1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
|
//===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file InstrRefBasedImpl.cpp
///
/// This is a separate implementation of LiveDebugValues, see
/// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
///
/// This pass propagates variable locations between basic blocks, resolving
/// control flow conflicts between them. The problem is SSA construction, where
/// each debug instruction assigns the *value* that a variable has, and every
/// instruction where the variable is in scope uses that variable. The resulting
/// map of instruction-to-value is then translated into a register (or spill)
/// location for each variable over each instruction.
///
/// The primary difference from normal SSA construction is that we cannot
/// _create_ PHI values that contain variable values. CodeGen has already
/// completed, and we can't alter it just to make debug-info complete. Thus:
/// we can identify function positions where we would like a PHI value for a
/// variable, but must search the MachineFunction to see whether such a PHI is
/// available. If no such PHI exists, the variable location must be dropped.
///
/// To achieve this, we perform two kinds of analysis. First, we identify
/// every value defined by every instruction (ignoring those that only move
/// another value), then re-compute an SSA-form representation of the
/// MachineFunction, using value propagation to eliminate any un-necessary
/// PHI values. This gives us a map of every value computed in the function,
/// and its location within the register file / stack.
///
/// Secondly, for each variable we perform the same analysis, where each debug
/// instruction is considered a def, and every instruction where the variable
/// is in lexical scope as a use. Value propagation is used again to eliminate
/// any un-necessary PHIs. This gives us a map of each variable to the value
/// it should have in a block.
///
/// Once both are complete, we have two maps for each block:
/// * Variables to the values they should have,
/// * Values to the register / spill slot they are located in.
/// After which we can marry-up variable values with a location, and emit
/// DBG_VALUE instructions specifying those locations. Variable locations may
/// be dropped in this process due to the desired variable value not being
/// resident in any machine location, or because there is no PHI value in any
/// location that accurately represents the desired value. The building of
/// location lists for each block is left to DbgEntityHistoryCalculator.
///
/// This pass is kept efficient because the size of the first SSA problem
/// is proportional to the working-set size of the function, which the compiler
/// tries to keep small. (It's also proportional to the number of blocks).
/// Additionally, we repeatedly perform the second SSA problem analysis with
/// only the variables and blocks in a single lexical scope, exploiting their
/// locality.
///
/// ### Terminology
///
/// A machine location is a register or spill slot, a value is something that's
/// defined by an instruction or PHI node, while a variable value is the value
/// assigned to a variable. A variable location is a machine location, that must
/// contain the appropriate variable value. A value that is a PHI node is
/// occasionally called an mphi.
///
/// The first SSA problem is the "machine value location" problem,
/// because we're determining which machine locations contain which values.
/// The "locations" are constant: what's unknown is what value they contain.
///
/// The second SSA problem (the one for variables) is the "variable value
/// problem", because it's determining what values a variable has, rather than
/// what location those values are placed in.
///
/// TODO:
/// Overlapping fragments
/// Entry values
/// Add back DEBUG statements for debugging this
/// Collect statistics
///
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/IteratedDominanceFrontier.h"
#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/TypeSize.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <limits.h>
#include <limits>
#include <queue>
#include <tuple>
#include <utility>
#include <vector>
#include "InstrRefBasedImpl.h"
#include "LiveDebugValues.h"
using namespace llvm;
using namespace LiveDebugValues;
// SSAUpdaterImple sets DEBUG_TYPE, change it.
#undef DEBUG_TYPE
#define DEBUG_TYPE "livedebugvalues"
// Act more like the VarLoc implementation, by propagating some locations too
// far and ignoring some transfers.
static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
cl::desc("Act like old LiveDebugValues did"),
cl::init(false));
// Limit for the maximum number of stack slots we should track, past which we
// will ignore any spills. InstrRefBasedLDV gathers detailed information on all
// stack slots which leads to high memory consumption, and in some scenarios
// (such as asan with very many locals) the working set of the function can be
// very large, causing many spills. In these scenarios, it is very unlikely that
// the developer has hundreds of variables live at the same time that they're
// carefully thinking about -- instead, they probably autogenerated the code.
// When this happens, gracefully stop tracking excess spill slots, rather than
// consuming all the developer's memory.
static cl::opt<unsigned>
StackWorkingSetLimit("livedebugvalues-max-stack-slots", cl::Hidden,
cl::desc("livedebugvalues-stack-ws-limit"),
cl::init(250));
/// Tracker for converting machine value locations and variable values into
/// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
/// specifying block live-in locations and transfers within blocks.
///
/// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
/// and must be initialized with the set of variable values that are live-in to
/// the block. The caller then repeatedly calls process(). TransferTracker picks
/// out variable locations for the live-in variable values (if there _is_ a
/// location) and creates the corresponding DBG_VALUEs. Then, as the block is
/// stepped through, transfers of values between machine locations are
/// identified and if profitable, a DBG_VALUE created.
///
/// This is where debug use-before-defs would be resolved: a variable with an
/// unavailable value could materialize in the middle of a block, when the
/// value becomes available. Or, we could detect clobbers and re-specify the
/// variable in a backup location. (XXX these are unimplemented).
class TransferTracker {
public:
const TargetInstrInfo *TII;
const TargetLowering *TLI;
/// This machine location tracker is assumed to always contain the up-to-date
/// value mapping for all machine locations. TransferTracker only reads
/// information from it. (XXX make it const?)
MLocTracker *MTracker;
MachineFunction &MF;
bool ShouldEmitDebugEntryValues;
/// Record of all changes in variable locations at a block position. Awkwardly
/// we allow inserting either before or after the point: MBB != nullptr
/// indicates it's before, otherwise after.
struct Transfer {
MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
MachineBasicBlock *MBB; /// non-null if we should insert after.
SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
};
struct LocAndProperties {
LocIdx Loc;
DbgValueProperties Properties;
};
/// Collection of transfers (DBG_VALUEs) to be inserted.
SmallVector<Transfer, 32> Transfers;
/// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
/// between TransferTrackers view of variable locations and MLocTrackers. For
/// example, MLocTracker observes all clobbers, but TransferTracker lazily
/// does not.
SmallVector<ValueIDNum, 32> VarLocs;
/// Map from LocIdxes to which DebugVariables are based that location.
/// Mantained while stepping through the block. Not accurate if
/// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
DenseMap<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
/// Map from DebugVariable to it's current location and qualifying meta
/// information. To be used in conjunction with ActiveMLocs to construct
/// enough information for the DBG_VALUEs for a particular LocIdx.
DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
/// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
SmallVector<MachineInstr *, 4> PendingDbgValues;
/// Record of a use-before-def: created when a value that's live-in to the
/// current block isn't available in any machine location, but it will be
/// defined in this block.
struct UseBeforeDef {
/// Value of this variable, def'd in block.
ValueIDNum ID;
/// Identity of this variable.
DebugVariable Var;
/// Additional variable properties.
DbgValueProperties Properties;
};
/// Map from instruction index (within the block) to the set of UseBeforeDefs
/// that become defined at that instruction.
DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
/// The set of variables that are in UseBeforeDefs and can become a location
/// once the relevant value is defined. An element being erased from this
/// collection prevents the use-before-def materializing.
DenseSet<DebugVariable> UseBeforeDefVariables;
const TargetRegisterInfo &TRI;
const BitVector &CalleeSavedRegs;
TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
MachineFunction &MF, const TargetRegisterInfo &TRI,
const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
: TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
CalleeSavedRegs(CalleeSavedRegs) {
TLI = MF.getSubtarget().getTargetLowering();
auto &TM = TPC.getTM<TargetMachine>();
ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
}
/// Load object with live-in variable values. \p mlocs contains the live-in
/// values in each machine location, while \p vlocs the live-in variable
/// values. This method picks variable locations for the live-in variables,
/// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
/// object fields to track variable locations as we step through the block.
/// FIXME: could just examine mloctracker instead of passing in \p mlocs?
void
loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs,
const SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
unsigned NumLocs) {
ActiveMLocs.clear();
ActiveVLocs.clear();
VarLocs.clear();
VarLocs.reserve(NumLocs);
UseBeforeDefs.clear();
UseBeforeDefVariables.clear();
auto isCalleeSaved = [&](LocIdx L) {
unsigned Reg = MTracker->LocIdxToLocID[L];
if (Reg >= MTracker->NumRegs)
return false;
for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
if (CalleeSavedRegs.test(*RAI))
return true;
return false;
};
// Map of the preferred location for each value.
DenseMap<ValueIDNum, LocIdx> ValueToLoc;
// Initialized the preferred-location map with illegal locations, to be
// filled in later.
for (auto &VLoc : VLocs)
if (VLoc.second.Kind == DbgValue::Def)
ValueToLoc.insert({VLoc.second.ID, LocIdx::MakeIllegalLoc()});
ActiveMLocs.reserve(VLocs.size());
ActiveVLocs.reserve(VLocs.size());
// Produce a map of value numbers to the current machine locs they live
// in. When emulating VarLocBasedImpl, there should only be one
// location; when not, we get to pick.
for (auto Location : MTracker->locations()) {
LocIdx Idx = Location.Idx;
ValueIDNum &VNum = MLocs[Idx.asU64()];
VarLocs.push_back(VNum);
// Is there a variable that wants a location for this value? If not, skip.
auto VIt = ValueToLoc.find(VNum);
if (VIt == ValueToLoc.end())
continue;
LocIdx CurLoc = VIt->second;
// In order of preference, pick:
// * Callee saved registers,
// * Other registers,
// * Spill slots.
if (CurLoc.isIllegal() || MTracker->isSpill(CurLoc) ||
(!isCalleeSaved(CurLoc) && isCalleeSaved(Idx.asU64()))) {
// Insert, or overwrite if insertion failed.
