1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
|
//===- LoadStoreOpt.cpp ----------- Generic memory optimizations -*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the LoadStoreOpt optimization pass.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Register.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#define DEBUG_TYPE "loadstore-opt"
using namespace llvm;
using namespace ore;
using namespace MIPatternMatch;
STATISTIC(NumStoresMerged, "Number of stores merged");
const unsigned MaxStoreSizeToForm = 128;
char LoadStoreOpt::ID = 0;
INITIALIZE_PASS_BEGIN(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations",
false, false)
INITIALIZE_PASS_END(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations",
false, false)
LoadStoreOpt::LoadStoreOpt(std::function<bool(const MachineFunction &)> F)
: MachineFunctionPass(ID), DoNotRunPass(F) {}
LoadStoreOpt::LoadStoreOpt()
: LoadStoreOpt([](const MachineFunction &) { return false; }) {}
void LoadStoreOpt::init(MachineFunction &MF) {
this->MF = &MF;
MRI = &MF.getRegInfo();
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
TLI = MF.getSubtarget().getTargetLowering();
LI = MF.getSubtarget().getLegalizerInfo();
Builder.setMF(MF);
IsPreLegalizer = !MF.getProperties().hasProperty(
MachineFunctionProperties::Property::Legalized);
InstsToErase.clear();
}
void LoadStoreOpt::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<AAResultsWrapperPass>();
getSelectionDAGFallbackAnalysisUsage(AU);
MachineFunctionPass::getAnalysisUsage(AU);
}
BaseIndexOffset GISelAddressing::getPointerInfo(Register Ptr,
MachineRegisterInfo &MRI) {
BaseIndexOffset Info;
Register PtrAddRHS;
if (!mi_match(Ptr, MRI, m_GPtrAdd(m_Reg(Info.BaseReg), m_Reg(PtrAddRHS)))) {
Info.BaseReg = Ptr;
Info.IndexReg = Register();
Info.IsIndexSignExt = false;
return Info;
}
auto RHSCst = getIConstantVRegValWithLookThrough(PtrAddRHS, MRI);
if (RHSCst)
Info.Offset = RHSCst->Value.getSExtValue();
// Just recognize a simple case for now. In future we'll need to match
// indexing patterns for base + index + constant.
Info.IndexReg = PtrAddRHS;
Info.IsIndexSignExt = false;
return Info;
}
bool GISelAddressing::aliasIsKnownForLoadStore(const MachineInstr &MI1,
const MachineInstr &MI2,
bool &IsAlias,
MachineRegisterInfo &MRI) {
auto *LdSt1 = dyn_cast<GLoadStore>(&MI1);
auto *LdSt2 = dyn_cast<GLoadStore>(&MI2);
if (!LdSt1 || !LdSt2)
return false;
BaseIndexOffset BasePtr0 = getPointerInfo(LdSt1->getPointerReg(), MRI);
BaseIndexOffset BasePtr1 = getPointerInfo(LdSt2->getPointerReg(), MRI);
if (!BasePtr0.BaseReg.isValid() || !BasePtr1.BaseReg.isValid())
return false;
int64_t Size1 = LdSt1->getMemSize();
int64_t Size2 = LdSt2->getMemSize();
int64_t PtrDiff;
if (BasePtr0.BaseReg == BasePtr1.BaseReg) {
PtrDiff = BasePtr1.Offset - BasePtr0.Offset;
// If the size of memory access is unknown, do not use it to do analysis.
// One example of unknown size memory access is to load/store scalable
// vector objects on the stack.
// BasePtr1 is PtrDiff away from BasePtr0. They alias if none of the
// following situations arise:
if (PtrDiff >= 0 &&
Size1 != static_cast<int64_t>(MemoryLocation::UnknownSize)) {
// [----BasePtr0----]
// [---BasePtr1--]
// ========PtrDiff========>
IsAlias = !(Size1 <= PtrDiff);
return true;
}
if (PtrDiff < 0 &&
Size2 != static_cast<int64_t>(MemoryLocation::UnknownSize)) {
// [----BasePtr0----]
// [---BasePtr1--]
// =====(-PtrDiff)====>
IsAlias = !((PtrDiff + Size2) <= 0);
return true;
}
return false;
}
// If both BasePtr0 and BasePtr1 are FrameIndexes, we will not be
// able to calculate their relative offset if at least one arises
// from an alloca. However, these allocas cannot overlap and we
// can infer there is no alias.
