ID CC) {
auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
CallLowering::CallLoweringInfo Info;
Info.CallConv = CC;
Info.Callee = MachineOperand::CreateES(Name);
Info.OrigRet = Result;
std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
if (!CLI.lowerCall(MIRBuilder, Info))
return LegalizerHelper::UnableToLegalize;
return LegalizerHelper::Legalized;
}
LegalizerHelper::LegalizeResult
llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
const CallLowering::ArgInfo &Result,
ArrayRef<CallLowering::ArgInfo> Args) {
auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
const char *Name = TLI.getLibcallName(Libcall);
const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
return createLibcall(MIRBuilder, Name, Result, Args, CC);
}
// Useful for libcalls where all operands have the same type.
static LegalizerHelper::LegalizeResult
simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
Type *OpType) {
auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
// FIXME: What does the original arg index mean here?
SmallVector<CallLowering::ArgInfo, 3> Args;
for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
Args.push_back({MO.getReg(), OpType, 0});
return createLibcall(MIRBuilder, Libcall,
{MI.getOperand(0).getReg(), OpType, 0}, Args);
}
LegalizerHelper::LegalizeResult
llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
MachineInstr &MI, LostDebugLocObserver &LocObserver) {
auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
SmallVector<CallLowering::ArgInfo, 3> Args;
// Add all the args, except for the last which is an imm denoting 'tail'.
for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
Register Reg = MI.getOperand(i).getReg();
// Need derive an IR type for call lowering.
LLT OpLLT = MRI.getType(Reg);
Type *OpTy = nullptr;
if (OpLLT.isPointer())
OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
else
OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
Args.push_back({Reg, OpTy, 0});
}
auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
RTLIB::Libcall RTLibcall;
unsigned Opc = MI.getOpcode();
switch (Opc) {
case TargetOpcode::G_BZERO:
RTLibcall = RTLIB::BZERO;
break;
case TargetOpcode::G_MEMCPY:
RTLibcall = RTLIB::MEMCPY;
Args[0].Flags[0].setReturned();
break;
case TargetOpcode::G_MEMMOVE:
RTLibcall = RTLIB::MEMMOVE;
Args[0].Flags[0].setReturned();
break;
case TargetOpcode::G_MEMSET:
RTLibcall = RTLIB::MEMSET;
Args[0].Flags[0].setReturned();
break;
default:
llvm_unreachable("unsupported opcode");
}
const char *Name = TLI.getLibcallName(RTLibcall);
// Unsupported libcall on the target.
if (!Name) {
LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
<< MIRBuilder.getTII().getName(Opc) << "\n");
return LegalizerHelper::UnableToLegalize;
}
CallLowering::CallLoweringInfo Info;
Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
Info.Callee = MachineOperand::CreateES(Name);
Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0);
Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
isLibCallInTailPosition(MI, MIRBuilder.getTII(), MRI);
std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
if (!CLI.lowerCall(MIRBuilder, Info))
return LegalizerHelper::UnableToLegalize;
if (Info.LoweredTailCall) {
assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
// Check debug locations before removing the return.
LocObserver.checkpoint(true);
// We must have a return following the call (or debug insts) to get past
// isLibCallInTailPosition.
do {
MachineInstr *Next = MI.getNextNode();
assert(Next &&
(Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) &&
"Expected instr following MI to be return or debug inst?");
// We lowered a tail call, so the call is now the return from the block.
// Delete the old return.
Next->eraseFromParent();
} while (MI.getNextNode());
// We expect to lose the debug location from the return.
LocObserver.checkpoint(false);
}
return LegalizerHelper::Legalized;
}
static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
Type *FromType) {
auto ToMVT = MVT::getVT(ToType);
auto FromMVT = MVT::getVT(FromType);
switch (Opcode) {
case TargetOpcode::G_FPEXT:
return RTLIB::getFPEXT(FromMVT, ToMVT);
case TargetOpcode::G_FPTRUNC:
return RTLIB::getFPROUND(FromMVT, ToMVT);
case TargetOpcode::G_FPTOSI:
return RTLIB::getFPTOSINT(FromMVT, ToMVT);
case TargetOpcode::G_FPTOUI:
return RTLIB::getFPTOUINT(FromMVT, ToMVT);
case TargetOpcode::G_SITOFP:
return RTLIB::getSINTTOFP(FromMVT, ToMVT);
case TargetOpcode::G_UITOFP:
return RTLIB::getUINTTOFP(FromMVT, ToMVT);
}
llvm_unreachable("Unsupported libcall function");
}
static LegalizerHelper::LegalizeResult
conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
Type *FromType) {
RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
return createLibcall(MIRBuilder, Libcall,
{MI.getOperand(0).getReg(), ToType, 0},
{{MI.getOperand(1).getReg(), FromType, 0}});
}
LegalizerHelper::LegalizeResult
LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) {
LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
unsigned Size = LLTy.getSizeInBits();
auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
switch (MI.getOpcode()) {
default:
return UnableToLegalize;
case TargetOpcode::G_SDIV:
case TargetOpcode::G_UDIV:
case TargetOpcode::G_SREM:
case TargetOpcode::G_UREM:
case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
Type *HLTy = IntegerType::get(Ctx, Size);
auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
if (Status != Legalized)
return Status;
break;
}
case TargetOpcode::G_FADD:
case TargetOpcode::G_FSUB:
case TargetOpcode::G_FMUL:
case TargetOpcode::G_FDIV:
case TargetOpcode::G_FMA:
case TargetOpcode::G_FPOW:
case TargetOpcode::G_FREM:
case TargetOpcode::G_FCOS:
case TargetOpcode::G_FSIN:
case TargetOpcode::G_FLOG10:
case TargetOpcode::G_FLOG:
case TargetOpcode::G_FLOG2:
case TargetOpcode::G_FEXP:
case TargetOpcode::G_FEXP2:
case TargetOpcode::G_FCEIL:
case TargetOpcode::G_FFLOOR:
case TargetOpcode::G_FMINNUM:
case TargetOpcode::G_FMAXNUM:
case TargetOpcode::G_FSQRT:
case TargetOpcode::G_FRINT:
case TargetOpcode::G_FNEARBYINT:
case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
return UnableToLegalize;
}
auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
if (Status != Legalized)
return Status;
break;
}
case TargetOpcode::G_FPEXT:
case TargetOpcode::G_FPTRUNC: {
Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg()));
Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
if (!FromTy || !ToTy)
return UnableToLegalize;
LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
if (Status != Legalized)
return Status;
break;
}
case TargetOpcode::G_FPTOSI:
case TargetOpcode::G_FPTOUI: {
// FIXME: Support other types
unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
return UnableToLegalize;
LegalizeResult Status = conversionLibcall(
MI, MIRBuilder,
ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
if (Status != Legalized)
return Status;
break;
}
case TargetOpcode::G_SITOFP:
case TargetOpcode::G_UITOFP: {
// FIXME: Support other types
unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
return UnableToLegalize;
LegalizeResult Status = conversionLibcall(
MI, MIRBuilder,
ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
if (Status != Legalized)
return Status;
break;
}
case TargetOpcode::G_BZERO:
case TargetOpcode::G_MEMCPY:
case TargetOpcode::G_MEMMOVE:
case TargetOpcode::G_MEMSET: {
LegalizeResult Result =
createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver);
if (Result != Legalized)
return Result;
MI.eraseFromParent();
return Result;
}
}
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
unsigned TypeIdx,
LLT NarrowTy) {
uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
uint64_t NarrowSize = NarrowTy.getSizeInBits();
switch (MI.getOpcode()) {
default:
return UnableToLegalize;
case TargetOpcode::G_IMPLICIT_DEF: {
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
// If SizeOp0 is not an exact multiple of NarrowSize, emit
// G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
// FIXME: Although this would also be legal for the general case, it causes
// a lot of regressions in the emitted code (superfluous COPYs, artifact
// combines not being hit). This seems to be a problem related to the
// artifact combiner.
if (SizeOp0 % NarrowSize != 0) {
LLT ImplicitTy = NarrowTy;
if (DstTy.isVector())
ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy);
Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
MI.eraseFromParent();
return Legalized;
}
int NumParts = SizeOp0 / NarrowSize;
SmallVector<Register, 2> DstRegs;
for (int i = 0; i < NumParts; ++i)
DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
if (DstTy.isVector())
MIRBuilder.buildBuildVector(DstReg, DstRegs);
else
MIRBuilder.buildMerge(DstReg, DstRegs);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_CONSTANT: {
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
const APInt &Val = MI.getOperand(1).getCImm()->getValue();
unsigned TotalSize = Ty.getSizeInBits();
unsigned NarrowSize = NarrowTy.getSizeInBits();
int NumParts = TotalSize / NarrowSize;
SmallVector<Register, 4> PartRegs;
for (int I = 0; I != NumParts; ++I) {
unsigned Offset = I * NarrowSize;
auto K = MIRBuilder.buildConstant(NarrowTy,
Val.lshr(Offset).trunc(NarrowSize));
PartRegs.push_back(K.getReg(0));
}
LLT LeftoverTy;
unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
SmallVector<Register, 1> LeftoverRegs;
if (LeftoverBits != 0) {
LeftoverTy = LLT::scalar(LeftoverBits);
auto K = MIRBuilder.buildConstant(
LeftoverTy,
Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
LeftoverRegs.push_back(K.getReg(0));
}
insertParts(MI.getOperand(0).getReg(),
Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_SEXT:
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_ANYEXT:
return narrowScalarExt(MI, TypeIdx, NarrowTy);
case TargetOpcode::G_TRUNC: {
if (TypeIdx != 1)
return UnableToLegalize;
uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
return UnableToLegalize;
}
auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_FREEZE: {
if (TypeIdx != 0)
return UnableToLegalize;
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
// Should widen scalar first
if (Ty.getSizeInBits() % NarrowTy.getSizeInBits() != 0)
return UnableToLegalize;
auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg());
SmallVector<Register, 8> Parts;
for (unsigned i = 0; i < Unmerge->getNumDefs(); ++i) {
Parts.push_back(
MIRBuilder.buildFreeze(NarrowTy, Unmerge.getReg(i)).getReg(0));
}
MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Parts);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_ADD:
case TargetOpcode::G_SUB:
case TargetOpcode::G_SADDO:
case TargetOpcode::G_SSUBO:
case TargetOpcode::G_SADDE:
case TargetOpcode::G_SSUBE:
case TargetOpcode::G_UADDO:
case TargetOpcode::G_USUBO:
case TargetOpcode::G_UADDE:
case TargetOpcode::G_USUBE:
return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
case TargetOpcode::G_MUL:
case TargetOpcode::G_UMULH:
return narrowScalarMul(MI, NarrowTy);
case TargetOpcode::G_EXTRACT:
return narrowScalarExtract(MI, TypeIdx, NarrowTy);
case TargetOpcode::G_INSERT:
return narrowScalarInsert(MI, TypeIdx, NarrowTy);
case TargetOpcode::G_LOAD: {
auto &LoadMI = cast<GLoad>(MI);
Register DstReg = LoadMI.getDstReg();
LLT DstTy = MRI.getType(DstReg);
if (DstTy.isVector())
return UnableToLegalize;
if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) {
Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO());
MIRBuilder.buildAnyExt(DstReg, TmpReg);
LoadMI.eraseFromParent();
return Legalized;
}
return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy);
}
case TargetOpcode::G_ZEXTLOAD:
case TargetOpcode::G_SEXTLOAD: {
auto &LoadMI = cast<GExtLoad>(MI);
Register DstReg = LoadMI.getDstReg();
Register PtrReg = LoadMI.getPointerReg();
Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
auto &MMO = LoadMI.getMMO();
unsigned MemSize = MMO.getSizeInBits();
if (MemSize == NarrowSize) {
MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
} else if (MemSize < NarrowSize) {
MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO);
} else if (MemSize > NarrowSize) {
// FIXME: Need to split the load.
return UnableToLegalize;
}
if (isa<GZExtLoad>(LoadMI))
MIRBuilder.buildZExt(DstReg, TmpReg);
else
MIRBuilder.buildSExt(DstReg, TmpReg);
LoadMI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_STORE: {
auto &StoreMI = cast<GStore>(MI);
Register SrcReg = StoreMI.getValueReg();
LLT SrcTy = MRI.getType(SrcReg);
if (SrcTy.isVector())
return UnableToLegalize;
int NumParts = SizeOp0 / NarrowSize;
unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
if (SrcTy.isVector() && LeftoverBits != 0)
return UnableToLegalize;
if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) {
Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
MIRBuilder.buildTrunc(TmpReg, SrcReg);
MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO());
StoreMI.eraseFromParent();
return Legalized;
}
return reduceLoadStoreWidth(StoreMI, 0, NarrowTy);
}
case TargetOpcode::G_SELECT:
return narrowScalarSelect(MI, TypeIdx, NarrowTy);
case TargetOpcode::G_AND:
case TargetOpcode::G_OR:
case TargetOpcode::G_XOR: {
// Legalize bitwise operation:
// A = BinOp<Ty> B, C
// into:
// B1, ..., BN = G_UNMERGE_VALUES B
// C1, ..., CN = G_UNMERGE_VALUES C
// A1 = BinOp<Ty/N> B1, C2
// ...
// AN = BinOp<Ty/N> BN, CN
// A = G_MERGE_VALUES A1, ..., AN
return narrowScalarBasic(MI, TypeIdx, NarrowTy);
}
case TargetOpcode::G_SHL:
case TargetOpcode::G_LSHR:
case TargetOpcode::G_ASHR:
return narrowScalarShift(MI, TypeIdx, NarrowTy);
case TargetOpcode::G_CTLZ:
case TargetOpcode::G_CTLZ_ZERO_UNDEF:
case TargetOpcode::G_CTTZ:
case TargetOpcode::G_CTTZ_ZERO_UNDEF:
case TargetOpcode::G_CTPOP:
if (TypeIdx == 1)
switch (MI.getOpcode()) {
case TargetOpcode::G_CTLZ:
case TargetOpcode::G_CTLZ_ZERO_UNDEF:
return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
case TargetOpcode::G_CTTZ:
case TargetOpcode::G_CTTZ_ZERO_UNDEF:
return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
case TargetOpcode::G_CTPOP:
return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
default:
return UnableToLegalize;
}
Observer.changingInstr(MI);
narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_INTTOPTR:
if (TypeIdx != 1)
return UnableToLegalize;
Observer.changingInstr(MI);
narrowScalarSrc(MI, NarrowTy, 1);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_PTRTOINT:
if (TypeIdx != 0)
return UnableToLegalize;
Observer.changingInstr(MI);
narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_PHI: {
// FIXME: add support for when SizeOp0 isn't an exact multiple of
// NarrowSize.
if (SizeOp0 % NarrowSize != 0)
return UnableToLegalize;
unsigned NumParts = SizeOp0 / NarrowSize;
SmallVector<Register, 2> DstRegs(NumParts);
SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
Observer.changingInstr(MI);
for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
SrcRegs[i / 2]);
}
MachineBasicBlock &MBB = *MI.getParent();
MIRBuilder.setInsertPt(MBB, MI);
for (unsigned i = 0; i < NumParts; ++i) {
DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
MachineInstrBuilder MIB =
MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
}
MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
Observer.changedInstr(MI);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_EXTRACT_VECTOR_ELT:
case TargetOpcode::G_INSERT_VECTOR_ELT: {
if (TypeIdx != 2)
return UnableToLegalize;
int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
Observer.changingInstr(MI);
narrowScalarSrc(MI, NarrowTy, OpIdx);
Observer.changedInstr(MI);
return Legalized;
}
case TargetOpcode::G_ICMP: {
Register LHS = MI.getOperand(2).getReg();
LLT SrcTy = MRI.getType(LHS);
uint64_t SrcSize = SrcTy.getSizeInBits();
CmpInst::Predicate Pred =
static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
// TODO: Handle the non-equality case for weird sizes.
if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred))
return UnableToLegalize;
LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover)
SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs;
if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs,
LHSLeftoverRegs))
return UnableToLegalize;
LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type.
SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs;
if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused,
RHSPartRegs, RHSLeftoverRegs))
return UnableToLegalize;
// We now have the LHS and RHS of the compare split into narrow-type
// registers, plus potentially some leftover type.
Register Dst = MI.getOperand(0).getReg();
LLT ResTy = MRI.getType(Dst);
if (ICmpInst::isEquality(Pred)) {
// For each part on the LHS and RHS, keep track of the result of XOR-ing
// them together. For each equal part, the result should be all 0s. For
// each non-equal part, we'll get at least one 1.
auto Zero = MIRBuilder.buildConstant(NarrowTy, 0);
SmallVector<Register, 4> Xors;
for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) {
auto LHS = std::get<0>(LHSAndRHS);
auto RHS = std::get<1>(LHSAndRHS);
auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0);
Xors.push_back(Xor);
}
// Build a G_XOR for each leftover register. Each G_XOR must be widened
// to the desired narrow type so that we can OR them together later.
SmallVector<Register, 4> WidenedXors;
for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) {
auto LHS = std::get<0>(LHSAndRHS);
auto RHS = std::get<1>(LHSAndRHS);
auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0);
LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor);
buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors,
/* PadStrategy = */ TargetOpcode::G_ZEXT);
Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end());
}
// Now, for each part we broke up, we know if they are equal/not equal
// based off the G_XOR. We can OR these all together and compare against
// 0 to get the result.
assert(Xors.size() >= 2 && "Should have gotten at least two Xors?");
auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]);
for (unsigned I = 2, E = Xors.size(); I < E; ++I)
Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]);
MIRBuilder.buildICmp(Pred, Dst, Or, Zero);
} else {
// TODO: Handle non-power-of-two types.
assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?");
assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?");
Register LHSL = LHSPartRegs[0];
Register LHSH = LHSPartRegs[1];
Register RHSL = RHSPartRegs[0];
Register RHSH = RHSPartRegs[1];
MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
MachineInstrBuilder CmpHEQ =
MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH);
}
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_SEXT_INREG: {
if (TypeIdx != 0)
return UnableToLegalize;
int64_t SizeInBits = MI.getOperand(2).getImm();
// So long as the new type has more bits than the bits we're extending we
// don't need to break it apart.
if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
Observer.changingInstr(MI);
// We don't lose any non-extension bits by truncating the src and
// sign-extending the dst.
MachineOperand &MO1 = MI.getOperand(1);
auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
MO1.setReg(TruncMIB.getReg(0));
MachineOperand &MO2 = MI.getOperand(0);
Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
MIRBuilder.buildSExt(MO2, DstExt);
MO2.setReg(DstExt);
Observer.changedInstr(MI);
return Legalized;
}
// Break it apart. Components below the extension point are unmodified. The
// component containing the extension point becomes a narrower SEXT_INREG.
// Components above it are ashr'd from the component containing the
// extension point.
if (SizeOp0 % NarrowSize != 0)
return UnableToLegalize;
int NumParts = SizeOp0 / NarrowSize;
// List the registers where the destination will be scattered.
SmallVector<Register, 2> DstRegs;
// List the registers where the source will be split.
SmallVector<Register, 2> SrcRegs;
// Create all the temporary registers.
for (int i = 0; i < NumParts; ++i) {
Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
SrcRegs.push_back(SrcReg);
}
// Explode the big arguments into smaller chunks.
MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
Register AshrCstReg =
MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
.getReg(0);
Register FullExtensionReg = 0;
Register PartialExtensionReg = 0;
// Do the operation on each small part.
for (int i = 0; i < NumParts; ++i) {
if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
DstRegs.push_back(SrcRegs[i]);
else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
assert(PartialExtensionReg &&
"Expected to visit partial extension before full");
if (FullExtensionReg) {
DstRegs.push_back(FullExtensionReg);
continue;
}
DstRegs.push_back(
MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
.getReg(0));
FullExtensionReg = DstRegs.back();
} else {
DstRegs.push_back(
MIRBuilder
.buildInstr(
TargetOpcode::G_SEXT_INREG, {NarrowTy},
{SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
.getReg(0));
PartialExtensionReg = DstRegs.back();
}
}
// Gather the destination registers into the final destination.
Register DstReg = MI.getOperand(0).getReg();
MIRBuilder.buildMerge(DstReg, DstRegs);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_BSWAP:
case TargetOpcode::G_BITREVERSE: {
if (SizeOp0 % NarrowSize != 0)
return UnableToLegalize;
Observer.changingInstr(MI);
SmallVector<Register, 2> SrcRegs, DstRegs;
unsigned NumParts = SizeOp0 / NarrowSize;
extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
for (unsigned i = 0; i < NumParts; ++i) {
auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
{SrcRegs[NumParts - 1 - i]});
DstRegs.push_back(DstPart.getReg(0));
}
MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
Observer.changedInstr(MI);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_PTR_ADD:
case TargetOpcode::G_PTRMASK: {
if (TypeIdx != 1)
return UnableToLegalize;
Observer.changingInstr(MI);
narrowScalarSrc(MI, NarrowTy, 2);
Observer.changedInstr(MI);
return Legalized;
}
case TargetOpcode::G_FPTOUI:
case TargetOpcode::G_FPTOSI:
return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
case TargetOpcode::G_FPEXT:
if (TypeIdx != 0)
return UnableToLegalize;
Observer.changingInstr(MI);
narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
Observer.changedInstr(MI);
return Legalized;
}
}
Register LegalizerHelper::coerceToScalar(Register Val) {
LLT Ty = MRI.getType(Val);
if (Ty.isScalar())
return Val;
const DataLayout &DL = MIRBuilder.getDataLayout();
LLT NewTy = LLT::scalar(Ty.getSizeInBits());
if (Ty.isPointer()) {
if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
return Register();
return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
}
Register NewVal = Val;
assert(Ty.isVector());
LLT EltTy = Ty.getElementType();
if (EltTy.isPointer())
NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
}
void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
unsigned OpIdx, unsigned ExtOpcode) {
MachineOperand &MO = MI.getOperand(OpIdx);
auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
MO.setReg(ExtB.getReg(0));
}
void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
unsigned OpIdx) {
MachineOperand &MO = MI.getOperand(OpIdx);
auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
MO.setReg(ExtB.getReg(0));
}
void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
unsigned OpIdx, unsigned TruncOpcode) {
MachineOperand &MO = MI.getOperand(OpIdx);
Register DstExt = MRI.createGenericVirtualRegister(WideTy);
MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
MO.setReg(DstExt);
}
void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
unsigned OpIdx, unsigned ExtOpcode) {
MachineOperand &MO = MI.getOperand(OpIdx);
Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
MO.setReg(DstTrunc);
}
void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
unsigned OpIdx) {
MachineOperand &MO = MI.getOperand(OpIdx);
MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
Register Dst = MO.getReg();
Register DstExt = MRI.createGenericVirtualRegister(WideTy);
MO.setReg(DstExt);
MIRBuilder.buildDeleteTrailingVectorElements(Dst, DstExt);
}
void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
unsigned OpIdx) {
MachineOperand &MO = MI.getOperand(OpIdx);
SmallVector<Register, 8> Regs;
MO.setReg(MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO).getReg(0));
}
void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
MachineOperand &Op = MI.getOperand(OpIdx);
Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
}
void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
MachineOperand &MO = MI.getOperand(OpIdx);
Register CastDst = MRI.createGenericVirtualRegister(CastTy);
MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
MIRBuilder.buildBitcast(MO, CastDst);
MO.setReg(CastDst);
}
LegalizerHelper::LegalizeResult
LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
LLT WideTy) {
if (TypeIdx != 1)
return UnableToLegalize;
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
if (DstTy.isVector())
return UnableToLegalize;
Register Src1 = MI.getOperand(1).getReg();
LLT SrcTy = MRI.getType(Src1);
const int DstSize = DstTy.getSizeInBits();
const int SrcSize = SrcTy.getSizeInBits();
const int WideSize = WideTy.getSizeInBits();
const int NumMerge = (DstSize + WideSize - 1) / WideSize;
unsigned NumOps = MI.getNumOperands();
unsigned NumSrc = MI.getNumOperands() - 1;
unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
if (WideSize >= DstSize) {
// Directly pack the bits in the target type.
Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
for (unsigned I = 2; I != NumOps; ++I) {
const unsigned Offset = (I - 1) * PartSize;
Register SrcReg = MI.getOperand(I).getReg();
assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
MRI.createGenericVirtualRegister(WideTy);
auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
MIRBuilder.buildOr(NextResult, ResultReg, Shl);
ResultReg = NextResult;
}
if (WideSize > DstSize)
MIRBuilder.buildTrunc(DstReg, ResultReg);
else if (DstTy.isPointer())
MIRBuilder.buildIntToPtr(DstReg, ResultReg);
MI.eraseFromParent();
return Legalized;
}
// Unmerge the original values to the GCD type, and recombine to the next
// multiple greater than the original type.
//
// %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
// %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
// %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
// %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
// %10:_(s6) = G_MERGE_VALUES %4, %5, %6
// %11:_(s6) = G_MERGE_VALUES %7, %8, %9
// %12:_(s12) = G_MERGE_VALUES %10, %11
//
// Padding with undef if necessary:
//
// %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
// %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
// %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
// %7:_(s2) = G_IMPLICIT_DEF
// %8:_(s6) = G_MERGE_VALUES %3, %4, %5
// %9:_(s6) = G_MERGE_VALUES %6, %7, %7
// %10:_(s12) = G_MERGE_VALUES %8, %9
const int GCD = greatestCommonDivisor(SrcSize, WideSize);
LLT GCDTy = LLT::scalar(GCD);
SmallVector<Register, 8> Parts;
SmallVector<Register, 8> NewMergeRegs;
SmallVector<Register, 8> Unmerges;
LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
// Decompose the original operands if they don't evenly divide.
for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
Register SrcReg = MO.getReg();
if (GCD == SrcSize) {
Unmerges.push_back(SrcReg);
} else {
auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
Unmerges.push_back(Unmerge.getReg(J));
}
}
// Pad with undef to the next size that is a multiple of the requested size.
if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
Unmerges.push_back(UndefReg);
}
const int PartsPerGCD = WideSize / GCD;
// Build merges of each piece.
ArrayRef<Register> Slicer(Unmerges);
for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
NewMergeRegs.push_back(Merge.getReg(0));
}
// A truncate may be necessary if the requested type doesn't evenly divide the
// original result type.
if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
MIRBuilder.buildMerge(DstReg, NewMergeRegs);
} else {
auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
}
MI.eraseFromParent();
return Legalized;
}
Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
Register WideReg = MRI.createGenericVirtualRegister(WideTy);
LLT OrigTy = MRI.getType(OrigReg);
LLT LCMTy = getLCMType(WideTy, OrigTy);
const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
Register UnmergeSrc = WideReg;
// Create a merge to the LCM type, padding with undef
// %0:_(<3 x s32>) = G_FOO => <4 x s32>
// =>
// %1:_(<4 x s32>) = G_FOO
// %2:_(<4 x s32>) = G_IMPLICIT_DEF
// %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
// %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
if (NumMergeParts > 1) {
Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
MergeParts[0] = WideReg;
UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
}
// Unmerge to the original register and pad with dead defs.
SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
UnmergeResults[0] = OrigReg;
for (int I = 1; I != NumUnmergeParts; ++I)
UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
return WideReg;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
LLT WideTy) {
if (TypeIdx != 0)
return UnableToLegalize;
int NumDst = MI.getNumOperands() - 1;
Register SrcReg = MI.getOperand(NumDst).getReg();
LLT SrcTy = MRI.getType(SrcReg);
if (SrcTy.isVector())
return UnableToLegalize;
Register Dst0Reg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(Dst0Reg);
if (!DstTy.isScalar())
return UnableToLegalize;
if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
if (SrcTy.isPointer()) {
const DataLayout &DL = MIRBuilder.getDataLayout();
if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
LLVM_DEBUG(
dbgs() << "Not casting non-integral address space integer\n");
return UnableToLegalize;
}
SrcTy = LLT::scalar(SrcTy.getSizeInBits());
SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
}
// Widen SrcTy to WideTy. This does not affect the result, but since the
// user requested this size, it is probably better handled than SrcTy and
// should reduce the total number of legalization artifacts.
if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
SrcTy = WideTy;
SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
}
// Theres no unmerge type to target. Directly extract the bits from the
// source type
unsigned DstSize = DstTy.getSizeInBits();
MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
for (int I = 1; I != NumDst; ++I) {
auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
}
MI.eraseFromParent();
return Legalized;
}
// Extend the source to a wider type.
LLT LCMTy = getLCMType(SrcTy, WideTy);
Register WideSrc = SrcReg;
if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
// TODO: If this is an integral address space, cast to integer and anyext.
if (SrcTy.isPointer()) {
LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
return UnableToLegalize;
}
WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
}
auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
// Create a sequence of unmerges and merges to the original results. Since we
// may have widened the source, we will need to pad the results with dead defs
// to cover the source register.
// e.g. widen s48 to s64:
// %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
//
// =>
// %4:_(s192) = G_ANYEXT %0:_(s96)
// %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
// ; unpack to GCD type, with extra dead defs
// %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
// %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
// dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
// %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination
// %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
const LLT GCDTy = getGCDType(WideTy, DstTy);
const int NumUnmerge = Unmerge->getNumOperands() - 1;
const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
// Directly unmerge to the destination without going through a GCD type
// if possible
if (PartsPerRemerge == 1) {
const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
for (int I = 0; I != NumUnmerge; ++I) {
auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
for (int J = 0; J != PartsPerUnmerge; ++J) {
int Idx = I * PartsPerUnmerge + J;
if (Idx < NumDst)
MIB.addDef(MI.getOperand(Idx).getReg());
else {
// Create dead def for excess components.
MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
}
}
MIB.addUse(Unmerge.getReg(I));
}
} else {
SmallVector<Register, 16> Parts;
for (int J = 0; J != NumUnmerge; ++J)
extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
SmallVector<Register, 8> RemergeParts;
for (int I = 0; I != NumDst; ++I) {
for (int J = 0; J < PartsPerRemerge; ++J) {
const int Idx = I * PartsPerRemerge + J;
RemergeParts.emplace_back(Parts[Idx]);
}
MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
RemergeParts.clear();
}
}
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
LLT WideTy) {
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
LLT SrcTy = MRI.getType(SrcReg);
LLT DstTy = MRI.getType(DstReg);
unsigned Offset = MI.getOperand(2).getImm();
if (TypeIdx == 0) {
if (SrcTy.isVector() || DstTy.isVector())
return UnableToLegalize;
SrcOp Src(SrcReg);
if (SrcTy.isPointer()) {
// Extracts from pointers can be handled only if they are really just
// simple integers.
const DataLayout &DL = MIRBuilder.getDataLayout();
if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
return UnableToLegalize;
LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
SrcTy = SrcAsIntTy;
}
if (DstTy.isPointer())
return UnableToLegalize;
if (Offset == 0) {
// Avoid a shift in the degenerate case.
MIRBuilder.buildTrunc(DstReg,
MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
MI.eraseFromParent();
return Legalized;
}
// Do a shift in the source type.
LLT ShiftTy = SrcTy;
if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
Src = MIRBuilder.buildAnyExt(WideTy, Src);
ShiftTy = WideTy;
}
auto LShr = MIRBuilder.buildLShr(
ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
MIRBuilder.buildTrunc(DstReg, LShr);
MI.eraseFromParent();
return Legalized;
}
if (SrcTy.isScalar()) {
Observer.changingInstr(MI);
widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
Observer.changedInstr(MI);
return Legalized;
}
if (!SrcTy.isVector())
return UnableToLegalize;
if (DstTy != SrcTy.getElementType())
return UnableToLegalize;
if (Offset % SrcTy.getScalarSizeInBits() != 0)
return UnableToLegalize;
Observer.changingInstr(MI);
widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
Offset);
widenScalarDst(MI, WideTy.getScalarType(), 0);
Observer.changedInstr(MI);
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
LLT WideTy) {
if (TypeIdx != 0 || WideTy.isVector())
return UnableToLegalize;
Observer.changingInstr(MI);
widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
widenScalarDst(MI, WideTy);
Observer.changedInstr(MI);
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
LLT WideTy) {
if (TypeIdx == 1)
return UnableToLegalize; // TODO
unsigned Opcode;
unsigned ExtOpcode;
Optional<Register> CarryIn = None;
switch (MI.getOpcode()) {
default:
llvm_unreachable("Unexpected opcode!");
case TargetOpcode::G_SADDO:
Opcode = TargetOpcode::G_ADD;
ExtOpcode = TargetOpcode::G_SEXT;
break;
case TargetOpcode::G_SSUBO:
Opcode = TargetOpcode::G_SUB;
ExtOpcode = TargetOpcode::G_SEXT;
break;
case TargetOpcode::G_UADDO:
Opcode = TargetOpcode::G_ADD;
ExtOpcode = TargetOpcode::G_ZEXT;
break;
case TargetOpcode::G_USUBO:
Opcode = TargetOpcode::G_SUB;
ExtOpcode = TargetOpcode::G_ZEXT;
break;
case TargetOpcode::G_SADDE:
Opcode = TargetOpcode::G_UADDE;
ExtOpcode = TargetOpcode::G_SEXT;
CarryIn = MI.getOperand(4).getReg();
break;
case TargetOpcode::G_SSUBE:
Opcode = TargetOpcode::G_USUBE;
ExtOpcode = TargetOpcode::G_SEXT;
CarryIn = MI.getOperand(4).getReg();
break;
case TargetOpcode::G_UADDE:
Opcode = TargetOpcode::G_UADDE;
ExtOpcode = TargetOpcode::G_ZEXT;
CarryIn = MI.getOperand(4).getReg();
break;
case TargetOpcode::G_USUBE:
Opcode = TargetOpcode::G_USUBE;
ExtOpcode = TargetOpcode::G_ZEXT;
CarryIn = MI.getOperand(4).getReg();
break;
}
auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
// Do the arithmetic in the larger type.
Register NewOp;
if (CarryIn) {
LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
NewOp = MIRBuilder
.buildInstr(Opcode, {WideTy, CarryOutTy},
{LHSExt, RHSExt, *CarryIn})
.getReg(0);
} else {
NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
}
LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
// There is no overflow if the ExtOp is the same as NewOp.
MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
// Now trunc the NewOp to the original result.
MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
LLT WideTy) {
bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
MI.getOpcode() == TargetOpcode::G_SSHLSAT;
bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
MI.getOpcode() == TargetOpcode::G_USHLSAT;
// We can convert this to:
// 1. Any extend iN to iM
// 2. SHL by M-N
// 3. [US][ADD|SUB|SHL]SAT
// 4. L/ASHR by M-N
//
// It may be more efficient to lower this to a min and a max operation in
// the higher precision arithmetic if the promoted operation isn't legal,
// but this decision is up to the target's lowering request.
Register DstReg = MI.getOperand(0).getReg();
unsigned NewBits = WideTy.getScalarSizeInBits();
unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
// Shifts must zero-extend the RHS to preserve the unsigned quantity, and
// must not left shift the RHS to preserve the shift amount.
auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
: MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
{ShiftL, ShiftR}, MI.getFlags());
// Use a shift that will preserve the number of sign bits when the trunc is
// folded away.
auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
: MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
MIRBuilder.buildTrunc(DstReg, Result);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
LLT WideTy) {
if (TypeIdx == 1)
return UnableToLegalize;
bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
Register Result = MI.getOperand(0).getReg();
Register OriginalOverflow = MI.getOperand(1).getReg();
Register LHS = MI.getOperand(2).getReg();
Register RHS = MI.getOperand(3).getReg();
LLT SrcTy = MRI.getType(LHS);
LLT OverflowTy = MRI.getType(OriginalOverflow);
unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
// To determine if the result overflowed in the larger type, we extend the
// input to the larger type, do the multiply (checking if it overflows),
// then also check the high bits of the result to see if overflow happened
// there.
unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
{LeftOperand, RightOperand});
auto Mul = Mulo->getOperand(0);
MIRBuilder.buildTrunc(Result, Mul);
MachineInstrBuilder ExtResult;
// Overflow occurred if it occurred in the larger type, or if the high part
// of the result does not zero/sign-extend the low part. Check this second
// possibility first.
if (IsSigned) {
// For signed, overflow occurred when the high part does not sign-extend
// the low part.
ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
} else {
// Unsigned overflow occurred when the high part does not zero-extend the
// low part.
ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
}
// Multiplication cannot overflow if the WideTy is >= 2 * original width,
// so we don't need to check the overflow result of larger type Mulo.
if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
auto Overflow =
MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
// Finally check if the multiplication in the larger type itself overflowed.
MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
} else {
MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
}
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
switch (MI.getOpcode()) {
default:
return UnableToLegalize;
case TargetOpcode::G_ATOMICRMW_XCHG:
case TargetOpcode::G_ATOMICRMW_ADD:
case TargetOpcode::G_ATOMICRMW_SUB:
case TargetOpcode::G_ATOMICRMW_AND:
case TargetOpcode::G_ATOMICRMW_OR:
case TargetOpcode::G_ATOMICRMW_XOR:
case TargetOpcode::G_ATOMICRMW_MIN:
case TargetOpcode::G_ATOMICRMW_MAX:
case TargetOpcode::G_ATOMICRMW_UMIN:
case TargetOpcode::G_ATOMICRMW_UMAX:
assert(TypeIdx == 0 && "atomicrmw with second scalar type");
Observer.changingInstr(MI);
widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
widenScalarDst(MI, WideTy, 0);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_ATOMIC_CMPXCHG:
assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type");
Observer.changingInstr(MI);
widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
widenScalarDst(MI, WideTy, 0);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS:
if (TypeIdx == 0) {
Observer.changingInstr(MI);
widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT);
widenScalarDst(MI, WideTy, 0);
Observer.changedInstr(MI);
return Legalized;
}
assert(TypeIdx == 1 &&
"G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type");
Observer.changingInstr(MI);
widenScalarDst(MI, WideTy, 1);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_EXTRACT:
return widenScalarExtract(MI, TypeIdx, WideTy);
case TargetOpcode::G_INSERT:
return widenScalarInsert(MI, TypeIdx, WideTy);
case TargetOpcode::G_MERGE_VALUES:
return widenScalarMergeValues(MI, TypeIdx, WideTy);
case TargetOpcode::G_UNMERGE_VALUES:
return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
case TargetOpcode::G_SADDO:
case TargetOpcode::G_SSUBO:
case TargetOpcode::G_UADDO:
case TargetOpcode::G_USUBO:
case TargetOpcode::G_SADDE:
case TargetOpcode::G_SSUBE:
case TargetOpcode::G_UADDE:
case TargetOpcode::G_USUBE:
return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
case TargetOpcode::G_UMULO:
case TargetOpcode::G_SMULO:
return widenScalarMulo(MI, TypeIdx, WideTy);
case TargetOpcode::G_SADDSAT:
case TargetOpcode::G_SSUBSAT:
case TargetOpcode::G_SSHLSAT:
case TargetOpcode::G_UADDSAT:
case TargetOpcode::G_USUBSAT:
case TargetOpcode::G_USHLSAT:
return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
case TargetOpcode::G_CTTZ:
case TargetOpcode::G_CTTZ_ZERO_UNDEF:
case TargetOpcode::G_CTLZ:
case TargetOpcode::G_CTLZ_ZERO_UNDEF:
case TargetOpcode::G_CTPOP: {
if (TypeIdx == 0) {
Observer.changingInstr(MI);
widenScalarDst(MI, WideTy, 0);
Observer.changedInstr(MI);
return Legalized;
}
Register SrcReg = MI.getOperand(1).getReg();
// First extend the input.
unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ ||
MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF
? TargetOpcode::G_ANYEXT
: TargetOpcode::G_ZEXT;
auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg});
LLT CurTy = MRI.getType(SrcReg);
unsigned NewOpc = MI.getOpcode();
if (NewOpc == TargetOpcode::G_CTTZ) {
// The count is the same in the larger type except if the original
// value was zero. This can be handled by setting the bit just off
// the top of the original type.
auto TopBit =
APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
MIBSrc = MIRBuilder.buildOr(
WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
// Now we know the operand is non-zero, use the more relaxed opcode.
NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF;
}
// Perform the operation at the larger size.
auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc});
// This is already the correct result for CTPOP and CTTZs
if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
// The correct result is NewOp - (Difference in widety and current ty).
unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
MIBNewOp = MIRBuilder.buildSub(
WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
}
MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_BSWAP: {
Observer.changingInstr(MI);
Register DstReg = MI.getOperand(0).getReg();
Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
Register DstExt = MRI.createGenericVirtualRegister(WideTy);
Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
MI.getOperand(0).setReg(DstExt);
MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
LLT Ty = MRI.getType(DstReg);
unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
MIRBuilder.buildTrunc(DstReg, ShrReg);
Observer.changedInstr(MI);
return Legalized;
}
case TargetOpcode::G_BITREVERSE: {
Observer.changingInstr(MI);
Register DstReg = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(DstReg);
unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
Register DstExt = MRI.createGenericVirtualRegister(WideTy);
widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
MI.getOperand(0).setReg(DstExt);
MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
MIRBuilder.buildTrunc(DstReg, Shift);
Observer.changedInstr(MI);
return Legalized;
}
case TargetOpcode::G_FREEZE:
Observer.changingInstr(MI);
widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
widenScalarDst(MI, WideTy);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_ABS:
Observer.changingInstr(MI);
widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
widenScalarDst(MI, WideTy);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_ADD:
case TargetOpcode::G_AND:
case TargetOpcode::G_MUL:
case TargetOpcode::G_OR:
case TargetOpcode::G_XOR:
case TargetOpcode::G_SUB:
// Perform operation at larger width (any extension is fines here, high bits
// don't affect the result) and then truncate the result back to the
// original type.
Observer.changingInstr(MI);
widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
widenScalarDst(MI, WideTy);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_SBFX:
case TargetOpcode::G_UBFX:
Observer.changingInstr(MI);
if (TypeIdx == 0) {
widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
widenScalarDst(MI, WideTy);
} else {
widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
}
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_SHL:
Observer.changingInstr(MI);
if (TypeIdx == 0) {
widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
widenScalarDst(MI, WideTy);
} else {
assert(TypeIdx == 1);
// The "number of bits to shift" operand must preserve its value as an
// unsigned integer:
widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
}
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_SDIV:
case TargetOpcode::G_SREM:
case TargetOpcode::G_SMIN:
case TargetOpcode::G_SMAX:
Observer.changingInstr(MI);
widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
widenScalarDst(MI, WideTy);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_SDIVREM:
Observer.changingInstr(MI);
widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
widenScalarDst(MI, WideTy);
widenScalarDst(MI, WideTy, 1);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_ASHR:
case TargetOpcode::G_LSHR:
Observer.changingInstr(MI);
if (TypeIdx == 0) {
unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
widenScalarSrc(MI, WideTy, 1, CvtOp);
widenScalarDst(MI, WideTy);
} else {
assert(TypeIdx == 1);
// The "number of bits to shift" operand must preserve its value as an
// unsigned integer:
widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
}
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_UDIV:
case TargetOpcode::G_UREM:
case TargetOpcode::G_UMIN:
case TargetOpcode::G_UMAX:
Observer.changingInstr(MI);
widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
widenScalarDst(MI, WideTy);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_UDIVREM:
Observer.changingInstr(MI);
widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
widenScalarDst(MI, WideTy);
widenScalarDst(MI, WideTy, 1);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_SELECT:
Observer.changingInstr(MI);
if (TypeIdx == 0) {
// Perform operation at larger width (any extension is fine here, high
// bits don't affect the result) and then truncate the result back to the
// original type.
widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
widenScalarDst(MI, WideTy);
} else {
bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
// Explicit extension is required here since high bits affect the result.
widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
}
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_FPTOSI:
case TargetOpcode::G_FPTOUI:
Observer.changingInstr(MI);
if (TypeIdx == 0)
widenScalarDst(MI, WideTy);
else
widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_SITOFP:
Observer.changingInstr(MI);
if (TypeIdx == 0)
widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
else
widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_UITOFP:
Observer.changingInstr(MI);
if (TypeIdx == 0)
widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
else
widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_LOAD:
case TargetOpcode::G_SEXTLOAD:
case TargetOpcode::G_ZEXTLOAD:
Observer.changingInstr(MI);
widenScalarDst(MI, WideTy);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_STORE: {
if (TypeIdx != 0)
return UnableToLegalize;
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
if (!Ty.isScalar())
return UnableToLegalize;
Observer.changingInstr(MI);
unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
widenScalarSrc(MI, WideTy, 0, ExtType);
Observer.changedInstr(MI);
return Legalized;
}
case TargetOpcode::G_CONSTANT: {
MachineOperand &SrcMO = MI.getOperand(1);
LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
MRI.getType(MI.getOperand(0).getReg()));
assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
ExtOpc == TargetOpcode::G_ANYEXT) &&
"Illegal Extend");
const APInt &SrcVal = SrcMO.getCImm()->getValue();
const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
? SrcVal.sext(WideTy.getSizeInBits())
: SrcVal.zext(WideTy.getSizeInBits());
Observer.changingInstr(MI);
SrcMO.setCImm(ConstantInt::get(Ctx, Val));
widenScalarDst(MI, WideTy);
Observer.changedInstr(MI);
return Legalized;
}
case TargetOpcode::G_FCONSTANT: {
MachineOperand &SrcMO = MI.getOperand(1);
LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
APFloat Val = SrcMO.getFPImm()->getValueAPF();
bool LosesInfo;
switch (WideTy.getSizeInBits()) {
case 32:
Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
&LosesInfo);
break;
case 64:
Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
&LosesInfo);
break;
default:
return UnableToLegalize;
}
assert(!LosesInfo && "extend should always be lossless");
Observer.changingInstr(MI);
SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
Observer.changedInstr(MI);
return Legalized;
}
case TargetOpcode::G_IMPLICIT_DEF: {
Observer.changingInstr(MI);
widenScalarDst(MI, WideTy);
Observer.changedInstr(MI);
return Legalized;
}
case TargetOpcode::G_BRCOND:
Observer.changingInstr(MI);
widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_FCMP:
Observer.changingInstr(MI);
if (TypeIdx == 0)
widenScalarDst(MI, WideTy);
else {
widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
}
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_ICMP:
Observer.changingInstr(MI);
if (TypeIdx == 0)
widenScalarDst(MI, WideTy);
else {
unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
MI.getOperand(1).getPredicate()))
? TargetOpcode::G_SEXT
: TargetOpcode::G_ZEXT;
widenScalarSrc(MI, WideTy, 2, ExtOpcode);
widenScalarSrc(MI, WideTy, 3, ExtOpcode);
}
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_PTR_ADD:
assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
Observer.changingInstr(MI);
widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_PHI: {
assert(TypeIdx == 0 && "Expecting only Idx 0");
Observer.changingInstr(MI);
for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
}
MachineBasicBlock &MBB = *MI.getParent();
MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
widenScalarDst(MI, WideTy);
Observer.changedInstr(MI);
return Legalized;
}
case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
if (TypeIdx == 0) {
Register VecReg = MI.getOperand(1).getReg();
LLT VecTy = MRI.getType(VecReg);
Observer.changingInstr(MI);
widenScalarSrc(
MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1,
TargetOpcode::G_ANYEXT);
widenScalarDst(MI, WideTy, 0);
Observer.changedInstr(MI);
return Legalized;
}
if (TypeIdx != 2)
return UnableToLegalize;
Observer.changingInstr(MI);
// TODO: Probably should be zext
widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
Observer.changedInstr(MI);
return Legalized;
}
case TargetOpcode::G_INSERT_VECTOR_ELT: {
if (TypeIdx == 1) {
Observer.changingInstr(MI);
Register VecReg = MI.getOperand(1).getReg();
LLT VecTy = MRI.getType(VecReg);
LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy);
widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
widenScalarDst(MI, WideVecTy, 0);
Observer.changedInstr(MI);
return Legalized;
}
if (TypeIdx == 2) {
Observer.changingInstr(MI);
// TODO: Probably should be zext
widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
Observer.changedInstr(MI);
return Legalized;
}
return UnableToLegalize;
}
case TargetOpcode::G_FADD:
case TargetOpcode::G_FMUL:
case TargetOpcode::G_FSUB:
case TargetOpcode::G_FMA:
case TargetOpcode::G_FMAD:
case TargetOpcode::G_FNEG:
case TargetOpcode::G_FABS:
case TargetOpcode::G_FCANONICALIZE:
case TargetOpcode::G_FMINNUM:
case TargetOpcode::G_FMAXNUM:
case TargetOpcode::G_FMINNUM_IEEE:
case TargetOpcode::G_FMAXNUM_IEEE:
case TargetOpcode::G_FMINIMUM:
case TargetOpcode::G_FMAXIMUM:
case TargetOpcode::G_FDIV:
case TargetOpcode::G_FREM:
case TargetOpcode::G_FCEIL:
case TargetOpcode::G_FFLOOR:
case TargetOpcode::G_FCOS:
case TargetOpcode::G_FSIN:
case TargetOpcode::G_FLOG10:
case TargetOpcode::G_FLOG:
case TargetOpcode::G_FLOG2:
case TargetOpcode::G_FRINT:
case TargetOpcode::G_FNEARBYINT:
case TargetOpcode::G_FSQRT:
case TargetOpcode::G_FEXP:
case TargetOpcode::G_FEXP2:
case TargetOpcode::G_FPOW:
case TargetOpcode::G_INTRINSIC_TRUNC:
case TargetOpcode::G_INTRINSIC_ROUND:
case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
assert(TypeIdx == 0);
Observer.changingInstr(MI);
for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_FPOWI: {
if (TypeIdx != 0)
return UnableToLegalize;
Observer.changingInstr(MI);
widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
Observer.changedInstr(MI);
return Legalized;
}
case TargetOpcode::G_INTTOPTR:
if (TypeIdx != 1)
return UnableToLegalize;
Observer.changingInstr(MI);
widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_PTRTOINT:
if (TypeIdx != 0)
return UnableToLegalize;
Observer.changingInstr(MI);
widenScalarDst(MI, WideTy, 0);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_BUILD_VECTOR: {
Observer.changingInstr(MI);
const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
// Avoid changing the result vector type if the source element type was
// requested.
if (TypeIdx == 1) {
MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
} else {
widenScalarDst(MI, WideTy, 0);
}
Observer.changedInstr(MI);
return Legalized;
}
case TargetOpcode::G_SEXT_INREG:
if (TypeIdx != 0)
return UnableToLegalize;
Observer.changingInstr(MI);
widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_PTRMASK: {
if (TypeIdx != 1)
return UnableToLegalize;
Observer.changingInstr(MI);
widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
Observer.changedInstr(MI);
return Legalized;
}
}
}
static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
MachineIRBuilder &B, Register Src, LLT Ty) {
auto Unmerge = B.buildUnmerge(Ty, Src);
for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
Pieces.push_back(Unmerge.getReg(I));
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerBitcast(MachineInstr &MI) {
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(Dst);
LLT SrcTy = MRI.getType(Src);
if (SrcTy.isVector()) {
LLT SrcEltTy = SrcTy.getElementType();
SmallVector<Register, 8> SrcRegs;
if (DstTy.isVector()) {
int NumDstElt = DstTy.getNumElements();
int NumSrcElt = SrcTy.getNumElements();
LLT DstEltTy = DstTy.getElementType();
LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
// If there's an element size mismatch, insert intermediate casts to match
// the result element type.
if (NumSrcElt < NumDstElt) { // Source element type is larger.
// %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
//
// =>
//
// %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
// %3:_(<2 x s8>) = G_BITCAST %2
// %4:_(<2 x s8>) = G_BITCAST %3
// %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy);
SrcPartTy = SrcEltTy;
} else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
//
// %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
//
// =>
//
// %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
// %3:_(s16) = G_BITCAST %2
// %4:_(s16) = G_BITCAST %3
// %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy);
DstCastTy = DstEltTy;
}
getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
for (Register &SrcReg : SrcRegs)
SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
} else
getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
MIRBuilder.buildMerge(Dst, SrcRegs);
MI.eraseFromParent();
return Legalized;
}
if (DstTy.isVector()) {
SmallVector<Register, 8> SrcRegs;
getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
MIRBuilder.buildMerge(Dst, SrcRegs);
MI.eraseFromParent();
return Legalized;
}
return UnableToLegalize;
}
/// Figure out the bit offset into a register when coercing a vector index for
/// the wide element type. This is only for the case when promoting vector to
/// one with larger elements.
//
///
/// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
/// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
Register Idx,
unsigned NewEltSize,
unsigned OldEltSize) {
const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
LLT IdxTy = B.getMRI()->getType(Idx);
// Now figure out the amount we need to shift to get the target bits.
auto OffsetMask = B.buildConstant(
IdxTy, ~(APInt::getAllOnes(IdxTy.getSizeInBits()) << Log2EltRatio));
auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
return B.buildShl(IdxTy, OffsetIdx,
B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
}
/// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
/// is casting to a vector with a smaller element size, perform multiple element
/// extracts and merge the results. If this is coercing to a vector with larger
/// elements, index the bitcasted vector and extract the target element with bit
/// operations. This is intended to force the indexing in the native register
/// size for architectures that can dynamically index the register file.
LegalizerHelper::LegalizeResult
LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
LLT CastTy) {
if (TypeIdx != 1)
return UnableToLegalize;
Register Dst = MI.getOperand(0).getReg();
Register SrcVec = MI.getOperand(1).getReg();
Register Idx = MI.getOperand(2).getReg();
LLT SrcVecTy = MRI.getType(SrcVec);
LLT IdxTy = MRI.getType(Idx);
LLT SrcEltTy = SrcVecTy.getElementType();
unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
unsigned OldNumElts = SrcVecTy.getNumElements();
LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
const unsigned NewEltSize = NewEltTy.getSizeInBits();
const unsigned OldEltSize = SrcEltTy.getSizeInBits();
if (NewNumElts > OldNumElts) {
// Decreasing the vector element size
//
// e.g. i64 = extract_vector_elt x:v2i64, y:i32
// =>
// v4i32:castx = bitcast x:v2i64
//
// i64 = bitcast
// (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
// (i32 (extract_vector_elt castx, (2 * y + 1)))
//
if (NewNumElts % OldNumElts != 0)
return UnableToLegalize;
// Type of the intermediate result vector.
const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
LLT MidTy =
LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy);
auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
NewOps[I] = Elt.getReg(0);
}
auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
MIRBuilder.buildBitcast(Dst, NewVec);
MI.eraseFromParent();
return Legalized;
}
if (NewNumElts < OldNumElts) {
if (NewEltSize % OldEltSize != 0)
return UnableToLegalize;
// This only depends on powers of 2 because we use bit tricks to figure out
// the bit offset we need to shift to get the target element. A general
// expansion could emit division/multiply.
if (!isPowerOf2_32(NewEltSize / OldEltSize))
return UnableToLegalize;
// Increasing the vector element size.
// %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
//
// =>
//
// %cast = G_BITCAST %vec
// %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
// %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
// %elt_bits = G_LSHR %wide_elt, %offset_bits
// %elt = G_TRUNC %elt_bits
const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
// Divide to get the index in the wider element type.
auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
Register WideElt = CastVec;
if (CastTy.isVector()) {
WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
ScaledIdx).getReg(0);
}
// Compute the bit offset into the register of the target element.
Register OffsetBits = getBitcastWiderVectorElementOffset(
MIRBuilder, Idx, NewEltSize, OldEltSize);
// Shift the wide element to get the target element.
auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
MIRBuilder.buildTrunc(Dst, ExtractedBits);
MI.eraseFromParent();
return Legalized;
}
return UnableToLegalize;
}
/// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
/// TargetReg, while preserving other bits in \p TargetReg.
///
/// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
static Register buildBitFieldInsert(MachineIRBuilder &B,
Register TargetReg, Register InsertReg,
Register OffsetBits) {
LLT TargetTy = B.getMRI()->getType(TargetReg);
LLT InsertTy = B.getMRI()->getType(InsertReg);
auto ZextVal = B.buildZExt(TargetTy, InsertReg);
auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
// Produce a bitmask of the value to insert
auto EltMask = B.buildConstant(
TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
InsertTy.getSizeInBits()));
// Shift it into position
auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
// Clear out the bits in the wide element
auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
// The value to insert has all zeros already, so stick it into the masked
// wide element.
return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
}
/// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
/// is increasing the element size, perform the indexing in the target element
/// type, and use bit operations to insert at the element position. This is
/// intended for architectures that can dynamically index the register file and
/// want to force indexing in the native register size.
LegalizerHelper::LegalizeResult
LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
LLT CastTy) {
if (TypeIdx != 0)
return UnableToLegalize;
Register Dst = MI.getOperand(0).getReg();
Register SrcVec = MI.getOperand(1).getReg();
Register Val = MI.getOperand(2).getReg();
Register Idx = MI.getOperand(3).getReg();
LLT VecTy = MRI.getType(Dst);
LLT IdxTy = MRI.getType(Idx);
LLT VecEltTy = VecTy.getElementType();
LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
const unsigned NewEltSize = NewEltTy.getSizeInBits();
const unsigned OldEltSize = VecEltTy.getSizeInBits();
unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
unsigned OldNumElts = VecTy.getNumElements();
Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
if (NewNumElts < OldNumElts) {
if (NewEltSize % OldEltSize != 0)
return UnableToLegalize;
// This only depends on powers of 2 because we use bit tricks to figure out
// the bit offset we need to shift to get the target element. A general
// expansion could emit division/multiply.
if (!isPowerOf2_32(NewEltSize / OldEltSize))
return UnableToLegalize;
const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
// Divide to get the index in the wider element type.
auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
Register ExtractedElt = CastVec;
if (CastTy.isVector()) {
ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
ScaledIdx).getReg(0);
}
// Compute the bit offset into the register of the target element.
Register OffsetBits = getBitcastWiderVectorElementOffset(
MIRBuilder, Idx, NewEltSize, OldEltSize);
Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
Val, OffsetBits);
if (CastTy.isVector()) {
InsertedElt = MIRBuilder.buildInsertVectorElement(
CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
}
MIRBuilder.buildBitcast(Dst, InsertedElt);
MI.eraseFromParent();
return Legalized;
}
return UnableToLegalize;
}
LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) {
// Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
Register DstReg = LoadMI.getDstReg();
Register PtrReg = LoadMI.getPointerReg();
LLT DstTy = MRI.getType(DstReg);
MachineMemOperand &MMO = LoadMI.getMMO();
LLT MemTy = MMO.getMemoryType();
MachineFunction &MF = MIRBuilder.getMF();
unsigned MemSizeInBits = MemTy.getSizeInBits();
unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes();
if (MemSizeInBits != MemStoreSizeInBits) {
if (MemTy.isVector())
return UnableToLegalize;
// Promote to a byte-sized load if not loading an integral number of
// bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
LLT WideMemTy = LLT::scalar(MemStoreSizeInBits);
MachineMemOperand *NewMMO =
MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy);
Register LoadReg = DstReg;
LLT LoadTy = DstTy;
// If this wasn't already an extending load, we need to widen the result
// register to avoid creating a load with a narrower result than the source.
if (MemStoreSizeInBits > DstTy.getSizeInBits()) {
LoadTy = WideMemTy;
LoadReg = MRI.createGenericVirtualRegister(WideMemTy);
}
if (isa<GSExtLoad>(LoadMI)) {
auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits);
} else if (isa<GZExtLoad>(LoadMI) || WideMemTy == DstTy) {
auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
// The extra bits are guaranteed to be zero, since we stored them that
// way. A zext load from Wide thus automatically gives zext from MemVT.
MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits);
} else {
MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO);
}
if (DstTy != LoadTy)
MIRBuilder.buildTrunc(DstReg, LoadReg);
LoadMI.eraseFromParent();
return Legalized;
}
// Big endian lowering not implemented.
if (MIRBuilder.getDataLayout().isBigEndian())
return UnableToLegalize;
// This load needs splitting into power of 2 sized loads.
//
// Our strategy here is to generate anyextending loads for the smaller
// types up to next power-2 result type, and then combine the two larger
// result values together, before truncating back down to the non-pow-2
// type.
// E.g. v1 = i24 load =>
// v2 = i32 zextload (2 byte)
// v3 = i32 load (1 byte)
// v4 = i32 shl v3, 16
// v5 = i32 or v4, v2
// v1 = i24 trunc v5
// By doing this we generate the correct truncate which should get
// combined away as an artifact with a matching extend.
uint64_t LargeSplitSize, SmallSplitSize;
if (!isPowerOf2_32(MemSizeInBits)) {
// This load needs splitting into power of 2 sized loads.
LargeSplitSize = PowerOf2Floor(MemSizeInBits);
SmallSplitSize = MemSizeInBits - LargeSplitSize;
} else {
// This is already a power of 2, but we still need to split this in half.
//
// Assume we're being asked to decompose an unaligned load.
// TODO: If this requires multiple splits, handle them all at once.
auto &Ctx = MF.getFunction().getContext();
if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
return UnableToLegalize;
SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
}
if (MemTy.isVector()) {
// TODO: Handle vector extloads
if (MemTy != DstTy)
return UnableToLegalize;
// TODO: We can do better than scalarizing the vector and at least split it
// in half.
return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType());
}
MachineMemOperand *LargeMMO =
MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
MachineMemOperand *SmallMMO =
MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
LLT PtrTy = MRI.getType(PtrReg);
unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits());
LLT AnyExtTy = LLT::scalar(AnyExtSize);
auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy,
PtrReg, *LargeMMO);
auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()),
LargeSplitSize / 8);
Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy,
SmallPtr, *SmallMMO);
auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
if (AnyExtTy == DstTy)
MIRBuilder.buildOr(DstReg, Shift, LargeLoad);
else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) {
auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
MIRBuilder.buildTrunc(DstReg, {Or});
} else {
assert(DstTy.isPointer() && "expected pointer");
auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
// FIXME: We currently consider this to be illegal for non-integral address
// spaces, but we need still need a way to reinterpret the bits.
MIRBuilder.buildIntToPtr(DstReg, Or);
}
LoadMI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) {
// Lower a non-power of 2 store into multiple pow-2 stores.
// E.g. split an i24 store into an i16 store + i8 store.
// We do this by first extending the stored value to the next largest power
// of 2 type, and then using truncating stores to store the components.
// By doing this, likewise with G_LOAD, generate an extend that can be
// artifact-combined away instead of leaving behind extracts.
Register SrcReg = StoreMI.getValueReg();
Register PtrReg = StoreMI.getPointerReg();
LLT SrcTy = MRI.getType(SrcReg);
MachineFunction &MF = MIRBuilder.getMF();
MachineMemOperand &MMO = **StoreMI.memoperands_begin();
LLT MemTy = MMO.getMemoryType();
unsigned StoreWidth = MemTy.getSizeInBits();
unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes();
if (StoreWidth != StoreSizeInBits) {
if (SrcTy.isVector())
return UnableToLegalize;
// Promote to a byte-sized store with upper bits zero if not
// storing an integral number of bytes. For example, promote
// TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
LLT WideTy = LLT::scalar(StoreSizeInBits);
if (StoreSizeInBits > SrcTy.getSizeInBits()) {
// Avoid creating a store with a narrower source than result.
SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
SrcTy = WideTy;
}
auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth);
MachineMemOperand *NewMMO =
MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy);
MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO);
StoreMI.eraseFromParent();
return Legalized;
}
if (MemTy.isVector()) {
// TODO: Handle vector trunc stores
if (MemTy != SrcTy)
return UnableToLegalize;
// TODO: We can do better than scalarizing the vector and at least split it
// in half.
return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType());
}
unsigned MemSizeInBits = MemTy.getSizeInBits();
uint64_t LargeSplitSize, SmallSplitSize;
if (!isPowerOf2_32(MemSizeInBits)) {
LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits());
SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize;
} else {
auto &Ctx = MF.getFunction().getContext();
if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
return UnableToLegalize; // Don't know what we're being asked to do.
SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
}
// Extend to the next pow-2. If this store was itself the result of lowering,
// e.g. an s56 store being broken into s32 + s24, we might have a stored type
// that's wider than the stored size.
unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits());
const LLT NewSrcTy = LLT::scalar(AnyExtSize);
if (SrcTy.isPointer()) {
const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits());
SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0);
}
auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg);
// Obtain the smaller value by shifting away the larger value.
auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize);
auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt);
// Generate the PtrAdd and truncating stores.
LLT PtrTy = MRI.getType(PtrReg);
auto OffsetCst = MIRBuilder.buildConstant(
LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
auto SmallPtr =
MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst);
MachineMemOperand *LargeMMO =
MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
MachineMemOperand *SmallMMO =
MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO);
MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO);
StoreMI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
switch (MI.getOpcode()) {
case TargetOpcode::G_LOAD: {
if (TypeIdx != 0)
return UnableToLegalize;
MachineMemOperand &MMO = **MI.memoperands_begin();
// Not sure how to interpret a bitcast of an extending load.
if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
return UnableToLegalize;
Observer.changingInstr(MI);
bitcastDst(MI, CastTy, 0);
MMO.setType(CastTy);
Observer.changedInstr(MI);
return Legalized;
}
case TargetOpcode::G_STORE: {
if (TypeIdx != 0)
return UnableToLegalize;
MachineMemOperand &MMO = **MI.memoperands_begin();
// Not sure how to interpret a bitcast of a truncating store.
if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
return UnableToLegalize;
Observer.changingInstr(MI);
bitcastSrc(MI, CastTy, 0);
MMO.setType(CastTy);
Observer.changedInstr(MI);
return Legalized;
}
case TargetOpcode::G_SELECT: {
if (TypeIdx != 0)
return UnableToLegalize;
if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
LLVM_DEBUG(
dbgs() << "bitcast action not implemented for vector select\n");
return UnableToLegalize;
}
Observer.changingInstr(MI);
bitcastSrc(MI, CastTy, 2);
bitcastSrc(MI, CastTy, 3);
bitcastDst(MI, CastTy, 0);
Observer.changedInstr(MI);
return Legalized;
}
case TargetOpcode::G_AND:
case TargetOpcode::G_OR:
case TargetOpcode::G_XOR: {
Observer.changingInstr(MI);
bitcastSrc(MI, CastTy, 1);
bitcastSrc(MI, CastTy, 2);
bitcastDst(MI, CastTy, 0);
Observer.changedInstr(MI);
return Legalized;
}
case TargetOpcode::G_EXTRACT_VECTOR_ELT:
return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
case TargetOpcode::G_INSERT_VECTOR_ELT:
return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
default:
return UnableToLegalize;
}
}
// Legalize an instruction by changing the opcode in place.
void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
Observer.changingInstr(MI);
MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
Observer.changedInstr(MI);
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
using namespace TargetOpcode;
switch(MI.getOpcode()) {
default:
return UnableToLegalize;
case TargetOpcode::G_BITCAST:
return lowerBitcast(MI);
case TargetOpcode::G_SREM:
case TargetOpcode::G_UREM: {
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
auto Quot =
MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
{MI.getOperand(1), MI.getOperand(2)});
auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_SADDO:
case TargetOpcode::G_SSUBO:
return lowerSADDO_SSUBO(MI);
case TargetOpcode::G_UMULH:
case TargetOpcode::G_SMULH:
return lowerSMULH_UMULH(MI);
case TargetOpcode::G_SMULO:
case TargetOpcode::G_UMULO: {
// Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
// result.
Register Res = MI.getOperand(0).getReg();
Register Overflow = MI.getOperand(1).getReg();
Register LHS = MI.getOperand(2).getReg();
Register RHS = MI.getOperand(3).getReg();
LLT Ty = MRI.getType(Res);
unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
? TargetOpcode::G_SMULH
: TargetOpcode::G_UMULH;
Observer.changingInstr(MI);
const auto &TII = MIRBuilder.getTII();
MI.setDesc(TII.get(TargetOpcode::G_MUL));
MI.RemoveOperand(1);
Observer.changedInstr(MI);
auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
auto Zero = MIRBuilder.buildConstant(Ty, 0);
// Move insert point forward so we can use the Res register if needed.
MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
// For *signed* multiply, overflow is detected by checking:
// (hi != (lo >> bitwidth-1))
if (Opcode == TargetOpcode::G_SMULH) {
auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
} else {
MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
}
return Legalized;
}
case TargetOpcode::G_FNEG: {
Register Res = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(Res);
// TODO: Handle vector types once we are able to
// represent them.
if (Ty.isVector())
return UnableToLegalize;
auto SignMask =
MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
Register SubByReg = MI.getOperand(1).getReg();
MIRBuilder.buildXor(Res, SubByReg, SignMask);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_FSUB: {
Register Res = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(Res);
// Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
// First, check if G_FNEG is marked as Lower. If so, we may
// end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
return UnableToLegalize;
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
Register Neg = MRI.createGenericVirtualRegister(Ty);
MIRBuilder.buildFNeg(Neg, RHS);
MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_FMAD:
return lowerFMad(MI);
case TargetOpcode::G_FFLOOR:
return lowerFFloor(MI);
case TargetOpcode::G_INTRINSIC_ROUND:
return lowerIntrinsicRound(MI);
case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
// Since round even is the assumed rounding mode for unconstrained FP
// operations, rint and roundeven are the same operation.
changeOpcode(MI, TargetOpcode::G_FRINT);
return Legalized;
}
case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
Register OldValRes = MI.getOperand(0).getReg();
Register SuccessRes = MI.getOperand(1).getReg();
Register Addr = MI.getOperand(2).getReg();
Register CmpVal = MI.getOperand(3).getReg();
Register NewVal = MI.getOperand(4).getReg();
MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
**MI.memoperands_begin());
MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_LOAD:
case TargetOpcode::G_SEXTLOAD:
case TargetOpcode::G_ZEXTLOAD:
return lowerLoad(cast<GAnyLoad>(MI));
case TargetOpcode::G_STORE:
return lowerStore(cast<GStore>(MI));
case TargetOpcode::G_CTLZ_ZERO_UNDEF:
case TargetOpcode::G_CTTZ_ZERO_UNDEF:
case TargetOpcode::G_CTLZ:
case TargetOpcode::G_CTTZ:
case TargetOpcode::G_CTPOP:
return lowerBitCount(MI);
case G_UADDO: {
Register Res = MI.getOperand(0).getReg();
Register CarryOut = MI.getOperand(1).getReg();
Register LHS = MI.getOperand(2).getReg();
Register RHS = MI.getOperand(3).getReg();
MIRBuilder.buildAdd(Res, LHS, RHS);
MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
MI.eraseFromParent();
return Legalized;
}
case G_UADDE: {
Register Res = MI.getOperand(0).getReg();
Register CarryOut = MI.getOperand(1).getReg();
Register LHS = MI.getOperand(2).getReg();
Register RHS = MI.getOperand(3).getReg();
Register CarryIn = MI.getOperand(4).getReg();
LLT Ty = MRI.getType(Res);
auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
MI.eraseFromParent();
return Legalized;
}
case G_USUBO: {
Register Res = MI.getOperand(0).getReg();
Register BorrowOut = MI.getOperand(1).getReg();
Register LHS = MI.getOperand(2).getReg();
Register RHS = MI.getOperand(3).getReg();
MIRBuilder.buildSub(Res, LHS, RHS);
MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
MI.eraseFromParent();
return Legalized;
}
case G_USUBE: {
Register Res = MI.getOperand(0).getReg();
Register BorrowOut = MI.getOperand(1).getReg();
Register LHS = MI.getOperand(2).getReg();
Register RHS = MI.getOperand(3).getReg();
Register BorrowIn = MI.getOperand(4).getReg();
const LLT CondTy = MRI.getType(BorrowOut);
const LLT Ty = MRI.getType(Res);
auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
MI.eraseFromParent();
return Legalized;
}
case G_UITOFP:
return lowerUITOFP(MI);
case G_SITOFP:
return lowerSITOFP(MI);
case G_FPTOUI:
return lowerFPTOUI(MI);
case G_FPTOSI:
return lowerFPTOSI(MI);
case G_FPTRUNC:
return lowerFPTRUNC(MI);
case G_FPOWI:
return lowerFPOWI(MI);
case G_SMIN:
case G_SMAX:
case G_UMIN:
case G_UMAX:
return lowerMinMax(MI);
case G_FCOPYSIGN:
return lowerFCopySign(MI);
case G_FMINNUM:
case G_FMAXNUM:
return lowerFMinNumMaxNum(MI);
case G_MERGE_VALUES:
return lowerMergeValues(MI);
case G_UNMERGE_VALUES:
return lowerUnmergeValues(MI);
case TargetOpcode::G_SEXT_INREG: {
assert(MI.getOperand(2).isImm() && "Expected immediate");
int64_t SizeInBits = MI.getOperand(2).getImm();
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(DstReg);
Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
MI.eraseFromParent();
return Legalized;
}
case G_EXTRACT_VECTOR_ELT:
case G_INSERT_VECTOR_ELT:
return lowerExtractInsertVectorElt(MI);
case G_SHUFFLE_VECTOR:
return lowerShuffleVector(MI);
case G_DYN_STACKALLOC:
return lowerDynStackAlloc(MI);
case G_EXTRACT:
return lowerExtract(MI);
case G_INSERT:
return lowerInsert(MI);
case G_BSWAP:
return lowerBswap(MI);
case G_BITREVERSE:
return lowerBitreverse(MI);
case G_READ_REGISTER:
case G_WRITE_REGISTER:
return lowerReadWriteRegister(MI);
case G_UADDSAT:
case G_USUBSAT: {
// Try to make a reasonable guess about which lowering strategy to use. The
// target can override this with custom lowering and calling the
// implementation functions.
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
if (LI.isLegalOrCustom({G_UMIN, Ty}))
return lowerAddSubSatToMinMax(MI);
return lowerAddSubSatToAddoSubo(MI);
}
case G_SADDSAT:
case G_SSUBSAT: {
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
// FIXME: It would probably make more sense to see if G_SADDO is preferred,
// since it's a shorter expansion. However, we would need to figure out the
// preferred boolean type for the carry out for the query.
if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
return lowerAddSubSatToMinMax(MI);
return lowerAddSubSatToAddoSubo(MI);
}
case G_SSHLSAT:
case G_USHLSAT:
return lowerShlSat(MI);
case G_ABS:
return lowerAbsToAddXor(MI);
case G_SELECT:
return lowerSelect(MI);
case G_SDIVREM:
case G_UDIVREM:
return lowerDIVREM(MI);
case G_FSHL:
case G_FSHR:
return lowerFunnelShift(MI);
case G_ROTL:
case G_ROTR:
return lowerRotate(MI);
case G_MEMSET:
case G_MEMCPY:
case G_MEMMOVE:
return lowerMemCpyFamily(MI);
case G_MEMCPY_INLINE:
return lowerMemcpyInline(MI);
GISEL_VECREDUCE_CASES_NONSEQ
return lowerVectorReduction(MI);
}
}
Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
Align MinAlign) const {
// FIXME: We're missing a way to go back from LLT to llvm::Type to query the
// datalayout for the preferred alignment. Also there should be a target hook
// for this to allow targets to reduce the alignment and ignore the
// datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
// the type.
return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
}
MachineInstrBuilder
LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
MachinePointerInfo &PtrInfo) {
MachineFunction &MF = MIRBuilder.getMF();
const DataLayout &DL = MIRBuilder.getDataLayout();
int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
unsigned AddrSpace = DL.getAllocaAddrSpace();
LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
}
static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
LLT VecTy) {
int64_t IdxVal;
if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
return IdxReg;
LLT IdxTy = B.getMRI()->getType(IdxReg);
unsigned NElts = VecTy.getNumElements();
if (isPowerOf2_32(NElts)) {
APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
}
return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
.getReg(0);
}
Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
Register Index) {
LLT EltTy = VecTy.getElementType();
// Calculate the element offset and add it to the pointer.
unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
assert(EltSize * 8 == EltTy.getSizeInBits() &&
"Converting bits to bytes lost precision");
Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
LLT IdxTy = MRI.getType(Index);
auto Mul = MIRBuilder.buildMul(IdxTy, Index,
MIRBuilder.buildConstant(IdxTy, EltSize));
LLT PtrTy = MRI.getType(VecPtr);
return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
}
#ifndef NDEBUG
/// Check that all vector operands have same number of elements. Other operands
/// should be listed in NonVecOp.
static bool hasSameNumEltsOnAllVectorOperands(
GenericMachineInstr &MI, MachineRegisterInfo &MRI,
std::initializer_list<unsigned> NonVecOpIndices) {
if (MI.getNumMemOperands() != 0)
return false;
LLT VecTy = MRI.getType(MI.getReg(0));
if (!VecTy.isVector())
return false;
unsigned NumElts = VecTy.getNumElements();
for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) {
MachineOperand &Op = MI.getOperand(OpIdx);
if (!Op.isReg()) {
if (!is_contained(NonVecOpIndices, OpIdx))
return false;
continue;
}
LLT Ty = MRI.getType(Op.getReg());
if (!Ty.isVector()) {
if (!is_contained(NonVecOpIndices, OpIdx))
return false;
continue;
}
if (Ty.getNumElements() != NumElts)
return false;
}
return true;
}
#endif
/// Fill \p DstOps with DstOps that have same number of elements combined as
/// the Ty. These DstOps have either scalar type when \p NumElts = 1 or are
/// vectors with \p NumElts elements. When Ty.getNumElements() is not multiple
/// of \p NumElts last DstOp (leftover) has fewer then \p NumElts elements.
static void makeDstOps(SmallVectorImpl<DstOp> &DstOps, LLT Ty,
unsigned NumElts) {
LLT LeftoverTy;
assert(Ty.isVector() && "Expected vector type");
LLT EltTy = Ty.getElementType();
LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy);
int NumParts, NumLeftover;
std::tie(NumParts, NumLeftover) =
getNarrowTypeBreakDown(Ty, NarrowTy, LeftoverTy);
assert(NumParts > 0 && "Error in getNarrowTypeBreakDown");
for (int i = 0; i < NumParts; ++i) {
DstOps.push_back(NarrowTy);
}
if (LeftoverTy.isValid()) {
assert(NumLeftover == 1 && "expected exactly one leftover");
DstOps.push_back(LeftoverTy);
}
}
/// Operand \p Op is used on \p N sub-instructions. Fill \p Ops with \p N SrcOps
/// made from \p Op depending on operand type.
static void broadcastSrcOp(SmallVectorImpl<SrcOp> &Ops, unsigned N,
MachineOperand &Op) {
for (unsigned i = 0; i < N; ++i) {
if (Op.isReg())
Ops.push_back(Op.getReg());
else if (Op.isImm())
Ops.push_back(Op.getImm());
else if (Op.isPredicate())
Ops.push_back(static_cast<CmpInst::Predicate>(Op.getPredicate()));
else
llvm_unreachable("Unsupported type");
}
}
// Handle splitting vector operations which need to have the same number of
// elements in each type index, but each type index may have a different element
// type.
//
// e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
// <2 x s64> = G_SHL <2 x s64>, <2 x s32>
// <2 x s64> = G_SHL <2 x s64>, <2 x s32>
//
// Also handles some irregular breakdown cases, e.g.
// e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
// <2 x s64> = G_SHL <2 x s64>, <2 x s32>
// s64 = G_SHL s64, s32
LegalizerHelper::LegalizeResult
LegalizerHelper::fewerElementsVectorMultiEltType(
GenericMachineInstr &MI, unsigned NumElts,
std::initializer_list<unsigned> NonVecOpIndices) {
assert(hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) &&
"Non-compatible opcode or not specified non-vector operands");
unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements();
unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs();
unsigned NumDefs = MI.getNumDefs();
// Create DstOps (sub-vectors with NumElts elts + Leftover) for each output.
// Build instructions with DstOps to use instruction found by CSE directly.
// CSE copies found instruction into given vreg when building with vreg dest.
SmallVector<SmallVector<DstOp, 8>, 2> OutputOpsPieces(NumDefs);
// Output registers will be taken from created instructions.
SmallVector<SmallVector<Register, 8>, 2> OutputRegs(NumDefs);
for (unsigned i = 0; i < NumDefs; ++i) {
makeDstOps(OutputOpsPieces[i], MRI.getType(MI.getReg(i)), NumElts);
}
// Split vector input operands into sub-vectors with NumElts elts + Leftover.
// Operands listed in NonVecOpIndices will be used as is without splitting;
// examples: compare predicate in icmp and fcmp (op 1), vector select with i1
// scalar condition (op 1), immediate in sext_inreg (op 2).
SmallVector<SmallVector<SrcOp, 8>, 3> InputOpsPieces(NumInputs);
for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands();
++UseIdx, ++UseNo) {
if (is_contained(NonVecOpIndices, UseIdx)) {
broadcastSrcOp(InputOpsPieces[UseNo], OutputOpsPieces[0].size(),
MI.getOperand(UseIdx));
} else {
SmallVector<Register, 8> SplitPieces;
extractVectorParts(MI.getReg(UseIdx), NumElts, SplitPieces);
for (auto Reg : SplitPieces)
InputOpsPieces[UseNo].push_back(Reg);
}
}
unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0;
// Take i-th piece of each input operand split and build sub-vector/scalar
// instruction. Set i-th DstOp(s) from OutputOpsPieces as destination(s).
for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) {
SmallVector<DstOp, 2> Defs;
for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo)
Defs.push_back(OutputOpsPieces[DstNo][i]);
SmallVector<SrcOp, 3> Uses;
for (unsigned InputNo = 0; InputNo < NumInputs; ++InputNo)
Uses.push_back(InputOpsPieces[InputNo][i]);
auto I = MIRBuilder.buildInstr(MI.getOpcode(), Defs, Uses, MI.getFlags());
for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo)
OutputRegs[DstNo].push_back(I.getReg(DstNo));
}
// Merge small outputs into MI's output for each def operand.
if (NumLeftovers) {
for (unsigned i = 0; i < NumDefs; ++i)
mergeMixedSubvectors(MI.getReg(i), OutputRegs[i]);
} else {
for (unsigned i = 0; i < NumDefs; ++i)
MIRBuilder.buildMerge(MI.getReg(i), OutputRegs[i]);
}
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::fewerElementsVectorPhi(GenericMachineInstr &MI,
unsigned NumElts) {
unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements();
unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs();
unsigned NumDefs = MI.getNumDefs();
SmallVector<DstOp, 8> OutputOpsPieces;
SmallVector<Register, 8> OutputRegs;
makeDstOps(OutputOpsPieces, MRI.getType(MI.getReg(0)), NumElts);
// Instructions that perform register split will be inserted in basic block
// where register is defined (basic block is in the next operand).
SmallVector<SmallVector<Register, 8>, 3> InputOpsPieces(NumInputs / 2);
for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands();
UseIdx += 2, ++UseNo) {
MachineBasicBlock &OpMBB = *MI.getOperand(UseIdx + 1).getMBB();
MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
extractVectorParts(MI.getReg(UseIdx), NumElts, InputOpsPieces[UseNo]);
}
// Build PHIs with fewer elements.
unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0;
MIRBuilder.setInsertPt(*MI.getParent(), MI);
for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) {
auto Phi = MIRBuilder.buildInstr(TargetOpcode::G_PHI);
Phi.addDef(
MRI.createGenericVirtualRegister(OutputOpsPieces[i].getLLTTy(MRI)));
OutputRegs.push_back(Phi.getReg(0));
for (unsigned j = 0; j < NumInputs / 2; ++j) {
Phi.addUse(InputOpsPieces[j][i]);
Phi.add(MI.getOperand(1 + j * 2 + 1));
}
}
// Merge small outputs into MI's def.
if (NumLeftovers) {
mergeMixedSubvectors(MI.getReg(0), OutputRegs);
} else {
MIRBuilder.buildMerge(MI.getReg(0), OutputRegs);
}
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
unsigned TypeIdx,
LLT NarrowTy) {
const int NumDst = MI.getNumOperands() - 1;
const Register SrcReg = MI.getOperand(NumDst).getReg();
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
LLT SrcTy = MRI.getType(SrcReg);
if (TypeIdx != 1 || NarrowTy == DstTy)
return UnableToLegalize;
// Requires compatible types. Otherwise SrcReg should have been defined by
// merge-like instruction that would get artifact combined. Most likely
// instruction that defines SrcReg has to perform more/fewer elements
// legalization compatible with NarrowTy.
assert(SrcTy.isVector() && NarrowTy.isVector() && "Expected vector types");
assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
if ((SrcTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) ||
(NarrowTy.getSizeInBits() % DstTy.getSizeInBits() != 0))
return UnableToLegalize;
// This is most likely DstTy (smaller then register size) packed in SrcTy
// (larger then register size) and since unmerge was not combined it will be
// lowered to bit sequence extracts from register. Unpack SrcTy to NarrowTy
// (register size) pieces first. Then unpack each of NarrowTy pieces to DstTy.
// %1:_(DstTy), %2, %3, %4 = G_UNMERGE_VALUES %0:_(SrcTy)
//
// %5:_(NarrowTy), %6 = G_UNMERGE_VALUES %0:_(SrcTy) - reg sequence
// %1:_(DstTy), %2 = G_UNMERGE_VALUES %5:_(NarrowTy) - sequence of bits in reg
// %3:_(DstTy), %4 = G_UNMERGE_VALUES %6:_(NarrowTy)
auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, SrcReg);
const int NumUnmerge = Unmerge->getNumOperands() - 1;
const int PartsPerUnmerge = NumDst / NumUnmerge;
for (int I = 0; I != NumUnmerge; ++I) {
auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
for (int J = 0; J != PartsPerUnmerge; ++J)
MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
MIB.addUse(Unmerge.getReg(I));
}
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
LLT NarrowTy) {
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
// Requires compatible types. Otherwise user of DstReg did not perform unmerge
// that should have been artifact combined. Most likely instruction that uses
// DstReg has to do more/fewer elements legalization compatible with NarrowTy.
assert(DstTy.isVector() && NarrowTy.isVector() && "Expected vector types");
assert((DstTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
if (NarrowTy == SrcTy)
return UnableToLegalize;
// This attempts to lower part of LCMTy merge/unmerge sequence. Intended use
// is for old mir tests. Since the changes to more/fewer elements it should no
// longer be possible to generate MIR like this when starting from llvm-ir
// because LCMTy approach was replaced with merge/unmerge to vector elements.
if (TypeIdx == 1) {
assert(SrcTy.isVector() && "Expected vector types");
assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
if ((DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) ||
(NarrowTy.getNumElements() >= SrcTy.getNumElements()))
return UnableToLegalize;
// %2:_(DstTy) = G_CONCAT_VECTORS %0:_(SrcTy), %1:_(SrcTy)
//
// %3:_(EltTy), %4, %5 = G_UNMERGE_VALUES %0:_(SrcTy)
// %6:_(EltTy), %7, %8 = G_UNMERGE_VALUES %1:_(SrcTy)
// %9:_(NarrowTy) = G_BUILD_VECTOR %3:_(EltTy), %4
// %10:_(NarrowTy) = G_BUILD_VECTOR %5:_(EltTy), %6
// %11:_(NarrowTy) = G_BUILD_VECTOR %7:_(EltTy), %8
// %2:_(DstTy) = G_CONCAT_VECTORS %9:_(NarrowTy), %10, %11
SmallVector<Register, 8> Elts;
LLT EltTy = MRI.getType(MI.getOperand(1).getReg()).getScalarType();
for (unsigned i = 1; i < MI.getNumOperands(); ++i) {
auto Unmerge = MIRBuilder.buildUnmerge(EltTy, MI.getOperand(i).getReg());
for (unsigned j = 0; j < Unmerge->getNumDefs(); ++j)
Elts.push_back(Unmerge.getReg(j));
}
SmallVector<Register, 8> NarrowTyElts;
unsigned NumNarrowTyElts = NarrowTy.getNumElements();
unsigned NumNarrowTyPieces = DstTy.getNumElements() / NumNarrowTyElts;
for (unsigned i = 0, Offset = 0; i < NumNarrowTyPieces;
++i, Offset += NumNarrowTyElts) {
ArrayRef<Register> Pieces(&Elts[Offset], NumNarrowTyElts);
NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0));
}
MIRBuilder.buildMerge(DstReg, NarrowTyElts);
MI.eraseFromParent();
return Legalized;
}
assert(TypeIdx == 0 && "Bad type index");
if ((NarrowTy.getSizeInBits() % SrcTy.getSizeInBits() != 0) ||
(DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0))
return UnableToLegalize;
// This is most likely SrcTy (smaller then register size) packed in DstTy
// (larger then register size) and since merge was not combined it will be
// lowered to bit sequence packing into register. Merge SrcTy to NarrowTy
// (register size) pieces first. Then merge each of NarrowTy pieces to DstTy.
// %0:_(DstTy) = G_MERGE_VALUES %1:_(SrcTy), %2, %3, %4
//
// %5:_(NarrowTy) = G_MERGE_VALUES %1:_(SrcTy), %2 - sequence of bits in reg
// %6:_(NarrowTy) = G_MERGE_VALUES %3:_(SrcTy), %4
// %0:_(DstTy) = G_MERGE_VALUES %5:_(NarrowTy), %6 - reg sequence
SmallVector<Register, 8> NarrowTyElts;
unsigned NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
unsigned NumSrcElts = SrcTy.isVector() ? SrcTy.getNumElements() : 1;
unsigned NumElts = NarrowTy.getNumElements() / NumSrcElts;
for (unsigned i = 0; i < NumParts; ++i) {
SmallVector<Register, 8> Sources;
for (unsigned j = 0; j < NumElts; ++j)
Sources.push_back(MI.getOperand(1 + i * NumElts + j).getReg());
NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Sources).getReg(0));
}
MIRBuilder.buildMerge(DstReg, NarrowTyElts);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
unsigned TypeIdx,
LLT NarrowVecTy) {
Register DstReg = MI.getOperand(0).getReg();
Register SrcVec = MI.getOperand(1).getReg();
Register InsertVal;
bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
if (IsInsert)
InsertVal = MI.getOperand(2).getReg();
Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
// TODO: Handle total scalarization case.
if (!NarrowVecTy.isVector())
return UnableToLegalize;
LLT VecTy = MRI.getType(SrcVec);
// If the index is a constant, we can really break this down as you would
// expect, and index into the target size pieces.
int64_t IdxVal;
auto MaybeCst = getIConstantVRegValWithLookThrough(Idx, MRI);
if (MaybeCst) {
IdxVal = MaybeCst->Value.getSExtValue();
// Avoid out of bounds indexing the pieces.
if (IdxVal >= VecTy.getNumElements()) {
MIRBuilder.buildUndef(DstReg);
MI.eraseFromParent();
return Legalized;
}
SmallVector<Register, 8> VecParts;
LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
// Build a sequence of NarrowTy pieces in VecParts for this operand.
LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
TargetOpcode::G_ANYEXT);
unsigned NewNumElts = NarrowVecTy.getNumElements();
LLT IdxTy = MRI.getType(Idx);
int64_t PartIdx = IdxVal / NewNumElts;
auto NewIdx =
MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
if (IsInsert) {
LLT PartTy = MRI.getType(VecParts[PartIdx]);
// Use the adjusted index to insert into one of the subvectors.
auto InsertPart = MIRBuilder.buildInsertVectorElement(
PartTy, VecParts[PartIdx], InsertVal, NewIdx);
VecParts[PartIdx] = InsertPart.getReg(0);
// Recombine the inserted subvector with the others to reform the result
// vector.
buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
} else {
MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
}
MI.eraseFromParent();
return Legalized;
}
// With a variable index, we can't perform the operation in a smaller type, so
// we're forced to expand this.