VIt->second = Idx;
}
}
// Now map variables to their picked LocIdxes.
for (const auto &Var : VLocs) {
if (Var.second.Kind == DbgValue::Const) {
PendingDbgValues.push_back(
emitMOLoc(*Var.second.MO, Var.first, Var.second.Properties));
continue;
}
// If the value has no location, we can't make a variable location.
const ValueIDNum &Num = Var.second.ID;
auto ValuesPreferredLoc = ValueToLoc.find(Num);
if (ValuesPreferredLoc->second.isIllegal()) {
// If it's a def that occurs in this block, register it as a
// use-before-def to be resolved as we step through the block.
if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI())
addUseBeforeDef(Var.first, Var.second.Properties, Num);
else
recoverAsEntryValue(Var.first, Var.second.Properties, Num);
continue;
}
LocIdx M = ValuesPreferredLoc->second;
auto NewValue = LocAndProperties{M, Var.second.Properties};
auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
if (!Result.second)
Result.first->second = NewValue;
ActiveMLocs[M].insert(Var.first);
PendingDbgValues.push_back(
MTracker->emitLoc(M, Var.first, Var.second.Properties));
}
flushDbgValues(MBB.begin(), &MBB);
}
/// Record that \p Var has value \p ID, a value that becomes available
/// later in the function.
void addUseBeforeDef(const DebugVariable &Var,
const DbgValueProperties &Properties, ValueIDNum ID) {
UseBeforeDef UBD = {ID, Var, Properties};
UseBeforeDefs[ID.getInst()].push_back(UBD);
UseBeforeDefVariables.insert(Var);
}
/// After the instruction at index \p Inst and position \p pos has been
/// processed, check whether it defines a variable value in a use-before-def.
/// If so, and the variable value hasn't changed since the start of the
/// block, create a DBG_VALUE.
void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
auto MIt = UseBeforeDefs.find(Inst);
if (MIt == UseBeforeDefs.end())
return;
for (auto &Use : MIt->second) {
LocIdx L = Use.ID.getLoc();
// If something goes very wrong, we might end up labelling a COPY
// instruction or similar with an instruction number, where it doesn't
// actually define a new value, instead it moves a value. In case this
// happens, discard.
if (MTracker->readMLoc(L) != Use.ID)
continue;
// If a different debug instruction defined the variable value / location
// since the start of the block, don't materialize this use-before-def.
if (!UseBeforeDefVariables.count(Use.Var))
continue;
PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties));
}
flushDbgValues(pos, nullptr);
}
/// Helper to move created DBG_VALUEs into Transfers collection.
void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
if (PendingDbgValues.size() == 0)
return;
// Pick out the instruction start position.
MachineBasicBlock::instr_iterator BundleStart;
if (MBB && Pos == MBB->begin())
BundleStart = MBB->instr_begin();
else
BundleStart = getBundleStart(Pos->getIterator());
Transfers.push_back({BundleStart, MBB, PendingDbgValues});
PendingDbgValues.clear();
}
bool isEntryValueVariable(const DebugVariable &Var,
const DIExpression *Expr) const {
if (!Var.getVariable()->isParameter())
return false;
if (Var.getInlinedAt())
return false;
if (Expr->getNumElements() > 0)
return false;
return true;
}
bool isEntryValueValue(const ValueIDNum &Val) const {
// Must be in entry block (block number zero), and be a PHI / live-in value.
if (Val.getBlock() || !Val.isPHI())
return false;
// Entry values must enter in a register.
if (MTracker->isSpill(Val.getLoc()))
return false;
Register SP = TLI->getStackPointerRegisterToSaveRestore();
Register FP = TRI.getFrameRegister(MF);
Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
return Reg != SP && Reg != FP;
}
bool recoverAsEntryValue(const DebugVariable &Var,
const DbgValueProperties &Prop,
const ValueIDNum &Num) {
// Is this variable location a candidate to be an entry value. First,
// should we be trying this at all?
if (!ShouldEmitDebugEntryValues)
return false;
// Is the variable appropriate for entry values (i.e., is a parameter).
if (!isEntryValueVariable(Var, Prop.DIExpr))
return false;
// Is the value assigned to this variable still the entry value?
if (!isEntryValueValue(Num))
return false;
// Emit a variable location using an entry value expression.
DIExpression *NewExpr =
DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue);
Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
MachineOperand MO = MachineOperand::CreateReg(Reg, false);
PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect}));
return true;
}
/// Change a variable value after encountering a DBG_VALUE inside a block.
void redefVar(const MachineInstr &MI) {
DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
MI.getDebugLoc()->getInlinedAt());
DbgValueProperties Properties(MI);
const MachineOperand &MO = MI.getOperand(0);
// Ignore non-register locations, we don't transfer those.
if (!MO.isReg() || MO.getReg() == 0) {
auto It = ActiveVLocs.find(Var);
if (It != ActiveVLocs.end()) {
ActiveMLocs[It->second.Loc].erase(Var);
ActiveVLocs.erase(It);
}
// Any use-before-defs no longer apply.
UseBeforeDefVariables.erase(Var);
return;
}
Register Reg = MO.getReg();
LocIdx NewLoc = MTracker->getRegMLoc(Reg);
redefVar(MI, Properties, NewLoc);
}
/// Handle a change in variable location within a block. Terminate the
/// variables current location, and record the value it now refers to, so
/// that we can detect location transfers later on.
void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
Optional<LocIdx> OptNewLoc) {
DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
MI.getDebugLoc()->getInlinedAt());
// Any use-before-defs no longer apply.
UseBeforeDefVariables.erase(Var);
// Erase any previous location,
auto It = ActiveVLocs.find(Var);
if (It != ActiveVLocs.end())
ActiveMLocs[It->second.Loc].erase(Var);
// If there _is_ no new location, all we had to do was erase.
if (!OptNewLoc)
return;
LocIdx NewLoc = *OptNewLoc;
// Check whether our local copy of values-by-location in #VarLocs is out of
// date. Wipe old tracking data for the location if it's been clobbered in
// the meantime.
if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) {
for (auto &P : ActiveMLocs[NewLoc]) {
ActiveVLocs.erase(P);
}
ActiveMLocs[NewLoc.asU64()].clear();
VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc);
}
ActiveMLocs[NewLoc].insert(Var);
if (It == ActiveVLocs.end()) {
ActiveVLocs.insert(
std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
} else {
It->second.Loc = NewLoc;
It->second.Properties = Properties;
}
}
/// Account for a location \p mloc being clobbered. Examine the variable
/// locations that will be terminated: and try to recover them by using
/// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
/// explicitly terminate a location if it can't be recovered.
void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
bool MakeUndef = true) {
auto ActiveMLocIt = ActiveMLocs.find(MLoc);
if (ActiveMLocIt == ActiveMLocs.end())
return;
// What was the old variable value?
ValueIDNum OldValue = VarLocs[MLoc.asU64()];
VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
// Examine the remaining variable locations: if we can find the same value
// again, we can recover the location.
Optional<LocIdx> NewLoc = None;
for (auto Loc : MTracker->locations())
if (Loc.Value == OldValue)
NewLoc = Loc.Idx;
// If there is no location, and we weren't asked to make the variable
// explicitly undef, then stop here.
if (!NewLoc && !MakeUndef) {
// Try and recover a few more locations with entry values.
for (auto &Var : ActiveMLocIt->second) {
auto &Prop = ActiveVLocs.find(Var)->second.Properties;
recoverAsEntryValue(Var, Prop, OldValue);
}
flushDbgValues(Pos, nullptr);
return;
}
// Examine all the variables based on this location.
DenseSet<DebugVariable> NewMLocs;
for (auto &Var : ActiveMLocIt->second) {
auto ActiveVLocIt = ActiveVLocs.find(Var);
// Re-state the variable location: if there's no replacement then NewLoc
// is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE
// identifying the alternative location will be emitted.
const DbgValueProperties &Properties = ActiveVLocIt->second.Properties;
PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties));
// Update machine locations <=> variable locations maps. Defer updating
// ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator.
if (!NewLoc) {
ActiveVLocs.erase(ActiveVLocIt);
} else {
ActiveVLocIt->second.Loc = *NewLoc;
NewMLocs.insert(Var);
}
}
// Commit any deferred ActiveMLoc changes.
if (!NewMLocs.empty())
for (auto &Var : NewMLocs)
ActiveMLocs[*NewLoc].insert(Var);
// We lazily track what locations have which values; if we've found a new
// location for the clobbered value, remember it.
if (NewLoc)
VarLocs[NewLoc->asU64()] = OldValue;
flushDbgValues(Pos, nullptr);
// Re-find ActiveMLocIt, iterator could have been invalidated.
ActiveMLocIt = ActiveMLocs.find(MLoc);
ActiveMLocIt->second.clear();
}
/// Transfer variables based on \p Src to be based on \p Dst. This handles
/// both register copies as well as spills and restores. Creates DBG_VALUEs
/// describing the movement.
void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
// Does Src still contain the value num we expect? If not, it's been
// clobbered in the meantime, and our variable locations are stale.
if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src))
return;
// assert(ActiveMLocs[Dst].size() == 0);
//^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
// Move set of active variables from one location to another.
auto MovingVars = ActiveMLocs[Src];
ActiveMLocs[Dst] = MovingVars;
VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
// For each variable based on Src; create a location at Dst.
for (auto &Var : MovingVars) {
auto ActiveVLocIt = ActiveVLocs.find(Var);
assert(ActiveVLocIt != ActiveVLocs.end());
ActiveVLocIt->second.Loc = Dst;
MachineInstr *MI =
MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
PendingDbgValues.push_back(MI);
}
ActiveMLocs[Src].clear();
flushDbgValues(Pos, nullptr);
// XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
// about the old location.
if (EmulateOldLDV)
VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
}
MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
const DebugVariable &Var,
const DbgValueProperties &Properties) {
DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
Var.getVariable()->getScope(),
const_cast<DILocation *>(Var.getInlinedAt()));
auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
MIB.add(MO);
if (Properties.Indirect)
MIB.addImm(0);
else
MIB.addReg(0);
MIB.addMetadata(Var.getVariable());
MIB.addMetadata(Properties.DIExpr);
return MIB;
}
};
//===----------------------------------------------------------------------===//
// Implementation
//===----------------------------------------------------------------------===//
ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1};
#ifndef NDEBUG
void DbgValue::dump(const MLocTracker *MTrack) const {
if (Kind == Const) {
MO->dump();
} else if (Kind == NoVal) {
dbgs() << "NoVal(" << BlockNo << ")";
} else if (Kind == VPHI) {
dbgs() << "VPHI(" << BlockNo << "," << MTrack->IDAsString(ID) << ")";
} else {
assert(Kind == Def);
dbgs() << MTrack->IDAsString(ID);
}
if (Properties.Indirect)
dbgs() << " indir";
if (Properties.DIExpr)
dbgs() << " " << *Properties.DIExpr;
}
#endif
MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
const TargetRegisterInfo &TRI,
const TargetLowering &TLI)
: MF(MF), TII(TII), TRI(TRI), TLI(TLI),
LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) {
NumRegs = TRI.getNumRegs();
reset();
LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
// Always track SP. This avoids the implicit clobbering caused by regmasks
// from affectings its values. (LiveDebugValues disbelieves calls and
// regmasks that claim to clobber SP).