auto *Base0Def = getDefIgnoringCopies(BasePtr0.BaseReg, MRI);
auto *Base1Def = getDefIgnoringCopies(BasePtr1.BaseReg, MRI);
if (!Base0Def || !Base1Def)
return false; // Couldn't tell anything.
if (Base0Def->getOpcode() != Base1Def->getOpcode())
return false;
if (Base0Def->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
MachineFrameInfo &MFI = Base0Def->getMF()->getFrameInfo();
// If the bases have the same frame index but we couldn't find a
// constant offset, (indices are different) be conservative.
if (Base0Def != Base1Def &&
(!MFI.isFixedObjectIndex(Base0Def->getOperand(1).getIndex()) ||
!MFI.isFixedObjectIndex(Base1Def->getOperand(1).getIndex()))) {
IsAlias = false;
return true;
}
}
// This implementation is a lot more primitive than the SDAG one for now.
// FIXME: what about constant pools?
if (Base0Def->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) {
auto GV0 = Base0Def->getOperand(1).getGlobal();
auto GV1 = Base1Def->getOperand(1).getGlobal();
if (GV0 != GV1) {
IsAlias = false;
return true;
}
}
// Can't tell anything about aliasing.
return false;
}
bool GISelAddressing::instMayAlias(const MachineInstr &MI,
const MachineInstr &Other,
MachineRegisterInfo &MRI,
AliasAnalysis *AA) {
struct MemUseCharacteristics {
bool IsVolatile;
bool IsAtomic;
Register BasePtr;
int64_t Offset;
uint64_t NumBytes;
MachineMemOperand *MMO;
};
auto getCharacteristics =
[&](const MachineInstr *MI) -> MemUseCharacteristics {
if (const auto *LS = dyn_cast<GLoadStore>(MI)) {
Register BaseReg;
int64_t Offset = 0;
// No pre/post-inc addressing modes are considered here, unlike in SDAG.
if (!mi_match(LS->getPointerReg(), MRI,
m_GPtrAdd(m_Reg(BaseReg), m_ICst(Offset)))) {
BaseReg = LS->getPointerReg();
Offset = 0;
}
uint64_t Size = MemoryLocation::getSizeOrUnknown(
LS->getMMO().getMemoryType().getSizeInBytes());
return {LS->isVolatile(), LS->isAtomic(), BaseReg,
Offset /*base offset*/, Size, &LS->getMMO()};
}
// FIXME: support recognizing lifetime instructions.
// Default.
return {false /*isvolatile*/,
/*isAtomic*/ false, Register(),
(int64_t)0 /*offset*/, 0 /*size*/,
(MachineMemOperand *)nullptr};
};
MemUseCharacteristics MUC0 = getCharacteristics(&MI),
MUC1 = getCharacteristics(&Other);
// If they are to the same address, then they must be aliases.
if (MUC0.BasePtr.isValid() && MUC0.BasePtr == MUC1.BasePtr &&
MUC0.Offset == MUC1.Offset)
return true;
// If they are both volatile then they cannot be reordered.
if (MUC0.IsVolatile && MUC1.IsVolatile)
return true;
// Be conservative about atomics for the moment
// TODO: This is way overconservative for unordered atomics (see D66309)
if (MUC0.IsAtomic && MUC1.IsAtomic)
return true;
// If one operation reads from invariant memory, and the other may store, they
// cannot alias.
if (MUC0.MMO && MUC1.MMO) {
if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
(MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
return false;
}
// Try to prove that there is aliasing, or that there is no aliasing. Either
// way, we can return now. If nothing can be proved, proceed with more tests.
bool IsAlias;
if (GISelAddressing::aliasIsKnownForLoadStore(MI, Other, IsAlias, MRI))
return IsAlias;
// The following all rely on MMO0 and MMO1 being valid.
if (!MUC0.MMO || !MUC1.MMO)
return true;
// FIXME: port the alignment based alias analysis from SDAG's isAlias().