//
// TODO: We could emit a chain of compare/select to figure out which piece to
// index.
return lowerExtractInsertVectorElt(MI);
}
LegalizerHelper::LegalizeResult
LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx,
LLT NarrowTy) {
// FIXME: Don't know how to handle secondary types yet.
if (TypeIdx != 0)
return UnableToLegalize;
// This implementation doesn't work for atomics. Give up instead of doing
// something invalid.
if (LdStMI.isAtomic())
return UnableToLegalize;
bool IsLoad = isa<GLoad>(LdStMI);
Register ValReg = LdStMI.getReg(0);
Register AddrReg = LdStMI.getPointerReg();
LLT ValTy = MRI.getType(ValReg);
// FIXME: Do we need a distinct NarrowMemory legalize action?
if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) {
LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
return UnableToLegalize;
}
int NumParts = -1;
int NumLeftover = -1;
LLT LeftoverTy;
SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
if (IsLoad) {
std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
} else {
if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
NarrowLeftoverRegs)) {
NumParts = NarrowRegs.size();
NumLeftover = NarrowLeftoverRegs.size();
}
}
if (NumParts == -1)
return UnableToLegalize;
LLT PtrTy = MRI.getType(AddrReg);
const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
unsigned TotalSize = ValTy.getSizeInBits();
// Split the load/store into PartTy sized pieces starting at Offset. If this
// is a load, return the new registers in ValRegs. For a store, each elements
// of ValRegs should be PartTy. Returns the next offset that needs to be
// handled.
auto MMO = LdStMI.getMMO();
auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
unsigned Offset) -> unsigned {
MachineFunction &MF = MIRBuilder.getMF();
unsigned PartSize = PartTy.getSizeInBits();
for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
Offset += PartSize, ++Idx) {
unsigned ByteOffset = Offset / 8;
Register NewAddrReg;
MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
MachineMemOperand *NewMMO =
MF.getMachineMemOperand(&MMO, ByteOffset, PartTy);
if (IsLoad) {
Register Dst = MRI.createGenericVirtualRegister(PartTy);
ValRegs.push_back(Dst);
MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
} else {
MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
}
}
return Offset;
};
unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
// Handle the rest of the register if this isn't an even type breakdown.
if (LeftoverTy.isValid())
splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
if (IsLoad) {
insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
LeftoverTy, NarrowLeftoverRegs);
}
LdStMI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
LLT NarrowTy) {
using namespace TargetOpcode;
GenericMachineInstr &GMI = cast<GenericMachineInstr>(MI);
unsigned NumElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
switch (MI.getOpcode()) {
case G_IMPLICIT_DEF:
case G_TRUNC:
case G_AND:
case G_OR:
case G_XOR:
case G_ADD:
case G_SUB:
case G_MUL:
case G_PTR_ADD:
case G_SMULH:
case G_UMULH:
case G_FADD:
case G_FMUL:
case G_FSUB:
case G_FNEG:
case G_FABS:
case G_FCANONICALIZE:
case G_FDIV:
case G_FREM:
case G_FMA:
case G_FMAD:
case G_FPOW:
case G_FEXP:
case G_FEXP2:
case G_FLOG:
case G_FLOG2:
case G_FLOG10:
case G_FNEARBYINT:
case G_FCEIL:
case G_FFLOOR:
case G_FRINT:
case G_INTRINSIC_ROUND:
case G_INTRINSIC_ROUNDEVEN:
case G_INTRINSIC_TRUNC:
case G_FCOS:
case G_FSIN:
case G_FSQRT:
case G_BSWAP:
case G_BITREVERSE:
case G_SDIV:
case G_UDIV:
case G_SREM:
case G_UREM:
case G_SDIVREM:
case G_UDIVREM:
case G_SMIN:
case G_SMAX:
case G_UMIN:
case G_UMAX:
case G_ABS:
case G_FMINNUM:
case G_FMAXNUM:
case G_FMINNUM_IEEE:
case G_FMAXNUM_IEEE:
case G_FMINIMUM:
case G_FMAXIMUM:
case G_FSHL:
case G_FSHR:
case G_ROTL:
case G_ROTR:
case G_FREEZE:
case G_SADDSAT:
case G_SSUBSAT:
case G_UADDSAT:
case G_USUBSAT:
case G_UMULO:
case G_SMULO:
case G_SHL:
case G_LSHR:
case G_ASHR:
case G_SSHLSAT:
case G_USHLSAT:
case G_CTLZ:
case G_CTLZ_ZERO_UNDEF:
case G_CTTZ:
case G_CTTZ_ZERO_UNDEF:
case G_CTPOP:
case G_FCOPYSIGN:
case G_ZEXT:
case G_SEXT:
case G_ANYEXT:
case G_FPEXT:
case G_FPTRUNC:
case G_SITOFP:
case G_UITOFP:
case G_FPTOSI:
case G_FPTOUI:
case G_INTTOPTR:
case G_PTRTOINT:
case G_ADDRSPACE_CAST:
return fewerElementsVectorMultiEltType(GMI, NumElts);
case G_ICMP:
case G_FCMP:
return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*cpm predicate*/});
case G_SELECT:
if (MRI.getType(MI.getOperand(1).getReg()).isVector())
return fewerElementsVectorMultiEltType(GMI, NumElts);
return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*scalar cond*/});
case G_PHI:
return fewerElementsVectorPhi(GMI, NumElts);
case G_UNMERGE_VALUES:
return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
case G_BUILD_VECTOR:
assert(TypeIdx == 0 && "not a vector type index");
return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
case G_CONCAT_VECTORS:
if (TypeIdx != 1) // TODO: This probably does work as expected already.
return UnableToLegalize;
return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
case G_EXTRACT_VECTOR_ELT:
case G_INSERT_VECTOR_ELT:
return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
case G_LOAD:
case G_STORE:
return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy);
case G_SEXT_INREG:
return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*imm*/});
GISEL_VECREDUCE_CASES_NONSEQ
return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
case G_SHUFFLE_VECTOR:
return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy);
default:
return UnableToLegalize;
}
}
LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle(
MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
if (TypeIdx != 0)
return UnableToLegalize;
Register DstReg = MI.getOperand(0).getReg();
Register Src1Reg = MI.getOperand(1).getReg();
Register Src2Reg = MI.getOperand(2).getReg();
ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
LLT DstTy = MRI.getType(DstReg);
LLT Src1Ty = MRI.getType(Src1Reg);
LLT Src2Ty = MRI.getType(Src2Reg);
// The shuffle should be canonicalized by now.
if (DstTy != Src1Ty)
return UnableToLegalize;
if (DstTy != Src2Ty)
return UnableToLegalize;
if (!isPowerOf2_32(DstTy.getNumElements()))
return UnableToLegalize;
// We only support splitting a shuffle into 2, so adjust NarrowTy accordingly.
// Further legalization attempts will be needed to do split further.
NarrowTy =
DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2));
unsigned NewElts = NarrowTy.getNumElements();
SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs;
extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs);
extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs);
Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0],
SplitSrc2Regs[1]};
Register Hi, Lo;
// If Lo or Hi uses elements from at most two of the four input vectors, then
// express it as a vector shuffle of those two inputs. Otherwise extract the
// input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
SmallVector<int, 16> Ops;
for (unsigned High = 0; High < 2; ++High) {
Register &Output = High ? Hi : Lo;
// Build a shuffle mask for the output, discovering on the fly which
// input vectors to use as shuffle operands (recorded in InputUsed).
// If building a suitable shuffle vector proves too hard, then bail
// out with useBuildVector set.
unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered.
unsigned FirstMaskIdx = High * NewElts;
bool UseBuildVector = false;
for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
// The mask element. This indexes into the input.
int Idx = Mask[FirstMaskIdx + MaskOffset];
// The input vector this mask element indexes into.
unsigned Input = (unsigned)Idx / NewElts;
if (Input >= array_lengthof(Inputs)) {
// The mask element does not index into any input vector.
Ops.push_back(-1);
continue;
}
// Turn the index into an offset from the start of the input vector.
Idx -= Input * NewElts;
// Find or create a shuffle vector operand to hold this input.
unsigned OpNo;
for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
if (InputUsed[OpNo] == Input) {
// This input vector is already an operand.
break;
} else if (InputUsed[OpNo] == -1U) {
// Create a new operand for this input vector.
InputUsed[OpNo] = Input;
break;
}
}
if (OpNo >= array_lengthof(InputUsed)) {
// More than two input vectors used! Give up on trying to create a
// shuffle vector. Insert all elements into a BUILD_VECTOR instead.
UseBuildVector = true;
break;
}
// Add the mask index for the new shuffle vector.
Ops.push_back(Idx + OpNo * NewElts);
}
if (UseBuildVector) {
LLT EltTy = NarrowTy.getElementType();
SmallVector<Register, 16> SVOps;
// Extract the input elements by hand.
for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
// The mask element. This indexes into the input.
int Idx = Mask[FirstMaskIdx + MaskOffset];
// The input vector this mask element indexes into.
unsigned Input = (unsigned)Idx / NewElts;
if (Input >= array_lengthof(Inputs)) {
// The mask element is "undef" or indexes off the end of the input.
SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0));
continue;
}
// Turn the index into an offset from the start of the input vector.
Idx -= Input * NewElts;
// Extract the vector element by hand.
SVOps.push_back(MIRBuilder
.buildExtractVectorElement(
EltTy, Inputs[Input],
MIRBuilder.buildConstant(LLT::scalar(32), Idx))
.getReg(0));
}
// Construct the Lo/Hi output using a G_BUILD_VECTOR.
Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0);
} else if (InputUsed[0] == -1U) {
// No input vectors were used! The result is undefined.
Output = MIRBuilder.buildUndef(NarrowTy).getReg(0);
} else {
Register Op0 = Inputs[InputUsed[0]];
// If only one input was used, use an undefined vector for the other.
Register Op1 = InputUsed[1] == -1U
? MIRBuilder.buildUndef(NarrowTy).getReg(0)
: Inputs[InputUsed[1]];
// At least one input vector was used. Create a new shuffle vector.
Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0);
}
Ops.clear();
}
MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi});
MI.eraseFromParent();
return Legalized;
}
static unsigned getScalarOpcForReduction(unsigned Opc) {
unsigned ScalarOpc;
switch (Opc) {
case TargetOpcode::G_VECREDUCE_FADD:
ScalarOpc = TargetOpcode::G_FADD;
break;
case TargetOpcode::G_VECREDUCE_FMUL:
ScalarOpc = TargetOpcode::G_FMUL;
break;
case TargetOpcode::G_VECREDUCE_FMAX:
ScalarOpc = TargetOpcode::G_FMAXNUM;
break;
case TargetOpcode::G_VECREDUCE_FMIN:
ScalarOpc = TargetOpcode::G_FMINNUM;
break;
case TargetOpcode::G_VECREDUCE_ADD:
ScalarOpc = TargetOpcode::G_ADD;
break;
case TargetOpcode::G_VECREDUCE_MUL:
ScalarOpc = TargetOpcode::G_MUL;
break;
case TargetOpcode::G_VECREDUCE_AND:
ScalarOpc = TargetOpcode::G_AND;
break;
case TargetOpcode::G_VECREDUCE_OR:
ScalarOpc = TargetOpcode::G_OR;
break;
case TargetOpcode::G_VECREDUCE_XOR:
ScalarOpc = TargetOpcode::G_XOR;
break;
case TargetOpcode::G_VECREDUCE_SMAX:
ScalarOpc = TargetOpcode::G_SMAX;
break;
case TargetOpcode::G_VECREDUCE_SMIN:
ScalarOpc = TargetOpcode::G_SMIN;
break;
case TargetOpcode::G_VECREDUCE_UMAX:
ScalarOpc = TargetOpcode::G_UMAX;
break;
case TargetOpcode::G_VECREDUCE_UMIN:
ScalarOpc = TargetOpcode::G_UMIN;
break;
default:
llvm_unreachable("Unhandled reduction");
}
return ScalarOpc;
}
LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
unsigned Opc = MI.getOpcode();
assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&
Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
"Sequential reductions not expected");
if (TypeIdx != 1)
return UnableToLegalize;
// The semantics of the normal non-sequential reductions allow us to freely
// re-associate the operation.
Register SrcReg = MI.getOperand(1).getReg();
LLT SrcTy = MRI.getType(SrcReg);
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
if (NarrowTy.isVector() &&
(SrcTy.getNumElements() % NarrowTy.getNumElements() != 0))
return UnableToLegalize;
unsigned ScalarOpc = getScalarOpcForReduction(Opc);
SmallVector<Register> SplitSrcs;
// If NarrowTy is a scalar then we're being asked to scalarize.
const unsigned NumParts =
NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements()
: SrcTy.getNumElements();
extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
if (NarrowTy.isScalar()) {
if (DstTy != NarrowTy)
return UnableToLegalize; // FIXME: handle implicit extensions.
if (isPowerOf2_32(NumParts)) {
// Generate a tree of scalar operations to reduce the critical path.
SmallVector<Register> PartialResults;
unsigned NumPartsLeft = NumParts;
while (NumPartsLeft > 1) {
for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) {
PartialResults.emplace_back(
MIRBuilder
.buildInstr(ScalarOpc, {NarrowTy},
{SplitSrcs[Idx], SplitSrcs[Idx + 1]})
.getReg(0));
}
SplitSrcs = PartialResults;
PartialResults.clear();
NumPartsLeft = SplitSrcs.size();
}
assert(SplitSrcs.size() == 1);
MIRBuilder.buildCopy(DstReg, SplitSrcs[0]);
MI.eraseFromParent();
return Legalized;
}
// If we can't generate a tree, then just do sequential operations.
Register Acc = SplitSrcs[0];
for (unsigned Idx = 1; Idx < NumParts; ++Idx)
Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]})
.getReg(0);
MIRBuilder.buildCopy(DstReg, Acc);
MI.eraseFromParent();
return Legalized;
}
SmallVector<Register> PartialReductions;
for (unsigned Part = 0; Part < NumParts; ++Part) {
PartialReductions.push_back(
MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
}
// If the types involved are powers of 2, we can generate intermediate vector
// ops, before generating a final reduction operation.
if (isPowerOf2_32(SrcTy.getNumElements()) &&
isPowerOf2_32(NarrowTy.getNumElements())) {
return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
}
Register Acc = PartialReductions[0];
for (unsigned Part = 1; Part < NumParts; ++Part) {
if (Part == NumParts - 1) {
MIRBuilder.buildInstr(ScalarOpc, {DstReg},
{Acc, PartialReductions[Part]});
} else {
Acc = MIRBuilder
.buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
.getReg(0);
}
}
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
LLT SrcTy, LLT NarrowTy,
unsigned ScalarOpc) {
SmallVector<Register> SplitSrcs;
// Split the sources into NarrowTy size pieces.
extractParts(SrcReg, NarrowTy,
SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
// We're going to do a tree reduction using vector operations until we have
// one NarrowTy size value left.
while (SplitSrcs.size() > 1) {
SmallVector<Register> PartialRdxs;
for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
Register LHS = SplitSrcs[Idx];
Register RHS = SplitSrcs[Idx + 1];
// Create the intermediate vector op.
Register Res =
MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
PartialRdxs.push_back(Res);
}
SplitSrcs = std::move(PartialRdxs);
}
// Finally generate the requested NarrowTy based reduction.
Observer.changingInstr(MI);
MI.getOperand(1).setReg(SplitSrcs[0]);
Observer.changedInstr(MI);
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
const LLT HalfTy, const LLT AmtTy) {
Register InL = MRI.createGenericVirtualRegister(HalfTy);
Register InH = MRI.createGenericVirtualRegister(HalfTy);
MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
if (Amt.isZero()) {
MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
MI.eraseFromParent();
return Legalized;
}
LLT NVT = HalfTy;
unsigned NVTBits = HalfTy.getSizeInBits();
unsigned VTBits = 2 * NVTBits;
SrcOp Lo(Register(0)), Hi(Register(0));
if (MI.getOpcode() == TargetOpcode::G_SHL) {
if (Amt.ugt(VTBits)) {
Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
} else if (Amt.ugt(NVTBits)) {
Lo = MIRBuilder.buildConstant(NVT, 0);
Hi = MIRBuilder.buildShl(NVT, InL,
MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
} else if (Amt == NVTBits) {
Lo = MIRBuilder.buildConstant(NVT, 0);
Hi = InL;
} else {
Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
auto OrLHS =
MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
auto OrRHS = MIRBuilder.buildLShr(
NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
}
} else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
if (Amt.ugt(VTBits)) {
Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
} else if (Amt.ugt(NVTBits)) {
Lo = MIRBuilder.buildLShr(NVT, InH,
MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
Hi = MIRBuilder.buildConstant(NVT, 0);
} else if (Amt == NVTBits) {
Lo = InH;
Hi = MIRBuilder.buildConstant(NVT, 0);
} else {
auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
auto OrRHS = MIRBuilder.buildShl(
NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
}
} else {
if (Amt.ugt(VTBits)) {
Hi = Lo = MIRBuilder.buildAShr(
NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
} else if (Amt.ugt(NVTBits)) {
Lo = MIRBuilder.buildAShr(NVT, InH,
MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
Hi = MIRBuilder.buildAShr(NVT, InH,
MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
} else if (Amt == NVTBits) {
Lo = InH;
Hi = MIRBuilder.buildAShr(NVT, InH,
MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
} else {
auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
auto OrRHS = MIRBuilder.buildShl(
NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
}
}
MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
MI.eraseFromParent();
return Legalized;
}
// TODO: Optimize if constant shift amount.
LegalizerHelper::LegalizeResult
LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
LLT RequestedTy) {
if (TypeIdx == 1) {
Observer.changingInstr(MI);
narrowScalarSrc(MI, RequestedTy, 2);
Observer.changedInstr(MI);
return Legalized;
}
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
if (DstTy.isVector())
return UnableToLegalize;
Register Amt = MI.getOperand(2).getReg();
LLT ShiftAmtTy = MRI.getType(Amt);
const unsigned DstEltSize = DstTy.getScalarSizeInBits();
if (DstEltSize % 2 != 0)
return UnableToLegalize;
// Ignore the input type. We can only go to exactly half the size of the
// input. If that isn't small enough, the resulting pieces will be further
// legalized.
const unsigned NewBitSize = DstEltSize / 2;
const LLT HalfTy = LLT::scalar(NewBitSize);
const LLT CondTy = LLT::scalar(1);
if (auto VRegAndVal = getIConstantVRegValWithLookThrough(Amt, MRI)) {
return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy,
ShiftAmtTy);
}
// TODO: Expand with known bits.
// Handle the fully general expansion by an unknown amount.
auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
Register InL = MRI.createGenericVirtualRegister(HalfTy);
Register InH = MRI.createGenericVirtualRegister(HalfTy);
MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
Register ResultRegs[2];
switch (MI.getOpcode()) {
case TargetOpcode::G_SHL: {
// Short: ShAmt < NewBitSize
auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
// Long: ShAmt >= NewBitSize
auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero.
auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
auto Hi = MIRBuilder.buildSelect(
HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
ResultRegs[0] = Lo.getReg(0);
ResultRegs[1] = Hi.getReg(0);
break;
}
case TargetOpcode::G_LSHR:
case TargetOpcode::G_ASHR: {
// Short: ShAmt < NewBitSize
auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
// Long: ShAmt >= NewBitSize
MachineInstrBuilder HiL;
if (MI.getOpcode() == TargetOpcode::G_LSHR) {
HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero.
} else {
auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part.
}
auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
{InH, AmtExcess}); // Lo from Hi part.
auto Lo = MIRBuilder.buildSelect(
HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
ResultRegs[0] = Lo.getReg(0);
ResultRegs[1] = Hi.getReg(0);
break;
}
default:
llvm_unreachable("not a shift");
}
MIRBuilder.buildMerge(DstReg, ResultRegs);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
LLT MoreTy) {
assert(TypeIdx == 0 && "Expecting only Idx 0");
Observer.changingInstr(MI);
for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
moreElementsVectorSrc(MI, MoreTy, I);
}
MachineBasicBlock &MBB = *MI.getParent();
MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
moreElementsVectorDst(MI, MoreTy, 0);
Observer.changedInstr(MI);
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
LLT MoreTy) {
unsigned Opc = MI.getOpcode();
switch (Opc) {
case TargetOpcode::G_IMPLICIT_DEF:
case TargetOpcode::G_LOAD: {
if (TypeIdx != 0)
return UnableToLegalize;
Observer.changingInstr(MI);
moreElementsVectorDst(MI, MoreTy, 0);
Observer.changedInstr(MI);
return Legalized;
}
case TargetOpcode::G_STORE:
if (TypeIdx != 0)
return UnableToLegalize;
Observer.changingInstr(MI);
moreElementsVectorSrc(MI, MoreTy, 0);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_AND:
case TargetOpcode::G_OR:
case TargetOpcode::G_XOR:
case TargetOpcode::G_ADD:
case TargetOpcode::G_SUB:
case TargetOpcode::G_MUL:
case TargetOpcode::G_FADD:
case TargetOpcode::G_FMUL:
case TargetOpcode::G_UADDSAT:
case TargetOpcode::G_USUBSAT:
case TargetOpcode::G_SADDSAT:
case TargetOpcode::G_SSUBSAT:
case TargetOpcode::G_SMIN:
case TargetOpcode::G_SMAX:
case TargetOpcode::G_UMIN:
case TargetOpcode::G_UMAX:
case TargetOpcode::G_FMINNUM:
case TargetOpcode::G_FMAXNUM:
case TargetOpcode::G_FMINNUM_IEEE:
case TargetOpcode::G_FMAXNUM_IEEE:
case TargetOpcode::G_FMINIMUM:
case TargetOpcode::G_FMAXIMUM: {
Observer.changingInstr(MI);
moreElementsVectorSrc(MI, MoreTy, 1);
moreElementsVectorSrc(MI, MoreTy, 2);
moreElementsVectorDst(MI, MoreTy, 0);
Observer.changedInstr(MI);
return Legalized;
}
case TargetOpcode::G_FMA:
case TargetOpcode::G_FSHR:
case TargetOpcode::G_FSHL: {
Observer.changingInstr(MI);
moreElementsVectorSrc(MI, MoreTy, 1);
moreElementsVectorSrc(MI, MoreTy, 2);
moreElementsVectorSrc(MI, MoreTy, 3);
moreElementsVectorDst(MI, MoreTy, 0);
Observer.changedInstr(MI);
return Legalized;
}
case TargetOpcode::G_EXTRACT:
if (TypeIdx != 1)
return UnableToLegalize;
Observer.changingInstr(MI);
moreElementsVectorSrc(MI, MoreTy, 1);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_INSERT:
case TargetOpcode::G_FREEZE:
case TargetOpcode::G_FNEG:
case TargetOpcode::G_FABS:
case TargetOpcode::G_BSWAP:
case TargetOpcode::G_FCANONICALIZE:
case TargetOpcode::G_SEXT_INREG:
if (TypeIdx != 0)
return UnableToLegalize;
Observer.changingInstr(MI);
moreElementsVectorSrc(MI, MoreTy, 1);
moreElementsVectorDst(MI, MoreTy, 0);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_SELECT:
if (TypeIdx != 0)
return UnableToLegalize;
if (MRI.getType(MI.getOperand(1).getReg()).isVector())
return UnableToLegalize;
Observer.changingInstr(MI);
moreElementsVectorSrc(MI, MoreTy, 2);
moreElementsVectorSrc(MI, MoreTy, 3);
moreElementsVectorDst(MI, MoreTy, 0);
Observer.changedInstr(MI);
return Legalized;
case TargetOpcode::G_UNMERGE_VALUES:
return UnableToLegalize;
case TargetOpcode::G_PHI:
return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
case TargetOpcode::G_SHUFFLE_VECTOR:
return moreElementsVectorShuffle(MI, TypeIdx, MoreTy);
case TargetOpcode::G_BUILD_VECTOR: {
SmallVector<SrcOp, 8> Elts;
for (auto Op : MI.uses()) {
Elts.push_back(Op.getReg());
}
for (unsigned i = Elts.size(); i < MoreTy.getNumElements(); ++i) {
Elts.push_back(MIRBuilder.buildUndef(MoreTy.getScalarType()));
}
MIRBuilder.buildDeleteTrailingVectorElements(
MI.getOperand(0).getReg(), MIRBuilder.buildInstr(Opc, {MoreTy}, Elts));
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_TRUNC: {
Observer.changingInstr(MI);
moreElementsVectorSrc(MI, MoreTy, 1);
moreElementsVectorDst(MI, MoreTy, 0);
Observer.changedInstr(MI);
return Legalized;
}
default:
return UnableToLegalize;
}
}
LegalizerHelper::LegalizeResult
LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI,
unsigned int TypeIdx, LLT MoreTy) {
if (TypeIdx != 0)
return UnableToLegalize;
Register DstReg = MI.getOperand(0).getReg();
Register Src1Reg = MI.getOperand(1).getReg();
Register Src2Reg = MI.getOperand(2).getReg();
ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
LLT DstTy = MRI.getType(DstReg);
LLT Src1Ty = MRI.getType(Src1Reg);
LLT Src2Ty = MRI.getType(Src2Reg);
unsigned NumElts = DstTy.getNumElements();
unsigned WidenNumElts = MoreTy.getNumElements();
// Expect a canonicalized shuffle.
if (DstTy != Src1Ty || DstTy != Src2Ty)
return UnableToLegalize;
moreElementsVectorSrc(MI, MoreTy, 1);
moreElementsVectorSrc(MI, MoreTy, 2);
// Adjust mask based on new input vector length.