Register SP = TLI.getStackPointerRegisterToSaveRestore();
if (SP) {
unsigned ID = getLocID(SP);
(void)lookupOrTrackRegister(ID);
for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI)
SPAliases.insert(*RAI);
}
// Build some common stack positions -- full registers being spilt to the
// stack.
StackSlotIdxes.insert({{8, 0}, 0});
StackSlotIdxes.insert({{16, 0}, 1});
StackSlotIdxes.insert({{32, 0}, 2});
StackSlotIdxes.insert({{64, 0}, 3});
StackSlotIdxes.insert({{128, 0}, 4});
StackSlotIdxes.insert({{256, 0}, 5});
StackSlotIdxes.insert({{512, 0}, 6});
// Traverse all the subregister idxes, and ensure there's an index for them.
// Duplicates are no problem: we're interested in their position in the
// stack slot, we don't want to type the slot.
for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) {
unsigned Size = TRI.getSubRegIdxSize(I);
unsigned Offs = TRI.getSubRegIdxOffset(I);
unsigned Idx = StackSlotIdxes.size();
// Some subregs have -1, -2 and so forth fed into their fields, to mean
// special backend things. Ignore those.
if (Size > 60000 || Offs > 60000)
continue;
StackSlotIdxes.insert({{Size, Offs}, Idx});
}
for (auto &Idx : StackSlotIdxes)
StackIdxesToPos[Idx.second] = Idx.first;
NumSlotIdxes = StackSlotIdxes.size();
}
LocIdx MLocTracker::trackRegister(unsigned ID) {
assert(ID != 0);
LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
LocIdxToIDNum.grow(NewIdx);
LocIdxToLocID.grow(NewIdx);
// Default: it's an mphi.
ValueIDNum ValNum = {CurBB, 0, NewIdx};
// Was this reg ever touched by a regmask?
for (const auto &MaskPair : reverse(Masks)) {
if (MaskPair.first->clobbersPhysReg(ID)) {
// There was an earlier def we skipped.
ValNum = {CurBB, MaskPair.second, NewIdx};
break;
}
}
LocIdxToIDNum[NewIdx] = ValNum;
LocIdxToLocID[NewIdx] = ID;
return NewIdx;
}
void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB,
unsigned InstID) {
// Def any register we track have that isn't preserved. The regmask
// terminates the liveness of a register, meaning its value can't be
// relied upon -- we represent this by giving it a new value.
for (auto Location : locations()) {
unsigned ID = LocIdxToLocID[Location.Idx];
// Don't clobber SP, even if the mask says it's clobbered.
if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID))
defReg(ID, CurBB, InstID);
}
Masks.push_back(std::make_pair(MO, InstID));
}
Optional<SpillLocationNo> MLocTracker::getOrTrackSpillLoc(SpillLoc L) {
SpillLocationNo SpillID(SpillLocs.idFor(L));
if (SpillID.id() == 0) {
// If there is no location, and we have reached the limit of how many stack
// slots to track, then don't track this one.
if (SpillLocs.size() >= StackWorkingSetLimit)
return None;
// Spill location is untracked: create record for this one, and all
// subregister slots too.
SpillID = SpillLocationNo(SpillLocs.insert(L));
for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) {
unsigned L = getSpillIDWithIdx(SpillID, StackIdx);
LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
LocIdxToIDNum.grow(Idx);
LocIdxToLocID.grow(Idx);
LocIDToLocIdx.push_back(Idx);
LocIdxToLocID[Idx] = L;
// Initialize to PHI value; corresponds to the location's live-in value
// during transfer function construction.
LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx);
}
}
return SpillID;
}
std::string MLocTracker::LocIdxToName(LocIdx Idx) const {
unsigned ID = LocIdxToLocID[Idx];
if (ID >= NumRegs) {
StackSlotPos Pos = locIDToSpillIdx(ID);
ID -= NumRegs;
unsigned Slot = ID / NumSlotIdxes;
return Twine("slot ")
.concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first)
.concat(Twine(" offs ").concat(Twine(Pos.second))))))
.str();
} else {
return TRI.getRegAsmName(ID).str();
}
}
std::string MLocTracker::IDAsString(const ValueIDNum &Num) const {
std::string DefName = LocIdxToName(Num.getLoc());
return Num.asString(DefName);
}
#ifndef NDEBUG
LLVM_DUMP_METHOD void MLocTracker::dump() {
for (auto Location : locations()) {
std::string MLocName = LocIdxToName(Location.Value.getLoc());
std::string DefName = Location.Value.asString(MLocName);
dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
}
}
LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() {
for (auto Location : locations()) {
std::string foo = LocIdxToName(Location.Idx);
dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
}
}
#endif
MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc,
const DebugVariable &Var,
const DbgValueProperties &Properties) {
DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
Var.getVariable()->getScope(),
const_cast<DILocation *>(Var.getInlinedAt()));
auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
const DIExpression *Expr = Properties.DIExpr;
if (!MLoc) {
// No location -> DBG_VALUE $noreg
MIB.addReg(0);
MIB.addReg(0);
} else if (LocIdxToLocID[*MLoc] >= NumRegs) {
unsigned LocID = LocIdxToLocID[*MLoc];
SpillLocationNo SpillID = locIDToSpill(LocID);
StackSlotPos StackIdx = locIDToSpillIdx(LocID);
unsigned short Offset = StackIdx.second;
// TODO: support variables that are located in spill slots, with non-zero
// offsets from the start of the spill slot. It would require some more
// complex DIExpression calculations. This doesn't seem to be produced by
// LLVM right now, so don't try and support it.
// Accept no-subregister slots and subregisters where the offset is zero.
// The consumer should already have type information to work out how large
// the variable is.
if (Offset == 0) {
const SpillLoc &Spill = SpillLocs[SpillID.id()];
Expr = TRI.prependOffsetExpression(Expr, DIExpression::ApplyOffset,
Spill.SpillOffset);
unsigned Base = Spill.SpillBase;
MIB.addReg(Base);
MIB.addImm(0);
// Being on the stack makes this location indirect; if it was _already_
// indirect though, we need to add extra indirection. See this test for
// a scenario where this happens:
// llvm/test/DebugInfo/X86/spill-nontrivial-param.ll
if (Properties.Indirect) {
std::vector<uint64_t> Elts = {dwarf::DW_OP_deref};
Expr = DIExpression::append(Expr, Elts);
}
} else {
// This is a stack location with a weird subregister offset: emit an undef
// DBG_VALUE instead.
MIB.addReg(0);
MIB.addReg(0);
}
} else {
// Non-empty, non-stack slot, must be a plain register.
unsigned LocID = LocIdxToLocID[*MLoc];
MIB.addReg(LocID);
if (Properties.Indirect)
MIB.addImm(0);
else
MIB.addReg(0);
}
MIB.addMetadata(Var.getVariable());
MIB.addMetadata(Expr);
return MIB;
}
/// Default construct and initialize the pass.
InstrRefBasedLDV::InstrRefBasedLDV() {}
bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const {
unsigned Reg = MTracker->LocIdxToLocID[L];
for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
if (CalleeSavedRegs.test(*RAI))
return true;
return false;
}
//===----------------------------------------------------------------------===//
// Debug Range Extension Implementation
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
// Something to restore in the future.
// void InstrRefBasedLDV::printVarLocInMBB(..)
#endif
Optional<SpillLocationNo>
InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
assert(MI.hasOneMemOperand() &&
"Spill instruction does not have exactly one memory operand?");
auto MMOI = MI.memoperands_begin();
const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
assert(PVal->kind() == PseudoSourceValue::FixedStack &&
"Inconsistent memory operand in spill instruction");
int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
const MachineBasicBlock *MBB = MI.getParent();
Register Reg;
StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
return MTracker->getOrTrackSpillLoc({Reg, Offset});
}
Optional<LocIdx>
InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) {
Optional<SpillLocationNo> SpillLoc = extractSpillBaseRegAndOffset(MI);
if (!SpillLoc)
return None;
// Where in the stack slot is this value defined -- i.e., what size of value
// is this? An important question, because it could be loaded into a register
// from the stack at some point. Happily the memory operand will tell us
// the size written to the stack.
auto *MemOperand = *MI.memoperands_begin();
unsigned SizeInBits = MemOperand->getSizeInBits();
// Find that position in the stack indexes we're tracking.
auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0});
if (IdxIt == MTracker->StackSlotIdxes.end())
// That index is not tracked. This is suprising, and unlikely to ever
// occur, but the safe action is to indicate the variable is optimised out.
return None;
unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillLoc, IdxIt->second);
return MTracker->getSpillMLoc(SpillID);
}
/// End all previous ranges related to @MI and start a new range from @MI
/// if it is a DBG_VALUE instr.
bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
if (!MI.isDebugValue())
return false;
const DILocalVariable *Var = MI.getDebugVariable();
const DIExpression *Expr = MI.getDebugExpression();
const DILocation *DebugLoc = MI.getDebugLoc();
const DILocation *InlinedAt = DebugLoc->getInlinedAt();
assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
"Expected inlined-at fields to agree");
DebugVariable V(Var, Expr, InlinedAt);
DbgValueProperties Properties(MI);
// If there are no instructions in this lexical scope, do no location tracking
// at all, this variable shouldn't get a legitimate location range.
auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
if (Scope == nullptr)
return true; // handled it; by doing nothing
// For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to
// contribute to locations in this block, but don't propagate further.