int64_t SrcValOffset0 = MUC0.MMO->getOffset();
int64_t SrcValOffset1 = MUC1.MMO->getOffset();
uint64_t Size0 = MUC0.NumBytes;
uint64_t Size1 = MUC1.NumBytes;
if (AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() &&
Size0 != MemoryLocation::UnknownSize &&
Size1 != MemoryLocation::UnknownSize) {
// Use alias analysis information.
int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1);
int64_t Overlap0 = Size0 + SrcValOffset0 - MinOffset;
int64_t Overlap1 = Size1 + SrcValOffset1 - MinOffset;
if (AA->isNoAlias(MemoryLocation(MUC0.MMO->getValue(), Overlap0,
MUC0.MMO->getAAInfo()),
MemoryLocation(MUC1.MMO->getValue(), Overlap1,
MUC1.MMO->getAAInfo())))
return false;
}
// Otherwise we have to assume they alias.
return true;
}
/// Returns true if the instruction creates an unavoidable hazard that
/// forces a boundary between store merge candidates.
static bool isInstHardMergeHazard(MachineInstr &MI) {
return MI.hasUnmodeledSideEffects() || MI.hasOrderedMemoryRef();
}
bool LoadStoreOpt::mergeStores(SmallVectorImpl<GStore *> &StoresToMerge) {
// Try to merge all the stores in the vector, splitting into separate segments
// as necessary.
assert(StoresToMerge.size() > 1 && "Expected multiple stores to merge");
LLT OrigTy = MRI->getType(StoresToMerge[0]->getValueReg());
LLT PtrTy = MRI->getType(StoresToMerge[0]->getPointerReg());
unsigned AS = PtrTy.getAddressSpace();
// Ensure the legal store info is computed for this address space.
initializeStoreMergeTargetInfo(AS);
const auto &LegalSizes = LegalStoreSizes[AS];
#ifndef NDEBUG
for (auto StoreMI : StoresToMerge)
assert(MRI->getType(StoreMI->getValueReg()) == OrigTy);
#endif
const auto &DL = MF->getFunction().getParent()->getDataLayout();
bool AnyMerged = false;
do {
unsigned NumPow2 = PowerOf2Floor(StoresToMerge.size());
unsigned MaxSizeBits = NumPow2 * OrigTy.getSizeInBits().getFixedSize();
// Compute the biggest store we can generate to handle the number of stores.
unsigned MergeSizeBits;
for (MergeSizeBits = MaxSizeBits; MergeSizeBits > 1; MergeSizeBits /= 2) {
LLT StoreTy = LLT::scalar(MergeSizeBits);
EVT StoreEVT =
getApproximateEVTForLLT(StoreTy, DL, MF->getFunction().getContext());
if (LegalSizes.size() > MergeSizeBits && LegalSizes[MergeSizeBits] &&
TLI->canMergeStoresTo(AS, StoreEVT, *MF) &&
(TLI->isTypeLegal(StoreEVT)))
break; // We can generate a MergeSize bits store.
}
if (MergeSizeBits <= OrigTy.getSizeInBits())
return AnyMerged; // No greater merge.
unsigned NumStoresToMerge = MergeSizeBits / OrigTy.getSizeInBits();
// Perform the actual merging.
SmallVector<GStore *, 8> SingleMergeStores(
StoresToMerge.begin(), StoresToMerge.begin() + NumStoresToMerge);
AnyMerged |= doSingleStoreMerge(SingleMergeStores);
StoresToMerge.erase(StoresToMerge.begin(),
StoresToMerge.begin() + NumStoresToMerge);
} while (StoresToMerge.size() > 1);
return AnyMerged;
}
bool LoadStoreOpt::isLegalOrBeforeLegalizer(const LegalityQuery &Query,
MachineFunction &MF) const {
auto Action = LI->getAction(Query).Action;
// If the instruction is unsupported, it can't be legalized at all.
if (Action == LegalizeActions::Unsupported)
return false;
return IsPreLegalizer || Action == LegalizeAction::Legal;
}
bool LoadStoreOpt::doSingleStoreMerge(SmallVectorImpl<GStore *> &Stores) {
assert(Stores.size() > 1);
// We know that all the stores are consecutive and there are no aliasing
// operations in the range. However, the values that are being stored may be
// generated anywhere before each store. To ensure we have the values
// available, we materialize the wide value and new store at the place of the
// final store in the merge sequence.