SmallVector<int, 16> NewMask;
for (unsigned I = 0; I != NumElts; ++I) {
int Idx = Mask[I];
if (Idx < static_cast<int>(NumElts))
NewMask.push_back(Idx);
else
NewMask.push_back(Idx - NumElts + WidenNumElts);
}
for (unsigned I = NumElts; I != WidenNumElts; ++I)
NewMask.push_back(-1);
moreElementsVectorDst(MI, MoreTy, 0);
MIRBuilder.setInstrAndDebugLoc(MI);
MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(),
MI.getOperand(1).getReg(),
MI.getOperand(2).getReg(), NewMask);
MI.eraseFromParent();
return Legalized;
}
void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
ArrayRef<Register> Src1Regs,
ArrayRef<Register> Src2Regs,
LLT NarrowTy) {
MachineIRBuilder &B = MIRBuilder;
unsigned SrcParts = Src1Regs.size();
unsigned DstParts = DstRegs.size();
unsigned DstIdx = 0; // Low bits of the result.
Register FactorSum =
B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
DstRegs[DstIdx] = FactorSum;
unsigned CarrySumPrevDstIdx;
SmallVector<Register, 4> Factors;
for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
// Collect low parts of muls for DstIdx.
for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
i <= std::min(DstIdx, SrcParts - 1); ++i) {
MachineInstrBuilder Mul =
B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
Factors.push_back(Mul.getReg(0));
}
// Collect high parts of muls from previous DstIdx.
for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
MachineInstrBuilder Umulh =
B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
Factors.push_back(Umulh.getReg(0));
}
// Add CarrySum from additions calculated for previous DstIdx.
if (DstIdx != 1) {
Factors.push_back(CarrySumPrevDstIdx);
}
Register CarrySum;
// Add all factors and accumulate all carries into CarrySum.
if (DstIdx != DstParts - 1) {
MachineInstrBuilder Uaddo =
B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
FactorSum = Uaddo.getReg(0);
CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
for (unsigned i = 2; i < Factors.size(); ++i) {
MachineInstrBuilder Uaddo =
B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
FactorSum = Uaddo.getReg(0);
MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
}
} else {
// Since value for the next index is not calculated, neither is CarrySum.
FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
for (unsigned i = 2; i < Factors.size(); ++i)
FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
}
CarrySumPrevDstIdx = CarrySum;
DstRegs[DstIdx] = FactorSum;
Factors.clear();
}
}
LegalizerHelper::LegalizeResult
LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
LLT NarrowTy) {
if (TypeIdx != 0)
return UnableToLegalize;
Register DstReg = MI.getOperand(0).getReg();
LLT DstType = MRI.getType(DstReg);
// FIXME: add support for vector types
if (DstType.isVector())
return UnableToLegalize;
unsigned Opcode = MI.getOpcode();
unsigned OpO, OpE, OpF;
switch (Opcode) {
case TargetOpcode::G_SADDO:
case TargetOpcode::G_SADDE:
case TargetOpcode::G_UADDO:
case TargetOpcode::G_UADDE:
case TargetOpcode::G_ADD:
OpO = TargetOpcode::G_UADDO;
OpE = TargetOpcode::G_UADDE;
OpF = TargetOpcode::G_UADDE;
if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
OpF = TargetOpcode::G_SADDE;
break;
case TargetOpcode::G_SSUBO:
case TargetOpcode::G_SSUBE:
case TargetOpcode::G_USUBO:
case TargetOpcode::G_USUBE:
case TargetOpcode::G_SUB:
OpO = TargetOpcode::G_USUBO;
OpE = TargetOpcode::G_USUBE;
OpF = TargetOpcode::G_USUBE;
if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
OpF = TargetOpcode::G_SSUBE;
break;
default:
llvm_unreachable("Unexpected add/sub opcode!");
}
// 1 for a plain add/sub, 2 if this is an operation with a carry-out.
unsigned NumDefs = MI.getNumExplicitDefs();
Register Src1 = MI.getOperand(NumDefs).getReg();
Register Src2 = MI.getOperand(NumDefs + 1).getReg();
Register CarryDst, CarryIn;
if (NumDefs == 2)
CarryDst = MI.getOperand(1).getReg();
if (MI.getNumOperands() == NumDefs + 3)
CarryIn = MI.getOperand(NumDefs + 2).getReg();
LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
LLT LeftoverTy, DummyTy;
SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs;
extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left);
extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left);
int NarrowParts = Src1Regs.size();
for (int I = 0, E = Src1Left.size(); I != E; ++I) {
Src1Regs.push_back(Src1Left[I]);
Src2Regs.push_back(Src2Left[I]);
}
DstRegs.reserve(Src1Regs.size());
for (int i = 0, e = Src1Regs.size(); i != e; ++i) {
Register DstReg =
MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i]));
Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
// Forward the final carry-out to the destination register
if (i == e - 1 && CarryDst)
CarryOut = CarryDst;
if (!CarryIn) {
MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
{Src1Regs[i], Src2Regs[i]});
} else if (i == e - 1) {
MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
{Src1Regs[i], Src2Regs[i], CarryIn});
} else {
MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
{Src1Regs[i], Src2Regs[i], CarryIn});
}
DstRegs.push_back(DstReg);
CarryIn = CarryOut;
}
insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy,
makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy,
makeArrayRef(DstRegs).drop_front(NarrowParts));
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
Register DstReg = MI.getOperand(0).getReg();
Register Src1 = MI.getOperand(1).getReg();
Register Src2 = MI.getOperand(2).getReg();
LLT Ty = MRI.getType(DstReg);
if (Ty.isVector())
return UnableToLegalize;
unsigned Size = Ty.getSizeInBits();
unsigned NarrowSize = NarrowTy.getSizeInBits();
if (Size % NarrowSize != 0)
return UnableToLegalize;
unsigned NumParts = Size / NarrowSize;
bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
unsigned DstTmpParts = NumParts * (IsMulHigh ? 2 : 1);
SmallVector<Register, 2> Src1Parts, Src2Parts;
SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
extractParts(Src1, NarrowTy, NumParts, Src1Parts);
extractParts(Src2, NarrowTy, NumParts, Src2Parts);
multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
// Take only high half of registers if this is high mul.
ArrayRef<Register> DstRegs(&DstTmpRegs[DstTmpParts - NumParts], NumParts);
MIRBuilder.buildMerge(DstReg, DstRegs);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
LLT NarrowTy) {
if (TypeIdx != 0)
return UnableToLegalize;
bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
Register Src = MI.getOperand(1).getReg();
LLT SrcTy = MRI.getType(Src);
// If all finite floats fit into the narrowed integer type, we can just swap
// out the result type. This is practically only useful for conversions from
// half to at least 16-bits, so just handle the one case.
if (SrcTy.getScalarType() != LLT::scalar(16) ||
NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
return UnableToLegalize;
Observer.changingInstr(MI);
narrowScalarDst(MI, NarrowTy, 0,
IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
Observer.changedInstr(MI);
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
LLT NarrowTy) {
if (TypeIdx != 1)
return UnableToLegalize;
uint64_t NarrowSize = NarrowTy.getSizeInBits();
int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
// FIXME: add support for when SizeOp1 isn't an exact multiple of
// NarrowSize.
if (SizeOp1 % NarrowSize != 0)
return UnableToLegalize;
int NumParts = SizeOp1 / NarrowSize;
SmallVector<Register, 2> SrcRegs, DstRegs;
SmallVector<uint64_t, 2> Indexes;
extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
Register OpReg = MI.getOperand(0).getReg();
uint64_t OpStart = MI.getOperand(2).getImm();
uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
for (int i = 0; i < NumParts; ++i) {
unsigned SrcStart = i * NarrowSize;
if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
// No part of the extract uses this subregister, ignore it.
continue;
} else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
// The entire subregister is extracted, forward the value.
DstRegs.push_back(SrcRegs[i]);
continue;
}
// OpSegStart is where this destination segment would start in OpReg if it
// extended infinitely in both directions.
int64_t ExtractOffset;
uint64_t SegSize;
if (OpStart < SrcStart) {
ExtractOffset = 0;
SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
} else {
ExtractOffset = OpStart - SrcStart;
SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
}
Register SegReg = SrcRegs[i];
if (ExtractOffset != 0 || SegSize != NarrowSize) {
// A genuine extract is needed.
SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
}
DstRegs.push_back(SegReg);
}
Register DstReg = MI.getOperand(0).getReg();
if (MRI.getType(DstReg).isVector())
MIRBuilder.buildBuildVector(DstReg, DstRegs);
else if (DstRegs.size() > 1)
MIRBuilder.buildMerge(DstReg, DstRegs);
else
MIRBuilder.buildCopy(DstReg, DstRegs[0]);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
LLT NarrowTy) {
// FIXME: Don't know how to handle secondary types yet.
if (TypeIdx != 0)
return UnableToLegalize;
SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs;
SmallVector<uint64_t, 2> Indexes;
LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
LLT LeftoverTy;
extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs,
LeftoverRegs);
for (Register Reg : LeftoverRegs)
SrcRegs.push_back(Reg);
uint64_t NarrowSize = NarrowTy.getSizeInBits();
Register OpReg = MI.getOperand(2).getReg();
uint64_t OpStart = MI.getOperand(3).getImm();
uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
for (int I = 0, E = SrcRegs.size(); I != E; ++I) {
unsigned DstStart = I * NarrowSize;
if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
// The entire subregister is defined by this insert, forward the new
// value.
DstRegs.push_back(OpReg);
continue;
}
Register SrcReg = SrcRegs[I];
if (MRI.getType(SrcRegs[I]) == LeftoverTy) {
// The leftover reg is smaller than NarrowTy, so we need to extend it.
SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]);
}
if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
// No part of the insert affects this subregister, forward the original.
DstRegs.push_back(SrcReg);
continue;
}
// OpSegStart is where this destination segment would start in OpReg if it
// extended infinitely in both directions.
int64_t ExtractOffset, InsertOffset;
uint64_t SegSize;
if (OpStart < DstStart) {
InsertOffset = 0;
ExtractOffset = DstStart - OpStart;
SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
} else {
InsertOffset = OpStart - DstStart;
ExtractOffset = 0;
SegSize =
std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
}
Register SegReg = OpReg;
if (ExtractOffset != 0 || SegSize != OpSize) {
// A genuine extract is needed.
SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
}
Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset);
DstRegs.push_back(DstReg);
}
uint64_t WideSize = DstRegs.size() * NarrowSize;
Register DstReg = MI.getOperand(0).getReg();
if (WideSize > RegTy.getSizeInBits()) {
Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize));
MIRBuilder.buildMerge(MergeReg, DstRegs);
MIRBuilder.buildTrunc(DstReg, MergeReg);
} else
MIRBuilder.buildMerge(DstReg, DstRegs);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
LLT NarrowTy) {
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
assert(MI.getNumOperands() == 3 && TypeIdx == 0);
SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
LLT LeftoverTy;
if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
Src0Regs, Src0LeftoverRegs))
return UnableToLegalize;
LLT Unused;
if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
Src1Regs, Src1LeftoverRegs))
llvm_unreachable("inconsistent extractParts result");
for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
{Src0Regs[I], Src1Regs[I]});
DstRegs.push_back(Inst.getReg(0));
}
for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
auto Inst = MIRBuilder.buildInstr(
MI.getOpcode(),
{LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
DstLeftoverRegs.push_back(Inst.getReg(0));
}
insertParts(DstReg, DstTy, NarrowTy, DstRegs,
LeftoverTy, DstLeftoverRegs);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
LLT NarrowTy) {
if (TypeIdx != 0)
return UnableToLegalize;
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(DstReg);
if (DstTy.isVector())
return UnableToLegalize;
SmallVector<Register, 8> Parts;
LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
LLT NarrowTy) {
if (TypeIdx != 0)
return UnableToLegalize;
Register CondReg = MI.getOperand(1).getReg();
LLT CondTy = MRI.getType(CondReg);
if (CondTy.isVector()) // TODO: Handle vselect
return UnableToLegalize;
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
LLT LeftoverTy;
if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
Src1Regs, Src1LeftoverRegs))
return UnableToLegalize;
LLT Unused;
if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
Src2Regs, Src2LeftoverRegs))
llvm_unreachable("inconsistent extractParts result");
for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
auto Select = MIRBuilder.buildSelect(NarrowTy,
CondReg, Src1Regs[I], Src2Regs[I]);
DstRegs.push_back(Select.getReg(0));
}
for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
auto Select = MIRBuilder.buildSelect(
LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
DstLeftoverRegs.push_back(Select.getReg(0));
}
insertParts(DstReg, DstTy, NarrowTy, DstRegs,
LeftoverTy, DstLeftoverRegs);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
LLT NarrowTy) {
if (TypeIdx != 1)
return UnableToLegalize;
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(DstReg);
LLT SrcTy = MRI.getType(SrcReg);
unsigned NarrowSize = NarrowTy.getSizeInBits();
if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
MachineIRBuilder &B = MIRBuilder;
auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
// ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
auto C_0 = B.buildConstant(NarrowTy, 0);
auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
UnmergeSrc.getReg(1), C_0);
auto LoCTLZ = IsUndef ?
B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
MI.eraseFromParent();
return Legalized;
}
return UnableToLegalize;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
LLT NarrowTy) {
if (TypeIdx != 1)
return UnableToLegalize;
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(DstReg);
LLT SrcTy = MRI.getType(SrcReg);
unsigned NarrowSize = NarrowTy.getSizeInBits();
if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
MachineIRBuilder &B = MIRBuilder;
auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
// cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
auto C_0 = B.buildConstant(NarrowTy, 0);
auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
UnmergeSrc.getReg(0), C_0);
auto HiCTTZ = IsUndef ?
B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
MI.eraseFromParent();
return Legalized;
}
return UnableToLegalize;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
LLT NarrowTy) {
if (TypeIdx != 1)
return UnableToLegalize;
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
unsigned NarrowSize = NarrowTy.getSizeInBits();
if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
MI.eraseFromParent();
return Legalized;
}
return UnableToLegalize;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerBitCount(MachineInstr &MI) {
unsigned Opc = MI.getOpcode();
const auto &TII = MIRBuilder.getTII();
auto isSupported = [this](const LegalityQuery &Q) {
auto QAction = LI.getAction(Q).Action;
return QAction == Legal || QAction == Libcall || QAction == Custom;
};
switch (Opc) {
default:
return UnableToLegalize;
case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
// This trivially expands to CTLZ.
Observer.changingInstr(MI);
MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
Observer.changedInstr(MI);
return Legalized;
}
case TargetOpcode::G_CTLZ: {
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(DstReg);
LLT SrcTy = MRI.getType(SrcReg);
unsigned Len = SrcTy.getSizeInBits();
if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
// If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
auto ICmp = MIRBuilder.buildICmp(
CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
MI.eraseFromParent();
return Legalized;
}
// for now, we do this:
// NewLen = NextPowerOf2(Len);
// x = x | (x >> 1);
// x = x | (x >> 2);
// ...
// x = x | (x >>16);
// x = x | (x >>32); // for 64-bit input
// Upto NewLen/2
// return Len - popcount(x);
//
// Ref: "Hacker's Delight" by Henry Warren
Register Op = SrcReg;
unsigned NewLen = PowerOf2Ceil(Len);
for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
auto MIBOp = MIRBuilder.buildOr(
SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
Op = MIBOp.getReg(0);
}
auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
MIBPop);
MI.eraseFromParent();
return Legalized;
}
case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
// This trivially expands to CTTZ.
Observer.changingInstr(MI);
MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
Observer.changedInstr(MI);
return Legalized;
}
case TargetOpcode::G_CTTZ: {
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(DstReg);
LLT SrcTy = MRI.getType(SrcReg);
unsigned Len = SrcTy.getSizeInBits();
if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
// If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
// zero.
auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
auto ICmp = MIRBuilder.buildICmp(
CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
MI.eraseFromParent();
return Legalized;
}
// for now, we use: { return popcount(~x & (x - 1)); }
// unless the target has ctlz but not ctpop, in which case we use:
// { return 32 - nlz(~x & (x-1)); }
// Ref: "Hacker's Delight" by Henry Warren
auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
auto MIBTmp = MIRBuilder.buildAnd(
SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
MI.eraseFromParent();
return Legalized;
}
MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
MI.getOperand(1).setReg(MIBTmp.getReg(0));
return Legalized;
}
case TargetOpcode::G_CTPOP: {
Register SrcReg = MI.getOperand(1).getReg();
LLT Ty = MRI.getType(SrcReg);
unsigned Size = Ty.getSizeInBits();
MachineIRBuilder &B = MIRBuilder;
// Count set bits in blocks of 2 bits. Default approach would be
// B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
// We use following formula instead:
// B2Count = val - { (val >> 1) & 0x55555555 }
// since it gives same result in blocks of 2 with one instruction less.
auto C_1 = B.buildConstant(Ty, 1);
auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
// In order to get count in blocks of 4 add values from adjacent block of 2.
// B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
auto C_2 = B.buildConstant(Ty, 2);
auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
// For count in blocks of 8 bits we don't have to mask high 4 bits before
// addition since count value sits in range {0,...,8} and 4 bits are enough
// to hold such binary values. After addition high 4 bits still hold count
// of set bits in high 4 bit block, set them to zero and get 8 bit result.
// B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
auto C_4 = B.buildConstant(Ty, 4);
auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
// 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
// bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
// Shift count result from 8 high bits to low bits.
auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
MI.eraseFromParent();
return Legalized;
}
}
}
// Check that (every element of) Reg is undef or not an exact multiple of BW.
static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
Register Reg, unsigned BW) {
return matchUnaryPredicate(
MRI, Reg,
[=](const Constant *C) {
// Null constant here means an undef.
const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
return !CI || CI->getValue().urem(BW) != 0;
},
/*AllowUndefs*/ true);
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
Register Dst = MI.getOperand(0).getReg();
Register X = MI.getOperand(1).getReg();
Register Y = MI.getOperand(2).getReg();
Register Z = MI.getOperand(3).getReg();
LLT Ty = MRI.getType(Dst);
LLT ShTy = MRI.getType(Z);
unsigned BW = Ty.getScalarSizeInBits();
if (!isPowerOf2_32(BW))
return UnableToLegalize;
const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
// fshl X, Y, Z -> fshr X, Y, -Z
// fshr X, Y, Z -> fshl X, Y, -Z
auto Zero = MIRBuilder.buildConstant(ShTy, 0);
Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
} else {
// fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
// fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
auto One = MIRBuilder.buildConstant(ShTy, 1);
if (IsFSHL) {
Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
} else {
X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
}
Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
}
MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
Register Dst = MI.getOperand(0).getReg();
Register X = MI.getOperand(1).getReg();
Register Y = MI.getOperand(2).getReg();
Register Z = MI.getOperand(3).getReg();
LLT Ty = MRI.getType(Dst);
LLT ShTy = MRI.getType(Z);
const unsigned BW = Ty.getScalarSizeInBits();
const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
Register ShX, ShY;
Register ShAmt, InvShAmt;
// FIXME: Emit optimized urem by constant instead of letting it expand later.
if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
// fshl: X << C | Y >> (BW - C)
// fshr: X << (BW - C) | Y >> C
// where C = Z % BW is not zero
auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
} else {
// fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
// fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
if (isPowerOf2_32(BW)) {
// Z % BW -> Z & (BW - 1)
ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
// (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
auto NotZ = MIRBuilder.buildNot(ShTy, Z);
InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
} else {
auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
}
auto One = MIRBuilder.buildConstant(ShTy, 1);
if (IsFSHL) {
ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
} else {
auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
}
}
MIRBuilder.buildOr(Dst, ShX, ShY);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
// These operations approximately do the following (while avoiding undefined
// shifts by BW):
// G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
// G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
Register Dst = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(Dst);
LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
// TODO: Use smarter heuristic that accounts for vector legalization.
if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
return lowerFunnelShiftAsShifts(MI);
// This only works for powers of 2, fallback to shifts if it fails.
LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
if (Result == UnableToLegalize)
return lowerFunnelShiftAsShifts(MI);
return Result;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
Register Amt = MI.getOperand(2).getReg();
LLT AmtTy = MRI.getType(Amt);
auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
Register Amt = MI.getOperand(2).getReg();
LLT DstTy = MRI.getType(Dst);
LLT SrcTy = MRI.getType(Src);
LLT AmtTy = MRI.getType(Amt);
unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
MIRBuilder.setInstrAndDebugLoc(MI);
// If a rotate in the other direction is supported, use it.
unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
isPowerOf2_32(EltSizeInBits))
return lowerRotateWithReverseRotate(MI);
// If a funnel shift is supported, use it.
unsigned FShOpc = IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR;
unsigned RevFsh = !IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR;
bool IsFShLegal = false;
if ((IsFShLegal = LI.isLegalOrCustom({FShOpc, {DstTy, AmtTy}})) ||
LI.isLegalOrCustom({RevFsh, {DstTy, AmtTy}})) {
auto buildFunnelShift = [&](unsigned Opc, Register R1, Register R2,
Register R3) {
MIRBuilder.buildInstr(Opc, {R1}, {R2, R2, R3});
MI.eraseFromParent();
return Legalized;
};
// If a funnel shift in the other direction is supported, use it.
if (IsFShLegal) {
return buildFunnelShift(FShOpc, Dst, Src, Amt);
} else if (isPowerOf2_32(EltSizeInBits)) {
Amt = MIRBuilder.buildNeg(DstTy, Amt).getReg(0);
return buildFunnelShift(RevFsh, Dst, Src, Amt);
}
}
auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
Register ShVal;
Register RevShiftVal;
if (isPowerOf2_32(EltSizeInBits)) {
// (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
// (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
RevShiftVal =
MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
} else {
// (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
// (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
auto One = MIRBuilder.buildConstant(AmtTy, 1);
auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
RevShiftVal =
MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
}
MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
MI.eraseFromParent();
return Legalized;
}
// Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
// representation.