// Interpret it like a DBG_VALUE $noreg.
if (MI.isDebugValueList()) {
if (VTracker)
VTracker->defVar(MI, Properties, None);
if (TTracker)
TTracker->redefVar(MI, Properties, None);
return true;
}
const MachineOperand &MO = MI.getOperand(0);
// MLocTracker needs to know that this register is read, even if it's only
// read by a debug inst.
if (MO.isReg() && MO.getReg() != 0)
(void)MTracker->readReg(MO.getReg());
// If we're preparing for the second analysis (variables), the machine value
// locations are already solved, and we report this DBG_VALUE and the value
// it refers to to VLocTracker.
if (VTracker) {
if (MO.isReg()) {
// Feed defVar the new variable location, or if this is a
// DBG_VALUE $noreg, feed defVar None.
if (MO.getReg())
VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
else
VTracker->defVar(MI, Properties, None);
} else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
MI.getOperand(0).isCImm()) {
VTracker->defVar(MI, MI.getOperand(0));
}
}
// If performing final tracking of transfers, report this variable definition
// to the TransferTracker too.
if (TTracker)
TTracker->redefVar(MI);
return true;
}
bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
ValueIDNum **MLiveOuts,
ValueIDNum **MLiveIns) {
if (!MI.isDebugRef())
return false;
// Only handle this instruction when we are building the variable value
// transfer function.
if (!VTracker && !TTracker)
return false;
unsigned InstNo = MI.getOperand(0).getImm();
unsigned OpNo = MI.getOperand(1).getImm();
const DILocalVariable *Var = MI.getDebugVariable();
const DIExpression *Expr = MI.getDebugExpression();
const DILocation *DebugLoc = MI.getDebugLoc();
const DILocation *InlinedAt = DebugLoc->getInlinedAt();
assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
"Expected inlined-at fields to agree");
DebugVariable V(Var, Expr, InlinedAt);
auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
if (Scope == nullptr)
return true; // Handled by doing nothing. This variable is never in scope.
const MachineFunction &MF = *MI.getParent()->getParent();
// Various optimizations may have happened to the value during codegen,
// recorded in the value substitution table. Apply any substitutions to
// the instruction / operand number in this DBG_INSTR_REF, and collect
// any subregister extractions performed during optimization.
// Create dummy substitution with Src set, for lookup.
auto SoughtSub =
MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
SmallVector<unsigned, 4> SeenSubregs;
auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
LowerBoundIt->Src == SoughtSub.Src) {
std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
SoughtSub.Src = LowerBoundIt->Dest;
if (unsigned Subreg = LowerBoundIt->Subreg)
SeenSubregs.push_back(Subreg);
LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
}
// Default machine value number is <None> -- if no instruction defines
// the corresponding value, it must have been optimized out.
Optional<ValueIDNum> NewID = None;
// Try to lookup the instruction number, and find the machine value number
// that it defines. It could be an instruction, or a PHI.
auto InstrIt = DebugInstrNumToInstr.find(InstNo);
auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(),
DebugPHINumToValue.end(), InstNo);
if (InstrIt != DebugInstrNumToInstr.end()) {
const MachineInstr &TargetInstr = *InstrIt->second.first;
uint64_t BlockNo = TargetInstr.getParent()->getNumber();
// Pick out the designated operand. It might be a memory reference, if
// a register def was folded into a stack store.
if (OpNo == MachineFunction::DebugOperandMemNumber &&
TargetInstr.hasOneMemOperand()) {
Optional<LocIdx> L = findLocationForMemOperand(TargetInstr);
if (L)
NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L);
} else if (OpNo != MachineFunction::DebugOperandMemNumber) {
assert(OpNo < TargetInstr.getNumOperands());
const MachineOperand &MO = TargetInstr.getOperand(OpNo);
// Today, this can only be a register.
assert(MO.isReg() && MO.isDef());
unsigned LocID = MTracker->getLocID(MO.getReg());
LocIdx L = MTracker->LocIDToLocIdx[LocID];
NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
}
// else: NewID is left as None.
} else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
// It's actually a PHI value. Which value it is might not be obvious, use
// the resolver helper to find out.
NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
MI, InstNo);
}
// Apply any subregister extractions, in reverse. We might have seen code
// like this:
// CALL64 @foo, implicit-def $rax
// %0:gr64 = COPY $rax
// %1:gr32 = COPY %0.sub_32bit
// %2:gr16 = COPY %1.sub_16bit
// %3:gr8 = COPY %2.sub_8bit
// In which case each copy would have been recorded as a substitution with
// a subregister qualifier. Apply those qualifiers now.
if (NewID && !SeenSubregs.empty()) {
unsigned Offset = 0;
unsigned Size = 0;
// Look at each subregister that we passed through, and progressively
// narrow in, accumulating any offsets that occur. Substitutions should
// only ever be the same or narrower width than what they read from;
// iterate in reverse order so that we go from wide to small.
for (unsigned Subreg : reverse(SeenSubregs)) {
unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
Offset += ThisOffset;
Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
}
// If that worked, look for an appropriate subregister with the register
// where the define happens. Don't look at values that were defined during
// a stack write: we can't currently express register locations within
// spills.
LocIdx L = NewID->getLoc();
if (NewID && !MTracker->isSpill(L)) {
// Find the register class for the register where this def happened.
// FIXME: no index for this?
Register Reg = MTracker->LocIdxToLocID[L];
const TargetRegisterClass *TRC = nullptr;
for (auto *TRCI : TRI->regclasses())
if (TRCI->contains(Reg))
TRC = TRCI;
assert(TRC && "Couldn't find target register class?");
// If the register we have isn't the right size or in the right place,
// Try to find a subregister inside it.
unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
if (Size != MainRegSize || Offset) {
// Enumerate all subregisters, searching.
Register NewReg = 0;
for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
if (SubregSize == Size && SubregOffset == Offset) {
NewReg = *SRI;
break;
}
}
// If we didn't find anything: there's no way to express our value.
if (!NewReg) {
NewID = None;
} else {
// Re-state the value as being defined within the subregister
// that we found.
LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
}
}
} else {
// If we can't handle subregisters, unset the new value.
NewID = None;
}
}
// We, we have a value number or None. Tell the variable value tracker about
// it. The rest of this LiveDebugValues implementation acts exactly the same
// for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
// aren't immediately available).
DbgValueProperties Properties(Expr, false);
if (VTracker)
VTracker->defVar(MI, Properties, NewID);
// If we're on the final pass through the function, decompose this INSTR_REF
// into a plain DBG_VALUE.
if (!TTracker)
return true;
// Pick a location for the machine value number, if such a location exists.
// (This information could be stored in TransferTracker to make it faster).
Optional<LocIdx> FoundLoc = None;
for (auto Location : MTracker->locations()) {
LocIdx CurL = Location.Idx;
ValueIDNum ID = MTracker->readMLoc(CurL);
if (NewID && ID == NewID) {
// If this is the first location with that value, pick it. Otherwise,
// consider whether it's a "longer term" location.
if (!FoundLoc) {
FoundLoc = CurL;
continue;
}
if (MTracker->isSpill(CurL))
FoundLoc = CurL; // Spills are a longer term location.
else if (!MTracker->isSpill(*FoundLoc) &&
!MTracker->isSpill(CurL) &&
!isCalleeSaved(*FoundLoc) &&
isCalleeSaved(CurL))
FoundLoc = CurL; // Callee saved regs are longer term than normal.
}
}
// Tell transfer tracker that the variable value has changed.
TTracker->redefVar(MI, Properties, FoundLoc);
// If there was a value with no location; but the value is defined in a
// later instruction in this block, this is a block-local use-before-def.
if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
NewID->getInst() > CurInst)
TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID);
// Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
// This DBG_VALUE is potentially a $noreg / undefined location, if
// FoundLoc is None.
// (XXX -- could morph the DBG_INSTR_REF in the future).
MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
TTracker->PendingDbgValues.push_back(DbgMI);
TTracker->flushDbgValues(MI.getIterator(), nullptr);
return true;
}
bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
if (!MI.isDebugPHI())
return false;
// Analyse these only when solving the machine value location problem.
if (VTracker || TTracker)
return true;
// First operand is the value location, either a stack slot or register.
// Second is the debug instruction number of the original PHI.
const MachineOperand &MO = MI.getOperand(0);
unsigned InstrNum = MI.getOperand(1).getImm();
if (MO.isReg()) {
// The value is whatever's currently in the register. Read and record it,
// to be analysed later.
Register Reg = MO.getReg();
ValueIDNum Num = MTracker->readReg(Reg);
auto PHIRec = DebugPHIRecord(
{InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
DebugPHINumToValue.push_back(PHIRec);
// Ensure this register is tracked.
for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
MTracker->lookupOrTrackRegister(*RAI);
} else {
// The value is whatever's in this stack slot.
assert(MO.isFI());
unsigned FI = MO.getIndex();
// If the stack slot is dead, then this was optimized away.
// FIXME: stack slot colouring should account for slots that get merged.
if (MFI->isDeadObjectIndex(FI))
return true;
// Identify this spill slot, ensure it's tracked.
Register Base;
StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
SpillLoc SL = {Base, Offs};
Optional<SpillLocationNo> SpillNo = MTracker->getOrTrackSpillLoc(SL);
// We might be able to find a value, but have chosen not to, to avoid
// tracking too much stack information.
if (!SpillNo)
return true;
// Problem: what value should we extract from the stack? LLVM does not
// record what size the last store to the slot was, and it would become
// sketchy after stack slot colouring anyway. Take a look at what values
// are stored on the stack, and pick the largest one that wasn't def'd
// by a spill (i.e., the value most likely to have been def'd in a register
// and then spilt.
std::array<unsigned, 4> CandidateSizes = {64, 32, 16, 8};
Optional<ValueIDNum> Result = None;
Optional<LocIdx> SpillLoc = None;
for (unsigned CS : CandidateSizes) {
unsigned SpillID = MTracker->getLocID(*SpillNo, {CS, 0});
SpillLoc = MTracker->getSpillMLoc(SpillID);
ValueIDNum Val = MTracker->readMLoc(*SpillLoc);
// If this value was defined in it's own position, then it was probably
// an aliasing index of a small value that was spilt.
if (Val.getLoc() != SpillLoc->asU64()) {
Result = Val;
break;
}
}
// If we didn't find anything, we're probably looking at a PHI, or a memory
// store folded into an instruction. FIXME: Take a guess that's it's 64
// bits. This isn't ideal, but tracking the size that the spill is
// "supposed" to be is more complex, and benefits a small number of
// locations.
if (!Result) {
unsigned SpillID = MTracker->getLocID(*SpillNo, {64, 0});
SpillLoc = MTracker->getSpillMLoc(SpillID);
Result = MTracker->readMLoc(*SpillLoc);
}
// Record this DBG_PHI for later analysis.
auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), *Result, *SpillLoc});
DebugPHINumToValue.push_back(DbgPHI);
}
return true;
}
void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
// Meta Instructions do not affect the debug liveness of any register they
// define.
if (MI.isImplicitDef()) {
// Except when there's an implicit def, and the location it's defining has
// no value number. The whole point of an implicit def is to announce that
// the register is live, without be specific about it's value. So define
// a value if there isn't one already.
ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
// Has a legitimate value -> ignore the implicit def.
if (Num.getLoc() != 0)
return;
// Otherwise, def it here.