GStore *FirstStore = Stores[0];
const unsigned NumStores = Stores.size();
LLT SmallTy = MRI->getType(FirstStore->getValueReg());
LLT WideValueTy =
LLT::scalar(NumStores * SmallTy.getSizeInBits().getFixedSize());
// For each store, compute pairwise merged debug locs.
DebugLoc MergedLoc;
for (unsigned AIdx = 0, BIdx = 1; BIdx < NumStores; ++AIdx, ++BIdx)
MergedLoc = DILocation::getMergedLocation(Stores[AIdx]->getDebugLoc(),
Stores[BIdx]->getDebugLoc());
Builder.setInstr(*Stores.back());
Builder.setDebugLoc(MergedLoc);
// If all of the store values are constants, then create a wide constant
// directly. Otherwise, we need to generate some instructions to merge the
// existing values together into a wider type.
SmallVector<APInt, 8> ConstantVals;
for (auto Store : Stores) {
auto MaybeCst =
getIConstantVRegValWithLookThrough(Store->getValueReg(), *MRI);
if (!MaybeCst) {
ConstantVals.clear();
break;
}
ConstantVals.emplace_back(MaybeCst->Value);
}
Register WideReg;
auto *WideMMO =
MF->getMachineMemOperand(&FirstStore->getMMO(), 0, WideValueTy);
if (ConstantVals.empty()) {
// Mimic the SDAG behaviour here and don't try to do anything for unknown
// values. In future, we should also support the cases of loads and
// extracted vector elements.
return false;
}
assert(ConstantVals.size() == NumStores);
// Check if our wide constant is legal.
if (!isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {WideValueTy}}, *MF))
return false;
APInt WideConst(WideValueTy.getSizeInBits(), 0);
for (unsigned Idx = 0; Idx < ConstantVals.size(); ++Idx) {
// Insert the smaller constant into the corresponding position in the
// wider one.
WideConst.insertBits(ConstantVals[Idx], Idx * SmallTy.getSizeInBits());
}
WideReg = Builder.buildConstant(WideValueTy, WideConst).getReg(0);
auto NewStore =
Builder.buildStore(WideReg, FirstStore->getPointerReg(), *WideMMO);
(void) NewStore;
LLVM_DEBUG(dbgs() << "Created merged store: " << *NewStore);
NumStoresMerged += Stores.size();
MachineOptimizationRemarkEmitter MORE(*MF, nullptr);
MORE.emit([&]() {
MachineOptimizationRemark R(DEBUG_TYPE, "MergedStore",
FirstStore->getDebugLoc(),
FirstStore->getParent());
R << "Merged " << NV("NumMerged", Stores.size()) << " stores of "
<< NV("OrigWidth", SmallTy.getSizeInBytes())
<< " bytes into a single store of "
<< NV("NewWidth", WideValueTy.getSizeInBytes()) << " bytes";
return R;
});
for (auto MI : Stores)
InstsToErase.insert(MI);
return true;
}
bool LoadStoreOpt::processMergeCandidate(StoreMergeCandidate &C) {
if (C.Stores.size() < 2) {
C.reset();
return false;
}
LLVM_DEBUG(dbgs() << "Checking store merge candidate with " << C.Stores.size()
<< " stores, starting with " << *C.Stores[0]);
// We know that the stores in the candidate are adjacent.
// Now we need to check if any potential aliasing instructions recorded
// during the search alias with load/stores added to the candidate after.
// For example, if we have the candidate:
// C.Stores = [ST1, ST2, ST3, ST4]
// and after seeing ST2 we saw a load LD1, which did not alias with ST1 or
// ST2, then we would have recorded it into the PotentialAliases structure
// with the associated index value of "1". Then we see ST3 and ST4 and add
// them to the candidate group. We know that LD1 does not alias with ST1 or
// ST2, since we already did that check. However we don't yet know if it
// may alias ST3 and ST4, so we perform those checks now.