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
const LLT S64 = LLT::scalar(64);
const LLT S32 = LLT::scalar(32);
const LLT S1 = LLT::scalar(1);
assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
// unsigned cul2f(ulong u) {
// uint lz = clz(u);
// uint e = (u != 0) ? 127U + 63U - lz : 0;
// u = (u << lz) & 0x7fffffffffffffffUL;
// ulong t = u & 0xffffffffffUL;
// uint v = (e << 23) | (uint)(u >> 40);
// uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
// return as_float(v + r);
// }
auto Zero32 = MIRBuilder.buildConstant(S32, 0);
auto Zero64 = MIRBuilder.buildConstant(S64, 0);
auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
auto Sub = MIRBuilder.buildSub(S32, K, LZ);
auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
auto T = MIRBuilder.buildAnd(S64, U, Mask1);
auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
auto One = MIRBuilder.buildConstant(S32, 1);
auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
MIRBuilder.buildAdd(Dst, V, R);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(Dst);
LLT SrcTy = MRI.getType(Src);
if (SrcTy == LLT::scalar(1)) {
auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
MIRBuilder.buildSelect(Dst, Src, True, False);
MI.eraseFromParent();
return Legalized;
}
if (SrcTy != LLT::scalar(64))
return UnableToLegalize;
if (DstTy == LLT::scalar(32)) {
// TODO: SelectionDAG has several alternative expansions to port which may
// be more reasonble depending on the available instructions. If a target
// has sitofp, does not have CTLZ, or can efficiently use f64 as an
// intermediate type, this is probably worse.
return lowerU64ToF32BitOps(MI);
}
return UnableToLegalize;
}
LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(Dst);
LLT SrcTy = MRI.getType(Src);
const LLT S64 = LLT::scalar(64);
const LLT S32 = LLT::scalar(32);
const LLT S1 = LLT::scalar(1);
if (SrcTy == S1) {
auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
MIRBuilder.buildSelect(Dst, Src, True, False);
MI.eraseFromParent();
return Legalized;
}
if (SrcTy != S64)
return UnableToLegalize;
if (DstTy == S32) {
// signed cl2f(long l) {
// long s = l >> 63;
// float r = cul2f((l + s) ^ s);
// return s ? -r : r;
// }
Register L = Src;
auto SignBit = MIRBuilder.buildConstant(S64, 63);
auto S = MIRBuilder.buildAShr(S64, L, SignBit);
auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
auto R = MIRBuilder.buildUITOFP(S32, Xor);
auto RNeg = MIRBuilder.buildFNeg(S32, R);
auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
MIRBuilder.buildConstant(S64, 0));
MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
MI.eraseFromParent();
return Legalized;
}
return UnableToLegalize;
}
LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(Dst);
LLT SrcTy = MRI.getType(Src);
const LLT S64 = LLT::scalar(64);
const LLT S32 = LLT::scalar(32);
if (SrcTy != S64 && SrcTy != S32)
return UnableToLegalize;
if (DstTy != S32 && DstTy != S64)
return UnableToLegalize;
// FPTOSI gives same result as FPTOUI for positive signed integers.
// FPTOUI needs to deal with fp values that convert to unsigned integers
// greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
: APFloat::IEEEdouble(),
APInt::getZero(SrcTy.getSizeInBits()));
TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
// For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
// (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
const LLT S1 = LLT::scalar(1);
MachineInstrBuilder FCMP =
MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(Dst);
LLT SrcTy = MRI.getType(Src);
const LLT S64 = LLT::scalar(64);
const LLT S32 = LLT::scalar(32);
// FIXME: Only f32 to i64 conversions are supported.
if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
return UnableToLegalize;
// Expand f32 -> i64 conversion
// This algorithm comes from compiler-rt's implementation of fixsfdi:
// https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
auto SignMask = MIRBuilder.buildConstant(SrcTy,
APInt::getSignMask(SrcEltBits));
auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
Sign = MIRBuilder.buildSExt(DstTy, Sign);
auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
R = MIRBuilder.buildZExt(DstTy, R);
auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
const LLT S1 = LLT::scalar(1);
auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
S1, Exponent, ExponentLoBit);
R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
S1, Exponent, ZeroSrcTy);
auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
MI.eraseFromParent();
return Legalized;
}
// f64 -> f16 conversion using round-to-nearest-even rounding mode.
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
return UnableToLegalize;
const unsigned ExpMask = 0x7ff;
const unsigned ExpBiasf64 = 1023;
const unsigned ExpBiasf16 = 15;
const LLT S32 = LLT::scalar(32);
const LLT S1 = LLT::scalar(1);
auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
Register U = Unmerge.getReg(0);
Register UH = Unmerge.getReg(1);
auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
// Subtract the fp64 exponent bias (1023) to get the real exponent and
// add the f16 bias (15) to get the biased exponent for the f16 format.
E = MIRBuilder.buildAdd(
S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
MIRBuilder.buildConstant(S32, 0x1ff));
MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
auto Zero = MIRBuilder.buildConstant(S32, 0);
auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
M = MIRBuilder.buildOr(S32, M, Lo40Set);
// (M != 0 ? 0x0200 : 0) | 0x7c00;
auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
// N = M | (E << 12);
auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
auto N = MIRBuilder.buildOr(S32, M, EShl12);
// B = clamp(1-E, 0, 13);
auto One = MIRBuilder.buildConstant(S32, 1);
auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
auto SigSetHigh = MIRBuilder.buildOr(S32, M,
MIRBuilder.buildConstant(S32, 0x1000));
auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
auto D0 = MIRBuilder.buildShl(S32, D, B);
auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
D0, SigSetHigh);
auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
D = MIRBuilder.buildOr(S32, D, D1);
auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
MIRBuilder.buildConstant(S32, 3));
auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
MIRBuilder.buildConstant(S32, 5));
auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
V1 = MIRBuilder.buildOr(S32, V0, V1);
V = MIRBuilder.buildAdd(S32, V, V1);
auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1,
E, MIRBuilder.buildConstant(S32, 30));
V = MIRBuilder.buildSelect(S32, CmpEGt30,
MIRBuilder.buildConstant(S32, 0x7c00), V);
auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
E, MIRBuilder.buildConstant(S32, 1039));
V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
// Extract the sign bit.
auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
// Insert the sign bit
V = MIRBuilder.buildOr(S32, Sign, V);
MIRBuilder.buildTrunc(Dst, V);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(Dst);
LLT SrcTy = MRI.getType(Src);
const LLT S64 = LLT::scalar(64);
const LLT S16 = LLT::scalar(16);
if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
return lowerFPTRUNC_F64_TO_F16(MI);
return UnableToLegalize;
}
// TODO: If RHS is a constant SelectionDAGBuilder expands this into a
// multiplication tree.
LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
Register Dst = MI.getOperand(0).getReg();
Register Src0 = MI.getOperand(1).getReg();
Register Src1 = MI.getOperand(2).getReg();
LLT Ty = MRI.getType(Dst);
auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
MI.eraseFromParent();
return Legalized;
}
static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
switch (Opc) {
case TargetOpcode::G_SMIN:
return CmpInst::ICMP_SLT;
case TargetOpcode::G_SMAX:
return CmpInst::ICMP_SGT;
case TargetOpcode::G_UMIN:
return CmpInst::ICMP_ULT;
case TargetOpcode::G_UMAX:
return CmpInst::ICMP_UGT;
default:
llvm_unreachable("not in integer min/max");
}
}
LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
Register Dst = MI.getOperand(0).getReg();
Register Src0 = MI.getOperand(1).getReg();
Register Src1 = MI.getOperand(2).getReg();
const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
LLT CmpType = MRI.getType(Dst).changeElementSize(1);
auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
Register Dst = MI.getOperand(0).getReg();
Register Src0 = MI.getOperand(1).getReg();
Register Src1 = MI.getOperand(2).getReg();
const LLT Src0Ty = MRI.getType(Src0);
const LLT Src1Ty = MRI.getType(Src1);
const int Src0Size = Src0Ty.getScalarSizeInBits();
const int Src1Size = Src1Ty.getScalarSizeInBits();
auto SignBitMask = MIRBuilder.buildConstant(
Src0Ty, APInt::getSignMask(Src0Size));
auto NotSignBitMask = MIRBuilder.buildConstant(
Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
Register And1;
if (Src0Ty == Src1Ty) {
And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
} else if (Src0Size > Src1Size) {
auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
} else {
auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
}
// Be careful about setting nsz/nnan/ninf on every instruction, since the
// constants are a nan and -0.0, but the final result should preserve
// everything.
unsigned Flags = MI.getFlags();
MIRBuilder.buildOr(Dst, And0, And1, Flags);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
Register Dst = MI.getOperand(0).getReg();
Register Src0 = MI.getOperand(1).getReg();
Register Src1 = MI.getOperand(2).getReg();
LLT Ty = MRI.getType(Dst);
if (!MI.getFlag(MachineInstr::FmNoNans)) {
// Insert canonicalizes if it's possible we need to quiet to get correct
// sNaN behavior.
// Note this must be done here, and not as an optimization combine in the
// absence of a dedicate quiet-snan instruction as we're using an
// omni-purpose G_FCANONICALIZE.
if (!isKnownNeverSNaN(Src0, MRI))
Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
if (!isKnownNeverSNaN(Src1, MRI))
Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
}
// If there are no nans, it's safe to simply replace this with the non-IEEE
// version.
MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
// Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
Register DstReg = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(DstReg);
unsigned Flags = MI.getFlags();
auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
Flags);
MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
Register DstReg = MI.getOperand(0).getReg();
Register X = MI.getOperand(1).getReg();
const unsigned Flags = MI.getFlags();
const LLT Ty = MRI.getType(DstReg);
const LLT CondTy = Ty.changeElementSize(1);
// round(x) =>
// t = trunc(x);
// d = fabs(x - t);
// o = copysign(1.0f, x);
// return t + (d >= 0.5 ? o : 0.0);
auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
auto One = MIRBuilder.buildFConstant(Ty, 1.0);
auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
Flags);
auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerFFloor(MachineInstr &MI) {
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
unsigned Flags = MI.getFlags();
LLT Ty = MRI.getType(DstReg);
const LLT CondTy = Ty.changeElementSize(1);
// result = trunc(src);
// if (src < 0.0 && src != result)
// result += -1.0.
auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
SrcReg, Zero, Flags);
auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
SrcReg, Trunc, Flags);
auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
const unsigned NumOps = MI.getNumOperands();
Register DstReg = MI.getOperand(0).getReg();
Register Src0Reg = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(DstReg);
LLT SrcTy = MRI.getType(Src0Reg);
unsigned PartSize = SrcTy.getSizeInBits();
LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
for (unsigned I = 2; I != NumOps; ++I) {
const unsigned Offset = (I - 1) * PartSize;
Register SrcReg = MI.getOperand(I).getReg();
auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
MRI.createGenericVirtualRegister(WideTy);
auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
MIRBuilder.buildOr(NextResult, ResultReg, Shl);
ResultReg = NextResult;
}
if (DstTy.isPointer()) {
if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
DstTy.getAddressSpace())) {
LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
return UnableToLegalize;
}
MIRBuilder.buildIntToPtr(DstReg, ResultReg);
}
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
const unsigned NumDst = MI.getNumOperands() - 1;
Register SrcReg = MI.getOperand(NumDst).getReg();
Register Dst0Reg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(Dst0Reg);
if (DstTy.isPointer())
return UnableToLegalize; // TODO
SrcReg = coerceToScalar(SrcReg);
if (!SrcReg)
return UnableToLegalize;
// Expand scalarizing unmerge as bitcast to integer and shift.
LLT IntTy = MRI.getType(SrcReg);
MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
const unsigned DstSize = DstTy.getSizeInBits();
unsigned Offset = DstSize;
for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
}
MI.eraseFromParent();
return Legalized;
}
/// Lower a vector extract or insert by writing the vector to a stack temporary
/// and reloading the element or vector.
///
/// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
/// =>
/// %stack_temp = G_FRAME_INDEX
/// G_STORE %vec, %stack_temp
/// %idx = clamp(%idx, %vec.getNumElements())
/// %element_ptr = G_PTR_ADD %stack_temp, %idx
/// %dst = G_LOAD %element_ptr
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
Register DstReg = MI.getOperand(0).getReg();
Register SrcVec = MI.getOperand(1).getReg();
Register InsertVal;
if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
InsertVal = MI.getOperand(2).getReg();
Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
LLT VecTy = MRI.getType(SrcVec);
LLT EltTy = VecTy.getElementType();
unsigned NumElts = VecTy.getNumElements();
int64_t IdxVal;
if (mi_match(Idx, MRI, m_ICst(IdxVal)) && IdxVal <= NumElts) {
SmallVector<Register, 8> SrcRegs;
extractParts(SrcVec, EltTy, NumElts, SrcRegs);
if (InsertVal) {
SrcRegs[IdxVal] = MI.getOperand(2).getReg();
MIRBuilder.buildMerge(DstReg, SrcRegs);
} else {
MIRBuilder.buildCopy(DstReg, SrcRegs[IdxVal]);
}
MI.eraseFromParent();
return Legalized;
}
if (!EltTy.isByteSized()) { // Not implemented.
LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
return UnableToLegalize;
}
unsigned EltBytes = EltTy.getSizeInBytes();
Align VecAlign = getStackTemporaryAlignment(VecTy);
Align EltAlign;
MachinePointerInfo PtrInfo;
auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
VecAlign, PtrInfo);
MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
// Get the pointer to the element, and be sure not to hit undefined behavior
// if the index is out of bounds.
Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
int64_t Offset = IdxVal * EltBytes;
PtrInfo = PtrInfo.getWithOffset(Offset);
EltAlign = commonAlignment(VecAlign, Offset);
} else {
// We lose information with a variable offset.
EltAlign = getStackTemporaryAlignment(EltTy);
PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
}
if (InsertVal) {
// Write the inserted element
MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
// Reload the whole vector.
MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
} else {
MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
}
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
Register DstReg = MI.getOperand(0).getReg();
Register Src0Reg = MI.getOperand(1).getReg();
Register Src1Reg = MI.getOperand(2).getReg();
LLT Src0Ty = MRI.getType(Src0Reg);
LLT DstTy = MRI.getType(DstReg);
LLT IdxTy = LLT::scalar(32);
ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
if (DstTy.isScalar()) {
if (Src0Ty.isVector())
return UnableToLegalize;
// This is just a SELECT.
assert(Mask.size() == 1 && "Expected a single mask element");
Register Val;
if (Mask[0] < 0 || Mask[0] > 1)
Val = MIRBuilder.buildUndef(DstTy).getReg(0);
else
Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
MIRBuilder.buildCopy(DstReg, Val);
MI.eraseFromParent();
return Legalized;
}
Register Undef;
SmallVector<Register, 32> BuildVec;
LLT EltTy = DstTy.getElementType();
for (int Idx : Mask) {
if (Idx < 0) {
if (!Undef.isValid())
Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
BuildVec.push_back(Undef);
continue;
}
if (Src0Ty.isScalar()) {
BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
} else {
int NumElts = Src0Ty.getNumElements();
Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
BuildVec.push_back(Extract.getReg(0));
}
}
MIRBuilder.buildBuildVector(DstReg, BuildVec);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
const auto &MF = *MI.getMF();
const auto &TFI = *MF.getSubtarget().getFrameLowering();
if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
return UnableToLegalize;
Register Dst = MI.getOperand(0).getReg();
Register AllocSize = MI.getOperand(1).getReg();
Align Alignment = assumeAligned(MI.getOperand(2).getImm());
LLT PtrTy = MRI.getType(Dst);
LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
// Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
// have to generate an extra instruction to negate the alloc and then use
// G_PTR_ADD to add the negative offset.
auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
if (Alignment > Align(1)) {
APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
AlignMask.negate();
auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
}
SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
MIRBuilder.buildCopy(SPReg, SPTmp);
MIRBuilder.buildCopy(Dst, SPTmp);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerExtract(MachineInstr &MI) {
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
unsigned Offset = MI.getOperand(2).getImm();
LLT DstTy = MRI.getType(Dst);
LLT SrcTy = MRI.getType(Src);
// Extract sub-vector or one element
if (SrcTy.isVector()) {
unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits();
unsigned DstSize = DstTy.getSizeInBits();
if ((Offset % SrcEltSize == 0) && (DstSize % SrcEltSize == 0) &&
(Offset + DstSize <= SrcTy.getSizeInBits())) {
// Unmerge and allow access to each Src element for the artifact combiner.
auto Unmerge = MIRBuilder.buildUnmerge(SrcTy.getElementType(), Src);
// Take element(s) we need to extract and copy it (merge them).
SmallVector<Register, 8> SubVectorElts;
for (unsigned Idx = Offset / SrcEltSize;
Idx < (Offset + DstSize) / SrcEltSize; ++Idx) {
SubVectorElts.push_back(Unmerge.getReg(Idx));
}
if (SubVectorElts.size() == 1)
MIRBuilder.buildCopy(Dst, SubVectorElts[0]);
else
MIRBuilder.buildMerge(Dst, SubVectorElts);
MI.eraseFromParent();
return Legalized;
}
}
if (DstTy.isScalar() &&
(SrcTy.isScalar() ||
(SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
LLT SrcIntTy = SrcTy;
if (!SrcTy.isScalar()) {
SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
}
if (Offset == 0)
MIRBuilder.buildTrunc(Dst, Src);
else {
auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
MIRBuilder.buildTrunc(Dst, Shr);
}
MI.eraseFromParent();
return Legalized;
}
return UnableToLegalize;
}
LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
Register InsertSrc = MI.getOperand(2).getReg();
uint64_t Offset = MI.getOperand(3).getImm();
LLT DstTy = MRI.getType(Src);
LLT InsertTy = MRI.getType(InsertSrc);
// Insert sub-vector or one element
if (DstTy.isVector() && !InsertTy.isPointer()) {
LLT EltTy = DstTy.getElementType();
unsigned EltSize = EltTy.getSizeInBits();
unsigned InsertSize = InsertTy.getSizeInBits();
if ((Offset % EltSize == 0) && (InsertSize % EltSize == 0) &&
(Offset + InsertSize <= DstTy.getSizeInBits())) {
auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, Src);
SmallVector<Register, 8> DstElts;
unsigned Idx = 0;
// Elements from Src before insert start Offset
for (; Idx < Offset / EltSize; ++Idx) {
DstElts.push_back(UnmergeSrc.getReg(Idx));
}
// Replace elements in Src with elements from InsertSrc
if (InsertTy.getSizeInBits() > EltSize) {
auto UnmergeInsertSrc = MIRBuilder.buildUnmerge(EltTy, InsertSrc);
for (unsigned i = 0; Idx < (Offset + InsertSize) / EltSize;
++Idx, ++i) {
DstElts.push_back(UnmergeInsertSrc.getReg(i));
}
} else {
DstElts.push_back(InsertSrc);
++Idx;
}
// Remaining elements from Src after insert
for (; Idx < DstTy.getNumElements(); ++Idx) {
DstElts.push_back(UnmergeSrc.getReg(Idx));
}
MIRBuilder.buildMerge(Dst, DstElts);
MI.eraseFromParent();
return Legalized;
}
}
if (InsertTy.isVector() ||
(DstTy.isVector() && DstTy.getElementType() != InsertTy))
return UnableToLegalize;
const DataLayout &DL = MIRBuilder.getDataLayout();
if ((DstTy.isPointer() &&
DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
(InsertTy.isPointer() &&
DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
return UnableToLegalize;
}
LLT IntDstTy = DstTy;
if (!DstTy.isScalar()) {
IntDstTy = LLT::scalar(DstTy.getSizeInBits());
Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
}
if (!InsertTy.isScalar()) {
const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
}
Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
if (Offset != 0) {
auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
}
APInt MaskVal = APInt::getBitsSetWithWrap(
DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
MIRBuilder.buildCast(Dst, Or);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
Register Dst0 = MI.getOperand(0).getReg();
Register Dst1 = MI.getOperand(1).getReg();
Register LHS = MI.getOperand(2).getReg();
Register RHS = MI.getOperand(3).getReg();
const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
LLT Ty = MRI.getType(Dst0);
LLT BoolTy = MRI.getType(Dst1);
if (IsAdd)
MIRBuilder.buildAdd(Dst0, LHS, RHS);
else
MIRBuilder.buildSub(Dst0, LHS, RHS);
// TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
auto Zero = MIRBuilder.buildConstant(Ty, 0);
// For an addition, the result should be less than one of the operands (LHS)
// if and only if the other operand (RHS) is negative, otherwise there will
// be overflow.