} else if (MI.isMetaInstruction())
return;
// We always ignore SP defines on call instructions, they don't actually
// change the value of the stack pointer... except for win32's _chkstk. This
// is rare: filter quickly for the common case (no stack adjustments, not a
// call, etc). If it is a call that modifies SP, recognise the SP register
// defs.
bool CallChangesSP = false;
if (AdjustsStackInCalls && MI.isCall() && MI.getOperand(0).isSymbol() &&
!strcmp(MI.getOperand(0).getSymbolName(), StackProbeSymbolName.data()))
CallChangesSP = true;
// Test whether we should ignore a def of this register due to it being part
// of the stack pointer.
auto IgnoreSPAlias = [this, &MI, CallChangesSP](Register R) -> bool {
if (CallChangesSP)
return false;
return MI.isCall() && MTracker->SPAliases.count(R);
};
// Find the regs killed by MI, and find regmasks of preserved regs.
// Max out the number of statically allocated elements in `DeadRegs`, as this
// prevents fallback to std::set::count() operations.
SmallSet<uint32_t, 32> DeadRegs;
SmallVector<const uint32_t *, 4> RegMasks;
SmallVector<const MachineOperand *, 4> RegMaskPtrs;
for (const MachineOperand &MO : MI.operands()) {
// Determine whether the operand is a register def.
if (MO.isReg() && MO.isDef() && MO.getReg() &&
Register::isPhysicalRegister(MO.getReg()) &&
!IgnoreSPAlias(MO.getReg())) {
// Remove ranges of all aliased registers.
for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
// FIXME: Can we break out of this loop early if no insertion occurs?
DeadRegs.insert(*RAI);
} else if (MO.isRegMask()) {
RegMasks.push_back(MO.getRegMask());
RegMaskPtrs.push_back(&MO);
}
}
// Tell MLocTracker about all definitions, of regmasks and otherwise.
for (uint32_t DeadReg : DeadRegs)
MTracker->defReg(DeadReg, CurBB, CurInst);
for (auto *MO : RegMaskPtrs)
MTracker->writeRegMask(MO, CurBB, CurInst);
// If this instruction writes to a spill slot, def that slot.
if (hasFoldedStackStore(MI)) {
if (Optional<SpillLocationNo> SpillNo = extractSpillBaseRegAndOffset(MI)) {
for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
LocIdx L = MTracker->getSpillMLoc(SpillID);
MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L));
}
}
}
if (!TTracker)
return;
// When committing variable values to locations: tell transfer tracker that
// we've clobbered things. It may be able to recover the variable from a
// different location.
// Inform TTracker about any direct clobbers.
for (uint32_t DeadReg : DeadRegs) {
LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
TTracker->clobberMloc(Loc, MI.getIterator(), false);
}
// Look for any clobbers performed by a register mask. Only test locations
// that are actually being tracked.
if (!RegMaskPtrs.empty()) {
for (auto L : MTracker->locations()) {
// Stack locations can't be clobbered by regmasks.
if (MTracker->isSpill(L.Idx))
continue;
Register Reg = MTracker->LocIdxToLocID[L.Idx];
if (IgnoreSPAlias(Reg))
continue;
for (auto *MO : RegMaskPtrs)
if (MO->clobbersPhysReg(Reg))
TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
}
}
// Tell TTracker about any folded stack store.
if (hasFoldedStackStore(MI)) {
if (Optional<SpillLocationNo> SpillNo = extractSpillBaseRegAndOffset(MI)) {
for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
LocIdx L = MTracker->getSpillMLoc(SpillID);
TTracker->clobberMloc(L, MI.getIterator(), true);
}
}
}
}
void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
// In all circumstances, re-def all aliases. It's definitely a new value now.
for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI)
MTracker->defReg(*RAI, CurBB, CurInst);
ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
MTracker->setReg(DstRegNum, SrcValue);
// Copy subregisters from one location to another.
for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
unsigned SrcSubReg = SRI.getSubReg();
unsigned SubRegIdx = SRI.getSubRegIndex();
unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
if (!DstSubReg)
continue;
// Do copy. There are two matching subregisters, the source value should
// have been def'd when the super-reg was, the latter might not be tracked
// yet.
// This will force SrcSubReg to be tracked, if it isn't yet. Will read
// mphi values if it wasn't tracked.
LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg);
LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg);
(void)SrcL;
(void)DstL;
ValueIDNum CpyValue = MTracker->readReg(SrcSubReg);
MTracker->setReg(DstSubReg, CpyValue);
}
}
Optional<SpillLocationNo>
InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
MachineFunction *MF) {
// TODO: Handle multiple stores folded into one.
if (!MI.hasOneMemOperand())
return None;
// Reject any memory operand that's aliased -- we can't guarantee its value.
auto MMOI = MI.memoperands_begin();
const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
if (PVal->isAliased(MFI))
return None;
if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
return None; // This is not a spill instruction, since no valid size was
// returned from either function.
return extractSpillBaseRegAndOffset(MI);
}
bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
MachineFunction *MF, unsigned &Reg) {
if (!isSpillInstruction(MI, MF))
return false;
int FI;
Reg = TII->isStoreToStackSlotPostFE(MI, FI);
return Reg != 0;
}
Optional<SpillLocationNo>
InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
MachineFunction *MF, unsigned &Reg) {
if (!MI.hasOneMemOperand())
return None;
// FIXME: Handle folded restore instructions with more than one memory
// operand.
if (MI.getRestoreSize(TII)) {
Reg = MI.getOperand(0).getReg();
return extractSpillBaseRegAndOffset(MI);
}
return None;
}
bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
// XXX -- it's too difficult to implement VarLocBasedImpl's stack location
// limitations under the new model. Therefore, when comparing them, compare
// versions that don't attempt spills or restores at all.
if (EmulateOldLDV)
return false;
// Strictly limit ourselves to plain loads and stores, not all instructions
// that can access the stack.
int DummyFI = -1;
if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) &&
!TII->isLoadFromStackSlotPostFE(MI, DummyFI))
return false;
MachineFunction *MF = MI.getMF();
unsigned Reg;
LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
// Strictly limit ourselves to plain loads and stores, not all instructions
// that can access the stack.
int FIDummy;
if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) &&
!TII->isLoadFromStackSlotPostFE(MI, FIDummy))
return false;
// First, if there are any DBG_VALUEs pointing at a spill slot that is
// written to, terminate that variable location. The value in memory
// will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
if (Optional<SpillLocationNo> Loc = isSpillInstruction(MI, MF)) {
// Un-set this location and clobber, so that earlier locations don't
// continue past this store.
for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) {
unsigned SpillID = MTracker->getSpillIDWithIdx(*Loc, SlotIdx);
Optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID);
if (!MLoc)
continue;
// We need to over-write the stack slot with something (here, a def at
// this instruction) to ensure no values are preserved in this stack slot
// after the spill. It also prevents TTracker from trying to recover the
// location and re-installing it in the same place.
ValueIDNum Def(CurBB, CurInst, *MLoc);
MTracker->setMLoc(*MLoc, Def);
if (TTracker)
TTracker->clobberMloc(*MLoc, MI.getIterator());
}
}
// Try to recognise spill and restore instructions that may transfer a value.
if (isLocationSpill(MI, MF, Reg)) {
// isLocationSpill returning true should guarantee we can extract a
// location.
SpillLocationNo Loc = *extractSpillBaseRegAndOffset(MI);
auto DoTransfer = [&](Register SrcReg, unsigned SpillID) {
auto ReadValue = MTracker->readReg(SrcReg);
LocIdx DstLoc = MTracker->getSpillMLoc(SpillID);
MTracker->setMLoc(DstLoc, ReadValue);
if (TTracker) {
LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg);
TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator());
}
};
// Then, transfer subreg bits.
for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
// Ensure this reg is tracked,
(void)MTracker->lookupOrTrackRegister(*SRI);
unsigned SubregIdx = TRI->getSubRegIndex(Reg, *SRI);
unsigned SpillID = MTracker->getLocID(Loc, SubregIdx);
DoTransfer(*SRI, SpillID);
}
// Directly lookup size of main source reg, and transfer.
unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
DoTransfer(Reg, SpillID);
} else {
Optional<SpillLocationNo> Loc = isRestoreInstruction(MI, MF, Reg);
if (!Loc)
return false;
// Assumption: we're reading from the base of the stack slot, not some
// offset into it. It seems very unlikely LLVM would ever generate
// restores where this wasn't true. This then becomes a question of what
// subregisters in the destination register line up with positions in the
// stack slot.
// Def all registers that alias the destination.
for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
MTracker->defReg(*RAI, CurBB, CurInst);
// Now find subregisters within the destination register, and load values
// from stack slot positions.
auto DoTransfer = [&](Register DestReg, unsigned SpillID) {
LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID);
auto ReadValue = MTracker->readMLoc(SrcIdx);
MTracker->setReg(DestReg, ReadValue);
if (TTracker) {
LocIdx DstLoc = MTracker->getRegMLoc(DestReg);
TTracker->transferMlocs(SrcIdx, DstLoc, MI.getIterator());
}
};
for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
unsigned SpillID = MTracker->getLocID(*Loc, Subreg);
DoTransfer(*SRI, SpillID);
}
// Directly look up this registers slot idx by size, and transfer.
unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
unsigned SpillID = MTracker->getLocID(*Loc, {Size, 0});
DoTransfer(Reg, SpillID);
}
return true;
}
bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
auto DestSrc = TII->isCopyInstr(MI);
if (!DestSrc)
return false;
const MachineOperand *DestRegOp = DestSrc->Destination;
const MachineOperand *SrcRegOp = DestSrc->Source;
auto isCalleeSavedReg = [&](unsigned Reg) {
for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
if (CalleeSavedRegs.test(*RAI))
return true;
return false;
};
Register SrcReg = SrcRegOp->getReg();
Register DestReg = DestRegOp->getReg();
// Ignore identity copies. Yep, these make it as far as LiveDebugValues.
if (SrcReg == DestReg)
return true;
// For emulating VarLocBasedImpl:
// We want to recognize instructions where destination register is callee
// saved register. If register that could be clobbered by the call is
// included, there would be a great chance that it is going to be clobbered
// soon. It is more likely that previous register, which is callee saved, is
// going to stay unclobbered longer, even if it is killed.
//
// For InstrRefBasedImpl, we can track multiple locations per value, so
// ignore this condition.
if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
return false;
// InstrRefBasedImpl only followed killing copies.
if (EmulateOldLDV && !SrcRegOp->isKill())
return false;
// Copy MTracker info, including subregs if available.