SmallVector<GStore *> StoresToMerge;
auto DoesStoreAliasWithPotential = [&](unsigned Idx, GStore &CheckStore) {
for (auto AliasInfo : reverse(C.PotentialAliases)) {
MachineInstr *PotentialAliasOp = AliasInfo.first;
unsigned PreCheckedIdx = AliasInfo.second;
if (static_cast<unsigned>(Idx) > PreCheckedIdx) {
// Need to check this alias.
if (GISelAddressing::instMayAlias(CheckStore, *PotentialAliasOp, *MRI,
AA)) {
LLVM_DEBUG(dbgs() << "Potential alias " << *PotentialAliasOp
<< " detected\n");
return true;
}
} else {
// Once our store index is lower than the index associated with the
// potential alias, we know that we've already checked for this alias
// and all of the earlier potential aliases too.
return false;
}
}
return false;
};
// Start from the last store in the group, and check if it aliases with any
// of the potential aliasing operations in the list.
for (int StoreIdx = C.Stores.size() - 1; StoreIdx >= 0; --StoreIdx) {
auto *CheckStore = C.Stores[StoreIdx];
if (DoesStoreAliasWithPotential(StoreIdx, *CheckStore))
continue;
StoresToMerge.emplace_back(CheckStore);
}
LLVM_DEBUG(dbgs() << StoresToMerge.size()
<< " stores remaining after alias checks. Merging...\n");
// Now we've checked for aliasing hazards, merge any stores left.
C.reset();
if (StoresToMerge.size() < 2)
return false;
return mergeStores(StoresToMerge);
}
bool LoadStoreOpt::operationAliasesWithCandidate(MachineInstr &MI,
StoreMergeCandidate &C) {
if (C.Stores.empty())
return false;
return llvm::any_of(C.Stores, [&](MachineInstr *OtherMI) {
return instMayAlias(MI, *OtherMI, *MRI, AA);
});
}
void LoadStoreOpt::StoreMergeCandidate::addPotentialAlias(MachineInstr &MI) {
PotentialAliases.emplace_back(std::make_pair(&MI, Stores.size() - 1));
}
bool LoadStoreOpt::addStoreToCandidate(GStore &StoreMI,
StoreMergeCandidate &C) {
// Check if the given store writes to an adjacent address, and other
// requirements.
LLT ValueTy = MRI->getType(StoreMI.getValueReg());
LLT PtrTy = MRI->getType(StoreMI.getPointerReg());
// Only handle scalars.
if (!ValueTy.isScalar())
return false;
// Don't allow truncating stores for now.
if (StoreMI.getMemSizeInBits() != ValueTy.getSizeInBits())
return false;
Register StoreAddr = StoreMI.getPointerReg();
auto BIO = getPointerInfo(StoreAddr, *MRI);
Register StoreBase = BIO.BaseReg;
uint64_t StoreOffCst = BIO.Offset;
if (C.Stores.empty()) {
// This is the first store of the candidate.
// If the offset can't possibly allow for a lower addressed store with the
// same base, don't bother adding it.
if (StoreOffCst < ValueTy.getSizeInBytes())
return false;
C.BasePtr = StoreBase;
C.CurrentLowestOffset = StoreOffCst;
C.Stores.emplace_back(&StoreMI);
LLVM_DEBUG(dbgs() << "Starting a new merge candidate group with: "
<< StoreMI);
return true;
}
// Check the store is the same size as the existing ones in the candidate.
if (MRI->getType(C.Stores[0]->getValueReg()).getSizeInBits() !=
ValueTy.getSizeInBits())
return false;
if (MRI->getType(C.Stores[0]->getPointerReg()).getAddressSpace() !=
PtrTy.getAddressSpace())
return false;
// There are other stores in the candidate. Check that the store address
// writes to the next lowest adjacent address.
if (C.BasePtr != StoreBase)
return false;
if ((C.CurrentLowestOffset - ValueTy.getSizeInBytes()) !=
static_cast<uint64_t>(StoreOffCst))
return false;
// This writes to an adjacent address. Allow it.
C.Stores.emplace_back(&StoreMI);
C.CurrentLowestOffset = C.CurrentLowestOffset - ValueTy.getSizeInBytes();
LLVM_DEBUG(dbgs() << "Candidate added store: " << StoreMI);
return true;
}
bool LoadStoreOpt::mergeBlockStores(MachineBasicBlock &MBB) {
bool Changed = false;
// Walk through the block bottom-up, looking for merging candidates.