// For a subtraction, the result should be less than one of the operands
// (LHS) if and only if the other operand (RHS) is (non-zero) positive,
// otherwise there will be overflow.
auto ResultLowerThanLHS =
MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
auto ConditionRHS = MIRBuilder.buildICmp(
IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
Register Res = MI.getOperand(0).getReg();
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
LLT Ty = MRI.getType(Res);
bool IsSigned;
bool IsAdd;
unsigned BaseOp;
switch (MI.getOpcode()) {
default:
llvm_unreachable("unexpected addsat/subsat opcode");
case TargetOpcode::G_UADDSAT:
IsSigned = false;
IsAdd = true;
BaseOp = TargetOpcode::G_ADD;
break;
case TargetOpcode::G_SADDSAT:
IsSigned = true;
IsAdd = true;
BaseOp = TargetOpcode::G_ADD;
break;
case TargetOpcode::G_USUBSAT:
IsSigned = false;
IsAdd = false;
BaseOp = TargetOpcode::G_SUB;
break;
case TargetOpcode::G_SSUBSAT:
IsSigned = true;
IsAdd = false;
BaseOp = TargetOpcode::G_SUB;
break;
}
if (IsSigned) {
// sadd.sat(a, b) ->
// hi = 0x7fffffff - smax(a, 0)
// lo = 0x80000000 - smin(a, 0)
// a + smin(smax(lo, b), hi)
// ssub.sat(a, b) ->
// lo = smax(a, -1) - 0x7fffffff
// hi = smin(a, -1) - 0x80000000
// a - smin(smax(lo, b), hi)
// TODO: AMDGPU can use a "median of 3" instruction here:
// a +/- med3(lo, b, hi)
uint64_t NumBits = Ty.getScalarSizeInBits();
auto MaxVal =
MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
auto MinVal =
MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
MachineInstrBuilder Hi, Lo;
if (IsAdd) {
auto Zero = MIRBuilder.buildConstant(Ty, 0);
Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
} else {
auto NegOne = MIRBuilder.buildConstant(Ty, -1);
Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
MaxVal);
Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
MinVal);
}
auto RHSClamped =
MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
} else {
// uadd.sat(a, b) -> a + umin(~a, b)
// usub.sat(a, b) -> a - umin(a, b)
Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
}
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
Register Res = MI.getOperand(0).getReg();
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
LLT Ty = MRI.getType(Res);
LLT BoolTy = Ty.changeElementSize(1);
bool IsSigned;
bool IsAdd;
unsigned OverflowOp;
switch (MI.getOpcode()) {
default:
llvm_unreachable("unexpected addsat/subsat opcode");
case TargetOpcode::G_UADDSAT:
IsSigned = false;
IsAdd = true;
OverflowOp = TargetOpcode::G_UADDO;
break;
case TargetOpcode::G_SADDSAT:
IsSigned = true;
IsAdd = true;
OverflowOp = TargetOpcode::G_SADDO;
break;
case TargetOpcode::G_USUBSAT:
IsSigned = false;
IsAdd = false;
OverflowOp = TargetOpcode::G_USUBO;
break;
case TargetOpcode::G_SSUBSAT:
IsSigned = true;
IsAdd = false;
OverflowOp = TargetOpcode::G_SSUBO;
break;
}
auto OverflowRes =
MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
Register Tmp = OverflowRes.getReg(0);
Register Ov = OverflowRes.getReg(1);
MachineInstrBuilder Clamp;
if (IsSigned) {
// sadd.sat(a, b) ->
// {tmp, ov} = saddo(a, b)
// ov ? (tmp >>s 31) + 0x80000000 : r
// ssub.sat(a, b) ->
// {tmp, ov} = ssubo(a, b)
// ov ? (tmp >>s 31) + 0x80000000 : r
uint64_t NumBits = Ty.getScalarSizeInBits();
auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
auto MinVal =
MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
} else {
// uadd.sat(a, b) ->
// {tmp, ov} = uaddo(a, b)
// ov ? 0xffffffff : tmp
// usub.sat(a, b) ->
// {tmp, ov} = usubo(a, b)
// ov ? 0 : tmp
Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
}
MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerShlSat(MachineInstr &MI) {
assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
"Expected shlsat opcode!");
bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
Register Res = MI.getOperand(0).getReg();
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
LLT Ty = MRI.getType(Res);
LLT BoolTy = Ty.changeElementSize(1);
unsigned BW = Ty.getScalarSizeInBits();
auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
: MIRBuilder.buildLShr(Ty, Result, RHS);
MachineInstrBuilder SatVal;
if (IsSigned) {
auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
MIRBuilder.buildConstant(Ty, 0));
SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
} else {
SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
}
auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerBswap(MachineInstr &MI) {
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
const LLT Ty = MRI.getType(Src);
unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
// Swap most and least significant byte, set remaining bytes in Res to zero.
auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
// Set i-th high/low byte in Res to i-th low/high byte from Src.
for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
// AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
auto Mask = MIRBuilder.buildConstant(Ty, APMask);
auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
// Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
// High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
}
Res.getInstr()->getOperand(0).setReg(Dst);
MI.eraseFromParent();
return Legalized;
}
//{ (Src & Mask) >> N } | { (Src << N) & Mask }
static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
MachineInstrBuilder Src, APInt Mask) {
const LLT Ty = Dst.getLLTTy(*B.getMRI());
MachineInstrBuilder C_N = B.buildConstant(Ty, N);
MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
return B.buildOr(Dst, LHS, RHS);
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
const LLT Ty = MRI.getType(Src);
unsigned Size = Ty.getSizeInBits();
MachineInstrBuilder BSWAP =
MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
// swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
// [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
// -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
MachineInstrBuilder Swap4 =
SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
// swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
// [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
// -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
MachineInstrBuilder Swap2 =
SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
// swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
// [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
// -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
MachineFunction &MF = MIRBuilder.getMF();
bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
int NameOpIdx = IsRead ? 1 : 0;
int ValRegIndex = IsRead ? 0 : 1;
Register ValReg = MI.getOperand(ValRegIndex).getReg();
const LLT Ty = MRI.getType(ValReg);
const MDString *RegStr = cast<MDString>(
cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
if (!PhysReg.isValid())
return UnableToLegalize;
if (IsRead)
MIRBuilder.buildCopy(ValReg, PhysReg);
else
MIRBuilder.buildCopy(PhysReg, ValReg);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
Register Result = MI.getOperand(0).getReg();
LLT OrigTy = MRI.getType(Result);
auto SizeInBits = OrigTy.getScalarSizeInBits();
LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
MIRBuilder.buildTrunc(Result, Shifted);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
// Implement vector G_SELECT in terms of XOR, AND, OR.
Register DstReg = MI.getOperand(0).getReg();
Register MaskReg = MI.getOperand(1).getReg();
Register Op1Reg = MI.getOperand(2).getReg();
Register Op2Reg = MI.getOperand(3).getReg();
LLT DstTy = MRI.getType(DstReg);
LLT MaskTy = MRI.getType(MaskReg);
LLT Op1Ty = MRI.getType(Op1Reg);
if (!DstTy.isVector())
return UnableToLegalize;
// Vector selects can have a scalar predicate. If so, splat into a vector and
// finish for later legalization attempts to try again.
if (MaskTy.isScalar()) {
Register MaskElt = MaskReg;
if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
// Generate a vector splat idiom to be pattern matched later.
auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
Observer.changingInstr(MI);
MI.getOperand(1).setReg(ShufSplat.getReg(0));
Observer.changedInstr(MI);
return Legalized;
}
if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
return UnableToLegalize;
}
auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
// Split DIVREM into individual instructions.
unsigned Opcode = MI.getOpcode();
MIRBuilder.buildInstr(
Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
: TargetOpcode::G_UDIV,
{MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
MIRBuilder.buildInstr(
Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
: TargetOpcode::G_UREM,
{MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) {
// Expand %res = G_ABS %a into:
// %v1 = G_ASHR %a, scalar_size-1
// %v2 = G_ADD %a, %v1
// %res = G_XOR %v2, %v1
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
Register OpReg = MI.getOperand(1).getReg();
auto ShiftAmt =
MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) {
// Expand %res = G_ABS %a into:
// %v1 = G_CONSTANT 0
// %v2 = G_SUB %v1, %a
// %res = G_SMAX %a, %v2
Register SrcReg = MI.getOperand(1).getReg();
LLT Ty = MRI.getType(SrcReg);
auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0);
auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0);
MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub);
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerVectorReduction(MachineInstr &MI) {
Register SrcReg = MI.getOperand(1).getReg();
LLT SrcTy = MRI.getType(SrcReg);
LLT DstTy = MRI.getType(SrcReg);
// The source could be a scalar if the IR type was <1 x sN>.
if (SrcTy.isScalar()) {
if (DstTy.getSizeInBits() > SrcTy.getSizeInBits())
return UnableToLegalize; // FIXME: handle extension.
// This can be just a plain copy.
Observer.changingInstr(MI);
MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY));
Observer.changedInstr(MI);
return Legalized;
}
return UnableToLegalize;;
}
static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
// On Darwin, -Os means optimize for size without hurting performance, so
// only really optimize for size when -Oz (MinSize) is used.
if (MF.getTarget().getTargetTriple().isOSDarwin())
return MF.getFunction().hasMinSize();
return MF.getFunction().hasOptSize();
}
// Returns a list of types to use for memory op lowering in MemOps. A partial
// port of findOptimalMemOpLowering in TargetLowering.
static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps,
unsigned Limit, const MemOp &Op,
unsigned DstAS, unsigned SrcAS,
const AttributeList &FuncAttributes,
const TargetLowering &TLI) {
if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
return false;
LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes);
if (Ty == LLT()) {
// Use the largest scalar type whose alignment constraints are satisfied.
// We only need to check DstAlign here as SrcAlign is always greater or
// equal to DstAlign (or zero).
Ty = LLT::scalar(64);
if (Op.isFixedDstAlign())
while (Op.getDstAlign() < Ty.getSizeInBytes() &&
!TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign()))
Ty = LLT::scalar(Ty.getSizeInBytes());
assert(Ty.getSizeInBits() > 0 && "Could not find valid type");
// FIXME: check for the largest legal type we can load/store to.
}
unsigned NumMemOps = 0;
uint64_t Size = Op.size();
while (Size) {
unsigned TySize = Ty.getSizeInBytes();
while (TySize > Size) {
// For now, only use non-vector load / store's for the left-over pieces.
LLT NewTy = Ty;
// FIXME: check for mem op safety and legality of the types. Not all of
// SDAGisms map cleanly to GISel concepts.
if (NewTy.isVector())
NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32);
NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1));
unsigned NewTySize = NewTy.getSizeInBytes();
assert(NewTySize > 0 && "Could not find appropriate type");
// If the new LLT cannot cover all of the remaining bits, then consider
// issuing a (or a pair of) unaligned and overlapping load / store.
bool Fast;
// Need to get a VT equivalent for allowMisalignedMemoryAccesses().
MVT VT = getMVTForLLT(Ty);
if (NumMemOps && Op.allowOverlap() && NewTySize < Size &&
TLI.allowsMisalignedMemoryAccesses(
VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
MachineMemOperand::MONone, &Fast) &&
Fast)
TySize = Size;
else {
Ty = NewTy;
TySize = NewTySize;
}
}
if (++NumMemOps > Limit)
return false;
MemOps.push_back(Ty);
Size -= TySize;
}
return true;
}
static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
if (Ty.isVector())
return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
Ty.getNumElements());
return IntegerType::get(C, Ty.getSizeInBits());
}
// Get a vectorized representation of the memset value operand, GISel edition.
static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) {
MachineRegisterInfo &MRI = *MIB.getMRI();
unsigned NumBits = Ty.getScalarSizeInBits();
auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI);
if (!Ty.isVector() && ValVRegAndVal) {
APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8);
APInt SplatVal = APInt::getSplat(NumBits, Scalar);
return MIB.buildConstant(Ty, SplatVal).getReg(0);
}
// Extend the byte value to the larger type, and then multiply by a magic
// value 0x010101... in order to replicate it across every byte.
// Unless it's zero, in which case just emit a larger G_CONSTANT 0.
if (ValVRegAndVal && ValVRegAndVal->Value == 0) {
return MIB.buildConstant(Ty, 0).getReg(0);
}
LLT ExtType = Ty.getScalarType();
auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val);
if (NumBits > 8) {
APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
auto MagicMI = MIB.buildConstant(ExtType, Magic);
Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0);
}
// For vector types create a G_BUILD_VECTOR.
if (Ty.isVector())
Val = MIB.buildSplatVector(Ty, Val).getReg(0);
return Val;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerMemset(MachineInstr &MI, Register Dst, Register Val,
uint64_t KnownLen, Align Alignment,
bool IsVolatile) {
auto &MF = *MI.getParent()->getParent();
const auto &TLI = *MF.getSubtarget().getTargetLowering();
auto &DL = MF.getDataLayout();
LLVMContext &C = MF.getFunction().getContext();
assert(KnownLen != 0 && "Have a zero length memset length!");
bool DstAlignCanChange = false;
MachineFrameInfo &MFI = MF.getFrameInfo();
bool OptSize = shouldLowerMemFuncForSize(MF);
MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
DstAlignCanChange = true;
unsigned Limit = TLI.getMaxStoresPerMemset(OptSize);
std::vector<LLT> MemOps;
const auto &DstMMO = **MI.memoperands_begin();
MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI);
bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0;
if (!findGISelOptimalMemOpLowering(MemOps, Limit,
MemOp::Set(KnownLen, DstAlignCanChange,
Alignment,
/*IsZeroMemset=*/IsZeroVal,
/*IsVolatile=*/IsVolatile),
DstPtrInfo.getAddrSpace(), ~0u,
MF.getFunction().getAttributes(), TLI))
return UnableToLegalize;
if (DstAlignCanChange) {
// Get an estimate of the type from the LLT.
Type *IRTy = getTypeForLLT(MemOps[0], C);
Align NewAlign = DL.getABITypeAlign(IRTy);
if (NewAlign > Alignment) {
Alignment = NewAlign;
unsigned FI = FIDef->getOperand(1).getIndex();
// Give the stack frame object a larger alignment if needed.
if (MFI.getObjectAlign(FI) < Alignment)
MFI.setObjectAlignment(FI, Alignment);
}
}
MachineIRBuilder MIB(MI);
// Find the largest store and generate the bit pattern for it.
LLT LargestTy = MemOps[0];
for (unsigned i = 1; i < MemOps.size(); i++)
if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits())
LargestTy = MemOps[i];
// The memset stored value is always defined as an s8, so in order to make it
// work with larger store types we need to repeat the bit pattern across the
// wider type.
Register MemSetValue = getMemsetValue(Val, LargestTy, MIB);
if (!MemSetValue)
return UnableToLegalize;
// Generate the stores. For each store type in the list, we generate the
// matching store of that type to the destination address.
LLT PtrTy = MRI.getType(Dst);
unsigned DstOff = 0;
unsigned Size = KnownLen;
for (unsigned I = 0; I < MemOps.size(); I++) {
LLT Ty = MemOps[I];
unsigned TySize = Ty.getSizeInBytes();
if (TySize > Size) {
// Issuing an unaligned load / store pair that overlaps with the previous
// pair. Adjust the offset accordingly.
assert(I == MemOps.size() - 1 && I != 0);
DstOff -= TySize - Size;
}
// If this store is smaller than the largest store see whether we can get
// the smaller value for free with a truncate.
Register Value = MemSetValue;
if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) {
MVT VT = getMVTForLLT(Ty);
MVT LargestVT = getMVTForLLT(LargestTy);
if (!LargestTy.isVector() && !Ty.isVector() &&
TLI.isTruncateFree(LargestVT, VT))
Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0);
else
Value = getMemsetValue(Val, Ty, MIB);
if (!Value)
return UnableToLegalize;
}
auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty);
Register Ptr = Dst;
if (DstOff != 0) {
auto Offset =
MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff);
Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
}
MIB.buildStore(Value, Ptr, *StoreMMO);
DstOff += Ty.getSizeInBytes();
Size -= TySize;
}
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerMemcpyInline(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE);
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
Register Len = MI.getOperand(2).getReg();
const auto *MMOIt = MI.memoperands_begin();
const MachineMemOperand *MemOp = *MMOIt;
bool IsVolatile = MemOp->isVolatile();
// See if this is a constant length copy
auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI);
// FIXME: support dynamically sized G_MEMCPY_INLINE
assert(LenVRegAndVal.hasValue() &&
"inline memcpy with dynamic size is not yet supported");
uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
if (KnownLen == 0) {
MI.eraseFromParent();
return Legalized;
}
const auto &DstMMO = **MI.memoperands_begin();
const auto &SrcMMO = **std::next(MI.memoperands_begin());
Align DstAlign = DstMMO.getBaseAlign();
Align SrcAlign = SrcMMO.getBaseAlign();
return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
IsVolatile);
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerMemcpyInline(MachineInstr &MI, Register Dst, Register Src,
uint64_t KnownLen, Align DstAlign,
Align SrcAlign, bool IsVolatile) {
assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE);
return lowerMemcpy(MI, Dst, Src, KnownLen,
std::numeric_limits<uint64_t>::max(), DstAlign, SrcAlign,
IsVolatile);
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerMemcpy(MachineInstr &MI, Register Dst, Register Src,
uint64_t KnownLen, uint64_t Limit, Align DstAlign,
Align SrcAlign, bool IsVolatile) {
auto &MF = *MI.getParent()->getParent();
const auto &TLI = *MF.getSubtarget().getTargetLowering();
auto &DL = MF.getDataLayout();
LLVMContext &C = MF.getFunction().getContext();
assert(KnownLen != 0 && "Have a zero length memcpy length!");
bool DstAlignCanChange = false;
MachineFrameInfo &MFI = MF.getFrameInfo();
Align Alignment = commonAlignment(DstAlign, SrcAlign);
MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
DstAlignCanChange = true;
// FIXME: infer better src pointer alignment like SelectionDAG does here.
// FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining
// if the memcpy is in a tail call position.
std::vector<LLT> MemOps;
const auto &DstMMO = **MI.memoperands_begin();
const auto &SrcMMO = **std::next(MI.memoperands_begin());
MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
if (!findGISelOptimalMemOpLowering(
MemOps, Limit,
MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
IsVolatile),
DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
MF.getFunction().getAttributes(), TLI))
return UnableToLegalize;
if (DstAlignCanChange) {
// Get an estimate of the type from the LLT.
Type *IRTy = getTypeForLLT(MemOps[0], C);
Align NewAlign = DL.getABITypeAlign(IRTy);
// Don't promote to an alignment that would require dynamic stack
// realignment.
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
if (!TRI->hasStackRealignment(MF))
while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
NewAlign = NewAlign / 2;
if (NewAlign > Alignment) {
Alignment = NewAlign;
unsigned FI = FIDef->getOperand(1).getIndex();
// Give the stack frame object a larger alignment if needed.
if (MFI.getObjectAlign(FI) < Alignment)
MFI.setObjectAlignment(FI, Alignment);
}
}
LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n");
MachineIRBuilder MIB(MI);
// Now we need to emit a pair of load and stores for each of the types we've
// collected. I.e. for each type, generate a load from the source pointer of
// that type width, and then generate a corresponding store to the dest buffer
// of that value loaded. This can result in a sequence of loads and stores
// mixed types, depending on what the target specifies as good types to use.
unsigned CurrOffset = 0;
unsigned Size = KnownLen;
for (auto CopyTy : MemOps) {
// Issuing an unaligned load / store pair that overlaps with the previous
// pair. Adjust the offset accordingly.
if (CopyTy.getSizeInBytes() > Size)
CurrOffset -= CopyTy.getSizeInBytes() - Size;
// Construct MMOs for the accesses.
auto *LoadMMO =
MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
auto *StoreMMO =
MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
// Create the load.
Register LoadPtr = Src;
Register Offset;
if (CurrOffset != 0) {
LLT SrcTy = MRI.getType(Src);
Offset = MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset)
.getReg(0);
LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0);
}
auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO);
// Create the store.
Register StorePtr = Dst;
if (CurrOffset != 0) {
LLT DstTy = MRI.getType(Dst);
StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0);
}
MIB.buildStore(LdVal, StorePtr, *StoreMMO);
CurrOffset += CopyTy.getSizeInBytes();
Size -= CopyTy.getSizeInBytes();
}
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerMemmove(MachineInstr &MI, Register Dst, Register Src,
uint64_t KnownLen, Align DstAlign, Align SrcAlign,
bool IsVolatile) {
auto &MF = *MI.getParent()->getParent();
const auto &TLI = *MF.getSubtarget().getTargetLowering();
auto &DL = MF.getDataLayout();
LLVMContext &C = MF.getFunction().getContext();
assert(KnownLen != 0 && "Have a zero length memmove length!");
bool DstAlignCanChange = false;
MachineFrameInfo &MFI = MF.getFrameInfo();
bool OptSize = shouldLowerMemFuncForSize(MF);
Align Alignment = commonAlignment(DstAlign, SrcAlign);
MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
DstAlignCanChange = true;
unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize);
std::vector<LLT> MemOps;
const auto &DstMMO = **MI.memoperands_begin();
const auto &SrcMMO = **std::next(MI.memoperands_begin());
MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
// FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due
// to a bug in it's findOptimalMemOpLowering implementation. For now do the
// same thing here.
if (!findGISelOptimalMemOpLowering(
MemOps, Limit,
MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
/*IsVolatile*/ true),
DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
MF.getFunction().getAttributes(), TLI))
return UnableToLegalize;
if (DstAlignCanChange) {
// Get an estimate of the type from the LLT.
Type *IRTy = getTypeForLLT(MemOps[0], C);
Align NewAlign = DL.getABITypeAlign(IRTy);
// Don't promote to an alignment that would require dynamic stack
// realignment.
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
if (!TRI->hasStackRealignment(MF))
while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
NewAlign = NewAlign / 2;
if (NewAlign > Alignment) {
Alignment = NewAlign;
unsigned FI = FIDef->getOperand(1).getIndex();
// Give the stack frame object a larger alignment if needed.
if (MFI.getObjectAlign(FI) < Alignment)
MFI.setObjectAlignment(FI, Alignment);
}
}
LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n");
MachineIRBuilder MIB(MI);
// Memmove requires that we perform the loads first before issuing the stores.
// Apart from that, this loop is pretty much doing the same thing as the
// memcpy codegen function.
unsigned CurrOffset = 0;
SmallVector<Register, 16> LoadVals;
for (auto CopyTy : MemOps) {
// Construct MMO for the load.
auto *LoadMMO =
MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
// Create the load.
Register LoadPtr = Src;
if (CurrOffset != 0) {
LLT SrcTy = MRI.getType(Src);
auto Offset =
MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset);
LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0);
}
LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0));
CurrOffset += CopyTy.getSizeInBytes();
}
CurrOffset = 0;
for (unsigned I = 0; I < MemOps.size(); ++I) {
LLT CopyTy = MemOps[I];
// Now store the values loaded.
auto *StoreMMO =
MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
Register StorePtr = Dst;
if (CurrOffset != 0) {
LLT DstTy = MRI.getType(Dst);
auto Offset =
MIB.buildConstant(LLT::scalar(DstTy.getSizeInBits()), CurrOffset);
StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0);
}
MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO);
CurrOffset += CopyTy.getSizeInBytes();
}
MI.eraseFromParent();
return Legalized;
}
LegalizerHelper::LegalizeResult
LegalizerHelper::lowerMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
const unsigned Opc = MI.getOpcode();
// This combine is fairly complex so it's not written with a separate
// matcher function.
assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE ||
Opc == TargetOpcode::G_MEMSET) &&
"Expected memcpy like instruction");
auto MMOIt = MI.memoperands_begin();
const MachineMemOperand *MemOp = *MMOIt;
Align DstAlign = MemOp->getBaseAlign();
Align SrcAlign;
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
Register Len = MI.getOperand(2).getReg();
if (Opc != TargetOpcode::G_MEMSET) {
assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI");
MemOp = *(++MMOIt);
SrcAlign = MemOp->getBaseAlign();
}
// See if this is a constant length copy
auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI);
if (!LenVRegAndVal)
return UnableToLegalize;
uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
if (KnownLen == 0) {
MI.eraseFromParent();
return Legalized;
}
bool IsVolatile = MemOp->isVolatile();
if (Opc == TargetOpcode::G_MEMCPY_INLINE)
return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
IsVolatile);
// Don't try to optimize volatile.
if (IsVolatile)
return UnableToLegalize;
if (MaxLen && KnownLen > MaxLen)
return UnableToLegalize;
if (Opc == TargetOpcode::G_MEMCPY) {
auto &MF = *MI.getParent()->getParent();
const auto &TLI = *MF.getSubtarget().getTargetLowering();
bool OptSize = shouldLowerMemFuncForSize(MF);
uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize);
return lowerMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign,
IsVolatile);
}
if (Opc == TargetOpcode::G_MEMMOVE)
return lowerMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
if (Opc == TargetOpcode::G_MEMSET)
return lowerMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile);
return UnableToLegalize;
}
|