InstrRefBasedLDV::performCopy(SrcReg, DestReg);
// Only produce a transfer of DBG_VALUE within a block where old LDV
// would have. We might make use of the additional value tracking in some
// other way, later.
if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
MTracker->getRegMLoc(DestReg), MI.getIterator());
// VarLocBasedImpl would quit tracking the old location after copying.
if (EmulateOldLDV && SrcReg != DestReg)
MTracker->defReg(SrcReg, CurBB, CurInst);
// Finally, the copy might have clobbered variables based on the destination
// register. Tell TTracker about it, in case a backup location exists.
if (TTracker) {
for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false);
}
}
return true;
}
/// Accumulate a mapping between each DILocalVariable fragment and other
/// fragments of that DILocalVariable which overlap. This reduces work during
/// the data-flow stage from "Find any overlapping fragments" to "Check if the
/// known-to-overlap fragments are present".
/// \param MI A previously unprocessed debug instruction to analyze for
/// fragment usage.
void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
assert(MI.isDebugValue() || MI.isDebugRef());
DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
MI.getDebugLoc()->getInlinedAt());
FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
// If this is the first sighting of this variable, then we are guaranteed
// there are currently no overlapping fragments either. Initialize the set
// of seen fragments, record no overlaps for the current one, and return.
auto SeenIt = SeenFragments.find(MIVar.getVariable());
if (SeenIt == SeenFragments.end()) {
SmallSet<FragmentInfo, 4> OneFragment;
OneFragment.insert(ThisFragment);
SeenFragments.insert({MIVar.getVariable(), OneFragment});
OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
return;
}
// If this particular Variable/Fragment pair already exists in the overlap
// map, it has already been accounted for.
auto IsInOLapMap =
OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
if (!IsInOLapMap.second)
return;
auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
auto &AllSeenFragments = SeenIt->second;
// Otherwise, examine all other seen fragments for this variable, with "this"
// fragment being a previously unseen fragment. Record any pair of
// overlapping fragments.
for (auto &ASeenFragment : AllSeenFragments) {
// Does this previously seen fragment overlap?
if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
// Yes: Mark the current fragment as being overlapped.
ThisFragmentsOverlaps.push_back(ASeenFragment);
// Mark the previously seen fragment as being overlapped by the current
// one.
auto ASeenFragmentsOverlaps =
OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
"Previously seen var fragment has no vector of overlaps");
ASeenFragmentsOverlaps->second.push_back(ThisFragment);
}
}
AllSeenFragments.insert(ThisFragment);
}
void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts,
ValueIDNum **MLiveIns) {
// Try to interpret an MI as a debug or transfer instruction. Only if it's
// none of these should we interpret it's register defs as new value
// definitions.
if (transferDebugValue(MI))
return;
if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
return;
if (transferDebugPHI(MI))
return;
if (transferRegisterCopy(MI))
return;
if (transferSpillOrRestoreInst(MI))
return;
transferRegisterDef(MI);
}
void InstrRefBasedLDV::produceMLocTransferFunction(
MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
unsigned MaxNumBlocks) {
// Because we try to optimize around register mask operands by ignoring regs
// that aren't currently tracked, we set up something ugly for later: RegMask
// operands that are seen earlier than the first use of a register, still need
// to clobber that register in the transfer function. But this information
// isn't actively recorded. Instead, we track each RegMask used in each block,
// and accumulated the clobbered but untracked registers in each block into
// the following bitvector. Later, if new values are tracked, we can add
// appropriate clobbers.
SmallVector<BitVector, 32> BlockMasks;
BlockMasks.resize(MaxNumBlocks);
// Reserve one bit per register for the masks described above.
unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
for (auto &BV : BlockMasks)
BV.resize(TRI->getNumRegs(), true);
// Step through all instructions and inhale the transfer function.
for (auto &MBB : MF) {
// Object fields that are read by trackers to know where we are in the
// function.
CurBB = MBB.getNumber();
CurInst = 1;
// Set all machine locations to a PHI value. For transfer function
// production only, this signifies the live-in value to the block.
MTracker->reset();
MTracker->setMPhis(CurBB);
// Step through each instruction in this block.
for (auto &MI : MBB) {
process(MI);
// Also accumulate fragment map.
if (MI.isDebugValue() || MI.isDebugRef())
accumulateFragmentMap(MI);
// Create a map from the instruction number (if present) to the
// MachineInstr and its position.
if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
auto InstrAndPos = std::make_pair(&MI, CurInst);
auto InsertResult =
DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
// There should never be duplicate instruction numbers.
assert(InsertResult.second);
(void)InsertResult;
}
++CurInst;
}
// Produce the transfer function, a map of machine location to new value. If
// any machine location has the live-in phi value from the start of the
// block, it's live-through and doesn't need recording in the transfer
// function.
for (auto Location : MTracker->locations()) {
LocIdx Idx = Location.Idx;
ValueIDNum &P = Location.Value;
if (P.isPHI() && P.getLoc() == Idx.asU64())
continue;
// Insert-or-update.
auto &TransferMap = MLocTransfer[CurBB];
auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
if (!Result.second)
Result.first->second = P;
}
// Accumulate any bitmask operands into the clobberred reg mask for this
// block.
for (auto &P : MTracker->Masks) {
BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
}
}
// Compute a bitvector of all the registers that are tracked in this block.
BitVector UsedRegs(TRI->getNumRegs());
for (auto Location : MTracker->locations()) {
unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
// Ignore stack slots, and aliases of the stack pointer.
if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID))
continue;
UsedRegs.set(ID);
}
// Check that any regmask-clobber of a register that gets tracked, is not
// live-through in the transfer function. It needs to be clobbered at the
// very least.
for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
BitVector &BV = BlockMasks[I];
BV.flip();
BV &= UsedRegs;
// This produces all the bits that we clobber, but also use. Check that
// they're all clobbered or at least set in the designated transfer
// elem.
for (unsigned Bit : BV.set_bits()) {
unsigned ID = MTracker->getLocID(Bit);
LocIdx Idx = MTracker->LocIDToLocIdx[ID];
auto &TransferMap = MLocTransfer[I];
// Install a value representing the fact that this location is effectively
// written to in this block. As there's no reserved value, instead use
// a value number that is never generated. Pick the value number for the
// first instruction in the block, def'ing this location, which we know
// this block never used anyway.
ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
auto Result =
TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
if (!Result.second) {
ValueIDNum &ValueID = Result.first->second;
if (ValueID.getBlock() == I && ValueID.isPHI())
// It was left as live-through. Set it to clobbered.
ValueID = NotGeneratedNum;
}
}
}
}
bool InstrRefBasedLDV::mlocJoin(
MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
ValueIDNum **OutLocs, ValueIDNum *InLocs) {
LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
bool Changed = false;
// Handle value-propagation when control flow merges on entry to a block. For
// any location without a PHI already placed, the location has the same value
// as its predecessors. If a PHI is placed, test to see whether it's now a
// redundant PHI that we can eliminate.
SmallVector<const MachineBasicBlock *, 8> BlockOrders;
for (auto Pred : MBB.predecessors())
BlockOrders.push_back(Pred);
// Visit predecessors in RPOT order.
auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
};
llvm::sort(BlockOrders, Cmp);
// Skip entry block.
if (BlockOrders.size() == 0)
return false;
// Step through all machine locations, look at each predecessor and test
// whether we can eliminate redundant PHIs.
for (auto Location : MTracker->locations()) {
LocIdx Idx = Location.Idx;
// Pick out the first predecessors live-out value for this location. It's
// guaranteed to not be a backedge, as we order by RPO.
ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
// If we've already eliminated a PHI here, do no further checking, just
// propagate the first live-in value into this block.
if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) {
if (InLocs[Idx.asU64()] != FirstVal) {
InLocs[Idx.asU64()] = FirstVal;
Changed |= true;
}
continue;
}
// We're now examining a PHI to see whether it's un-necessary. Loop around
// the other live-in values and test whether they're all the same.
bool Disagree = false;
for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
const MachineBasicBlock *PredMBB = BlockOrders[I];
const ValueIDNum &PredLiveOut =
OutLocs[PredMBB->getNumber()][Idx.asU64()];
// Incoming values agree, continue trying to eliminate this PHI.
if (FirstVal == PredLiveOut)
continue;
// We can also accept a PHI value that feeds back into itself.
if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx))
continue;
// Live-out of a predecessor disagrees with the first predecessor.
Disagree = true;
}
// No disagreement? No PHI. Otherwise, leave the PHI in live-ins.
if (!Disagree) {
InLocs[Idx.asU64()] = FirstVal;
Changed |= true;
}
}
// TODO: Reimplement NumInserted and NumRemoved.
return Changed;
}
void InstrRefBasedLDV::findStackIndexInterference(
SmallVectorImpl<unsigned> &Slots) {
// We could spend a bit of time finding the exact, minimal, set of stack
// indexes that interfere with each other, much like reg units. Or, we can
// rely on the fact that:
// * The smallest / lowest index will interfere with everything at zero
// offset, which will be the largest set of registers,
// * Most indexes with non-zero offset will end up being interference units
// anyway.
// So just pick those out and return them.
// We can rely on a single-byte stack index existing already, because we
// initialize them in MLocTracker.
auto It = MTracker->StackSlotIdxes.find({8, 0});
assert(It != MTracker->StackSlotIdxes.end());
Slots.push_back(It->second);
// Find anything that has a non-zero offset and add that too.
for (auto &Pair : MTracker->StackSlotIdxes) {
// Is offset zero? If so, ignore.
if (!Pair.first.second)
continue;
Slots.push_back(Pair.second);
}
}
void InstrRefBasedLDV::placeMLocPHIs(
MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
ValueIDNum **MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
SmallVector<unsigned, 4> StackUnits;
findStackIndexInterference(StackUnits);
// To avoid repeatedly running the PHI placement algorithm, leverage the
// fact that a def of register MUST also def its register units. Find the
// units for registers, place PHIs for them, and then replicate them for
// aliasing registers. Some inputs that are never def'd (DBG_PHIs of
// arguments) don't lead to register units being tracked, just place PHIs for
// those registers directly. Stack slots have their own form of "unit",
// store them to one side.