StoreMergeCandidate Candidate;
for (MachineInstr &MI : llvm::reverse(MBB)) {
if (InstsToErase.contains(&MI))
continue;
if (auto *StoreMI = dyn_cast<GStore>(&MI)) {
// We have a G_STORE. Add it to the candidate if it writes to an adjacent
// address.
if (!addStoreToCandidate(*StoreMI, Candidate)) {
// Store wasn't eligible to be added. May need to record it as a
// potential alias.
if (operationAliasesWithCandidate(*StoreMI, Candidate)) {
Changed |= processMergeCandidate(Candidate);
continue;
}
Candidate.addPotentialAlias(*StoreMI);
}
continue;
}
// If we don't have any stores yet, this instruction can't pose a problem.
if (Candidate.Stores.empty())
continue;
// We're dealing with some other kind of instruction.
if (isInstHardMergeHazard(MI)) {
Changed |= processMergeCandidate(Candidate);
Candidate.Stores.clear();
continue;
}
if (!MI.mayLoadOrStore())
continue;
if (operationAliasesWithCandidate(MI, Candidate)) {
// We have a potential alias, so process the current candidate if we can
// and then continue looking for a new candidate.
Changed |= processMergeCandidate(Candidate);
continue;
}
// Record this instruction as a potential alias for future stores that are
// added to the candidate.
Candidate.addPotentialAlias(MI);
}
// Process any candidate left after finishing searching the entire block.
Changed |= processMergeCandidate(Candidate);
// Erase instructions now that we're no longer iterating over the block.
for (auto *MI : InstsToErase)
MI->eraseFromParent();
InstsToErase.clear();
return Changed;
}
bool LoadStoreOpt::mergeFunctionStores(MachineFunction &MF) {
bool Changed = false;
for (auto &BB : MF) {
Changed |= mergeBlockStores(BB);
}
return Changed;
}
void LoadStoreOpt::initializeStoreMergeTargetInfo(unsigned AddrSpace) {
// Query the legalizer info to record what store types are legal.
// We record this because we don't want to bother trying to merge stores into
// illegal ones, which would just result in being split again.
if (LegalStoreSizes.count(AddrSpace)) {
assert(LegalStoreSizes[AddrSpace].any());
return; // Already cached sizes for this address space.
}
// Need to reserve at least MaxStoreSizeToForm + 1 bits.
BitVector LegalSizes(MaxStoreSizeToForm * 2);
const auto &LI = *MF->getSubtarget().getLegalizerInfo();
const auto &DL = MF->getFunction().getParent()->getDataLayout();
Type *IntPtrIRTy =
DL.getIntPtrType(MF->getFunction().getContext(), AddrSpace);
LLT PtrTy = getLLTForType(*IntPtrIRTy->getPointerTo(AddrSpace), DL);
// We assume that we're not going to be generating any stores wider than
// MaxStoreSizeToForm bits for now.
for (unsigned Size = 2; Size <= MaxStoreSizeToForm; Size *= 2) {
LLT Ty = LLT::scalar(Size);
SmallVector<LegalityQuery::MemDesc, 2> MemDescrs(
{{Ty, Ty.getSizeInBits(), AtomicOrdering::NotAtomic}});
SmallVector<LLT> StoreTys({Ty, PtrTy});
LegalityQuery Q(TargetOpcode::G_STORE, StoreTys, MemDescrs);
LegalizeActionStep ActionStep = LI.getAction(Q);
if (ActionStep.Action == LegalizeActions::Legal)
LegalSizes.set(Size);
}
assert(LegalSizes.any() && "Expected some store sizes to be legal!");
LegalStoreSizes[AddrSpace] = LegalSizes;
}
bool LoadStoreOpt::runOnMachineFunction(MachineFunction &MF) {
// If the ISel pipeline failed, do not bother running that pass.
if (MF.getProperties().hasProperty(
MachineFunctionProperties::Property::FailedISel))
return false;
LLVM_DEBUG(dbgs() << "Begin memory optimizations for: " << MF.getName()
<< '\n');
init(MF);
bool Changed = false;
Changed |= mergeFunctionStores(MF);
LegalStoreSizes.clear();
return Changed;
}
|