SmallSet<Register, 32> RegUnitsToPHIUp;
SmallSet<LocIdx, 32> NormalLocsToPHI;
SmallSet<SpillLocationNo, 32> StackSlots;
for (auto Location : MTracker->locations()) {
LocIdx L = Location.Idx;
if (MTracker->isSpill(L)) {
StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L]));
continue;
}
Register R = MTracker->LocIdxToLocID[L];
SmallSet<Register, 8> FoundRegUnits;
bool AnyIllegal = false;
for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) {
for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){
if (!MTracker->isRegisterTracked(*URoot)) {
// Not all roots were loaded into the tracking map: this register
// isn't actually def'd anywhere, we only read from it. Generate PHIs
// for this reg, but don't iterate units.
AnyIllegal = true;
} else {
FoundRegUnits.insert(*URoot);
}
}
}
if (AnyIllegal) {
NormalLocsToPHI.insert(L);
continue;
}
RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end());
}
// Lambda to fetch PHIs for a given location, and write into the PHIBlocks
// collection.
SmallVector<MachineBasicBlock *, 32> PHIBlocks;
auto CollectPHIsForLoc = [&](LocIdx L) {
// Collect the set of defs.
SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
MachineBasicBlock *MBB = OrderToBB[I];
const auto &TransferFunc = MLocTransfer[MBB->getNumber()];
if (TransferFunc.find(L) != TransferFunc.end())
DefBlocks.insert(MBB);
}
// The entry block defs the location too: it's the live-in / argument value.
// Only insert if there are other defs though; everything is trivially live
// through otherwise.
if (!DefBlocks.empty())
DefBlocks.insert(&*MF.begin());
// Ask the SSA construction algorithm where we should put PHIs. Clear
// anything that might have been hanging around from earlier.
PHIBlocks.clear();
BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks);
};
auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) {
for (const MachineBasicBlock *MBB : PHIBlocks)
MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L);
};
// For locations with no reg units, just place PHIs.
for (LocIdx L : NormalLocsToPHI) {
CollectPHIsForLoc(L);
// Install those PHI values into the live-in value array.
InstallPHIsAtLoc(L);
}
// For stack slots, calculate PHIs for the equivalent of the units, then
// install for each index.
for (SpillLocationNo Slot : StackSlots) {
for (unsigned Idx : StackUnits) {
unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx);
LocIdx L = MTracker->getSpillMLoc(SpillID);
CollectPHIsForLoc(L);
InstallPHIsAtLoc(L);
// Find anything that aliases this stack index, install PHIs for it too.
unsigned Size, Offset;
std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx];
for (auto &Pair : MTracker->StackSlotIdxes) {
unsigned ThisSize, ThisOffset;
std::tie(ThisSize, ThisOffset) = Pair.first;
if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset)
continue;
unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second);
LocIdx ThisL = MTracker->getSpillMLoc(ThisID);
InstallPHIsAtLoc(ThisL);
}
}
}
// For reg units, place PHIs, and then place them for any aliasing registers.
for (Register R : RegUnitsToPHIUp) {
LocIdx L = MTracker->lookupOrTrackRegister(R);
CollectPHIsForLoc(L);
// Install those PHI values into the live-in value array.
InstallPHIsAtLoc(L);
// Now find aliases and install PHIs for those.
for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) {
// Super-registers that are "above" the largest register read/written by
// the function will alias, but will not be tracked.
if (!MTracker->isRegisterTracked(*RAI))
continue;
LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI);
InstallPHIsAtLoc(AliasLoc);
}
}
}
void InstrRefBasedLDV::buildMLocValueMap(
MachineFunction &MF, ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
std::priority_queue<unsigned int, std::vector<unsigned int>,
std::greater<unsigned int>>
Worklist, Pending;
// We track what is on the current and pending worklist to avoid inserting
// the same thing twice. We could avoid this with a custom priority queue,
// but this is probably not worth it.
SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
// Initialize worklist with every block to be visited. Also produce list of
// all blocks.
SmallPtrSet<MachineBasicBlock *, 32> AllBlocks;
for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
Worklist.push(I);
OnWorklist.insert(OrderToBB[I]);
AllBlocks.insert(OrderToBB[I]);
}
// Initialize entry block to PHIs. These represent arguments.
for (auto Location : MTracker->locations())
MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx);
MTracker->reset();
// Start by placing PHIs, using the usual SSA constructor algorithm. Consider
// any machine-location that isn't live-through a block to be def'd in that
// block.
placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer);
// Propagate values to eliminate redundant PHIs. At the same time, this
// produces the table of Block x Location => Value for the entry to each
// block.
// The kind of PHIs we can eliminate are, for example, where one path in a
// conditional spills and restores a register, and the register still has
// the same value once control flow joins, unbeknowns to the PHI placement
// code. Propagating values allows us to identify such un-necessary PHIs and
// remove them.
SmallPtrSet<const MachineBasicBlock *, 16> Visited;
while (!Worklist.empty() || !Pending.empty()) {
// Vector for storing the evaluated block transfer function.
SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
while (!Worklist.empty()) {
MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
CurBB = MBB->getNumber();
Worklist.pop();
// Join the values in all predecessor blocks.
bool InLocsChanged;
InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
InLocsChanged |= Visited.insert(MBB).second;
// Don't examine transfer function if we've visited this loc at least
// once, and inlocs haven't changed.
if (!InLocsChanged)
continue;
// Load the current set of live-ins into MLocTracker.
MTracker->loadFromArray(MInLocs[CurBB], CurBB);
// Each element of the transfer function can be a new def, or a read of
// a live-in value. Evaluate each element, and store to "ToRemap".
ToRemap.clear();
for (auto &P : MLocTransfer[CurBB]) {
if (P.second.getBlock() == CurBB && P.second.isPHI()) {
// This is a movement of whatever was live in. Read it.
ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc());
ToRemap.push_back(std::make_pair(P.first, NewID));
} else {
// It's a def. Just set it.
assert(P.second.getBlock() == CurBB);
ToRemap.push_back(std::make_pair(P.first, P.second));
}
}
// Commit the transfer function changes into mloc tracker, which
// transforms the contents of the MLocTracker into the live-outs.
for (auto &P : ToRemap)
MTracker->setMLoc(P.first, P.second);
// Now copy out-locs from mloc tracker into out-loc vector, checking
// whether changes have occurred. These changes can have come from both
// the transfer function, and mlocJoin.
bool OLChanged = false;
for (auto Location : MTracker->locations()) {
OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
}
MTracker->reset();
// No need to examine successors again if out-locs didn't change.
if (!OLChanged)
continue;
// All successors should be visited: put any back-edges on the pending
// list for the next pass-through, and any other successors to be
// visited this pass, if they're not going to be already.
for (auto s : MBB->successors()) {
// Does branching to this successor represent a back-edge?
if (BBToOrder[s] > BBToOrder[MBB]) {
// No: visit it during this dataflow iteration.
if (OnWorklist.insert(s).second)
Worklist.push(BBToOrder[s]);
} else {
// Yes: visit it on the next iteration.
if (OnPending.insert(s).second)
Pending.push(BBToOrder[s]);
}
}
}
Worklist.swap(Pending);
std::swap(OnPending, OnWorklist);
OnPending.clear();
// At this point, pending must be empty, since it was just the empty
// worklist
assert(Pending.empty() && "Pending should be empty");
}
// Once all the live-ins don't change on mlocJoin(), we've eliminated all
// redundant PHIs.
}
void InstrRefBasedLDV::BlockPHIPlacement(
const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) {
// Apply IDF calculator to the designated set of location defs, storing
// required PHIs into PHIBlocks. Uses the dominator tree stored in the
// InstrRefBasedLDV object.
IDFCalculatorBase<MachineBasicBlock, false> IDF(DomTree->getBase());
IDF.setLiveInBlocks(AllBlocks);
IDF.setDefiningBlocks(DefBlocks);
IDF.calculate(PHIBlocks);
}
Optional<ValueIDNum> InstrRefBasedLDV::pickVPHILoc(
const MachineBasicBlock &MBB, const DebugVariable &Var,
const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
// Collect a set of locations from predecessor where its live-out value can
// be found.
SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
SmallVector<const DbgValueProperties *, 4> Properties;
unsigned NumLocs = MTracker->getNumLocs();
// No predecessors means no PHIs.
if (BlockOrders.empty())
return None;
for (auto p : BlockOrders) {
unsigned ThisBBNum = p->getNumber();
auto OutValIt = LiveOuts.find(p);
if (OutValIt == LiveOuts.end())
// If we have a predecessor not in scope, we'll never find a PHI position.
return None;
const DbgValue &OutVal = *OutValIt->second;
if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
// Consts and no-values cannot have locations we can join on.
return None;
Properties.push_back(&OutVal.Properties);
// Create new empty vector of locations.
Locs.resize(Locs.size() + 1);
// If the live-in value is a def, find the locations where that value is
// present. Do the same for VPHIs where we know the VPHI value.
if (OutVal.Kind == DbgValue::Def ||
(OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() &&
OutVal.ID != ValueIDNum::EmptyValue)) {
ValueIDNum ValToLookFor = OutVal.ID;
// Search the live-outs of the predecessor for the specified value.
for (unsigned int I = 0; I < NumLocs; ++I) {
if (MOutLocs[ThisBBNum][I] == ValToLookFor)
Locs.back().push_back(LocIdx(I));
}
} else {
assert(OutVal.Kind == DbgValue::VPHI);
// For VPHIs where we don't know the location, we definitely can't find
// a join loc.
if (OutVal.BlockNo != MBB.getNumber())
return None;
// Otherwise: this is a VPHI on a backedge feeding back into itself, i.e.
// a value that's live-through the whole loop. (It has to be a backedge,
// because a block can't dominate itself). We can accept as a PHI location
// any location where the other predecessors agree, _and_ the machine
// locations feed back into themselves. Therefore, add all self-looping
// machine-value PHI locations.
for (unsigned int I = 0; I < NumLocs; ++I) {
ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I));
if (MOutLocs[ThisBBNum][I] == MPHI)
Locs.back().push_back(LocIdx(I));
}
}
}
// We should have found locations for all predecessors, or returned.
assert(Locs.size() == BlockOrders.size());
// Check that all properties are the same. We can't pick a location if they're
// not.
const DbgValueProperties *Properties0 = Properties[0];
for (auto *Prop : Properties)
if (*Prop != *Properties0)
return None;
// Starting with the first set of locations, take the intersection with
// subsequent sets.
SmallVector<LocIdx, 4> CandidateLocs = Locs[0];
for (unsigned int I = 1; I < Locs.size(); ++I) {
auto &LocVec = Locs[I];
SmallVector<LocIdx, 4> NewCandidates;
std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(),
LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin()));
CandidateLocs = NewCandidates;
}
if (CandidateLocs.empty())
return None;
// We now have a set of LocIdxes that contain the right output value in
// each of the predecessors. Pick the lowest; if there's a register loc,
// that'll be it.
LocIdx L = *CandidateLocs.begin();
// Return a PHI-value-number for the found location.
ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
return PHIVal;
}
bool InstrRefBasedLDV::vlocJoin(
MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
DbgValue &LiveIn) {
LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
bool Changed = false;
// Order predecessors by RPOT order, for exploring them in that order.
SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
return BBToOrder[A] < BBToOrder[B];
};
llvm::sort(BlockOrders, Cmp);
unsigned CurBlockRPONum = BBToOrder[&MBB];
// Collect all the incoming DbgValues for this variable, from predecessor
// live-out values.
SmallVector<InValueT, 8> Values;
bool Bail = false;
int BackEdgesStart = 0;
for (auto p : BlockOrders) {
// If the predecessor isn't in scope / to be explored, we'll never be
// able to join any locations.
if (!BlocksToExplore.contains(p)) {
Bail = true;
break;
}
// All Live-outs will have been initialized.
DbgValue &OutLoc = *VLOCOutLocs.find(p)->second;
// Keep track of where back-edges begin in the Values vector. Relies on
// BlockOrders being sorted by RPO.
unsigned ThisBBRPONum = BBToOrder[p];
if (ThisBBRPONum < CurBlockRPONum)
++BackEdgesStart;
Values.push_back(std::make_pair(p, &OutLoc));
}
// If there were no values, or one of the predecessors couldn't have a
// value, then give up immediately. It's not safe to produce a live-in
// value. Leave as whatever it was before.
if (Bail || Values.size() == 0)
return false;
// All (non-entry) blocks have at least one non-backedge predecessor.
// Pick the variable value from the first of these, to compare against
// all others.
const DbgValue &FirstVal = *Values[0].second;
// If the old live-in value is not a PHI then either a) no PHI is needed
// here, or b) we eliminated the PHI that was here. If so, we can just
// propagate in the first parent's incoming value.
if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) {
Changed = LiveIn != FirstVal;
if (Changed)
LiveIn = FirstVal;
return Changed;
}
// Scan for variable values that can never be resolved: if they have
// different DIExpressions, different indirectness, or are mixed constants /
// non-constants.
for (auto &V : Values) {
if (V.second->Properties != FirstVal.Properties)
return false;
if (V.second->Kind == DbgValue::NoVal)
return false;
if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
return false;
}
// Try to eliminate this PHI. Do the incoming values all agree?
bool Disagree = false;
for (auto &V : Values) {
if (*V.second == FirstVal)
continue; // No disagreement.
// Eliminate if a backedge feeds a VPHI back into itself.
if (V.second->Kind == DbgValue::VPHI &&
V.second->BlockNo == MBB.getNumber() &&
// Is this a backedge?
std::distance(Values.begin(), &V) >= BackEdgesStart)
continue;
Disagree = true;
}
// No disagreement -> live-through value.
if (!Disagree) {
Changed = LiveIn != FirstVal;
if (Changed)
LiveIn = FirstVal;
return Changed;
} else {
// Otherwise use a VPHI.
DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI);
Changed = LiveIn != VPHI;
if (Changed)
LiveIn = VPHI;
return Changed;
}
}
void InstrRefBasedLDV::getBlocksForScope(
const DILocation *DILoc,
SmallPtrSetImpl<const MachineBasicBlock *> &BlocksToExplore,
const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks) {
// Get the set of "normal" in-lexical-scope blocks.
LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
// VarLoc LiveDebugValues tracks variable locations that are defined in
// blocks not in scope. This is something we could legitimately ignore, but
// lets allow it for now for the sake of coverage.
BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
// Storage for artificial blocks we intend to add to BlocksToExplore.
DenseSet<const MachineBasicBlock *> ToAdd;
// To avoid needlessly dropping large volumes of variable locations, propagate
// variables through aritifical blocks, i.e. those that don't have any
// instructions in scope at all. To accurately replicate VarLoc
// LiveDebugValues, this means exploring all artificial successors too.
// Perform a depth-first-search to enumerate those blocks.
for (auto *MBB : BlocksToExplore) {
// Depth-first-search state: each node is a block and which successor
// we're currently exploring.
SmallVector<std::pair<const MachineBasicBlock *,
MachineBasicBlock::const_succ_iterator>,
8>
DFS;
// Find any artificial successors not already tracked.
for (auto *succ : MBB->successors()) {
if (BlocksToExplore.count(succ))
continue;
if (!ArtificialBlocks.count(succ))
continue;
ToAdd.insert(succ);
DFS.push_back({succ, succ->succ_begin()});
}
// Search all those blocks, depth first.
while (!DFS.empty()) {
const MachineBasicBlock *CurBB = DFS.back().first;
MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
// Walk back if we've explored this blocks successors to the end.
if (CurSucc == CurBB->succ_end()) {
DFS.pop_back();
continue;
}
// If the current successor is artificial and unexplored, descend into
// it.
if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
ToAdd.insert(*CurSucc);
DFS.push_back({*CurSucc, (*CurSucc)->succ_begin()});
continue;
}
++CurSucc;
}
};
BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
}
void InstrRefBasedLDV::buildVLocValueMap(
const DILocation *DILoc, const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
SmallVectorImpl<VLocTracker> &AllTheVLocs) {
// This method is much like buildMLocValueMap: but focuses on a single
// LexicalScope at a time. Pick out a set of blocks and variables that are
// to have their value assignments solved, then run our dataflow algorithm
// until a fixedpoint is reached.
std::priority_queue<unsigned int, std::vector<unsigned int>,
std::greater<unsigned int>>
Worklist, Pending;
SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
// The set of blocks we'll be examining.
SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
// The order in which to examine them (RPO).
SmallVector<MachineBasicBlock *, 8> BlockOrders;
// RPO ordering function.
auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
return BBToOrder[A] < BBToOrder[B];
};
getBlocksForScope(DILoc, BlocksToExplore, AssignBlocks);
// Single block scope: not interesting! No propagation at all. Note that
// this could probably go above ArtificialBlocks without damage, but
// that then produces output differences from original-live-debug-values,
// which propagates from a single block into many artificial ones.
if (BlocksToExplore.size() == 1)
return;
// Convert a const set to a non-const set. LexicalScopes
// getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones.
// (Neither of them mutate anything).
SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore;
for (const auto *MBB : BlocksToExplore)
MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB));
// Picks out relevants blocks RPO order and sort them.
for (auto *MBB : BlocksToExplore)
BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
llvm::sort(BlockOrders, Cmp);
unsigned NumBlocks = BlockOrders.size();
// Allocate some vectors for storing the live ins and live outs. Large.
SmallVector<DbgValue, 32> LiveIns, LiveOuts;
LiveIns.reserve(NumBlocks);
LiveOuts.reserve(NumBlocks);
// Initialize all values to start as NoVals. This signifies "it's live
// through, but we don't know what it is".
DbgValueProperties EmptyProperties(EmptyExpr, false);
for (unsigned int I = 0; I < NumBlocks; ++I) {
DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
LiveIns.push_back(EmptyDbgValue);
LiveOuts.push_back(EmptyDbgValue);
}
// Produce by-MBB indexes of live-in/live-outs, to ease lookup within
// vlocJoin.
LiveIdxT LiveOutIdx, LiveInIdx;
LiveOutIdx.reserve(NumBlocks);
LiveInIdx.reserve(NumBlocks);
for (unsigned I = 0; I < NumBlocks; ++I) {
LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
LiveInIdx[BlockOrders[I]] = &LiveIns[I];
}
// Loop over each variable and place PHIs for it, then propagate values
// between blocks. This keeps the locality of working on one lexical scope at
// at time, but avoids re-processing variable values because some other
// variable has been assigned.
for (auto &Var : VarsWeCareAbout) {
// Re-initialize live-ins and live-outs, to clear the remains of previous
// variables live-ins / live-outs.
for (unsigned int I = 0; I < NumBlocks; ++I) {
DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
LiveIns[I] = EmptyDbgValue;
LiveOuts[I] = EmptyDbgValue;
}
// Place PHIs for variable values, using the LLVM IDF calculator.
// Collect the set of blocks where variables are def'd.
SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
for (const MachineBasicBlock *ExpMBB : BlocksToExplore) {
auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars;
if (TransferFunc.find(Var) != TransferFunc.end())
DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB));
}
SmallVector<MachineBasicBlock *, 32> PHIBlocks;
// Request the set of PHIs we should insert for this variable. If there's
// only one value definition, things are very simple.
if (DefBlocks.size() == 1) {
placePHIsForSingleVarDefinition(MutBlocksToExplore, *DefBlocks.begin(),
AllTheVLocs, Var, Output);
continue;
}
// Otherwise: we need to place PHIs through SSA and propagate values.
BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks);
// Insert PHIs into the per-block live-in tables for this variable.
for (MachineBasicBlock *PHIMBB : PHIBlocks) {
unsigned BlockNo = PHIMBB->getNumber();
DbgValue *LiveIn = LiveInIdx[PHIMBB];
*LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI);
}
for (auto *MBB : BlockOrders) {
Worklist.push(BBToOrder[MBB]);
OnWorklist.insert(MBB);
}
// Iterate over all the blocks we selected, propagating the variables value.
// This loop does two things:
// * Eliminates un-necessary VPHIs in vlocJoin,
// * Evaluates the blocks transfer function (i.e. variable assignments) and
// stores the result to the blocks live-outs.
// Always evaluate the transfer function on the first iteration, and when
// the live-ins change thereafter.
bool FirstTrip = true;
while (!Worklist.empty() || !Pending.empty()) {
while (!Worklist.empty()) {
auto *MBB = OrderToBB[Worklist.top()];
CurBB = MBB->getNumber();
Worklist.pop();
auto LiveInsIt = LiveInIdx.find(MBB);
assert(LiveInsIt != LiveInIdx.end());
DbgValue *LiveIn = LiveInsIt->second;
// Join values from predecessors. Updates LiveInIdx, and writes output
// into JoinedInLocs.
bool InLocsChanged =
vlocJoin(*MBB, LiveOutIdx, BlocksToExplore, *LiveIn);
SmallVector<const MachineBasicBlock *, 8> Preds;
for (const auto *Pred : MBB->predecessors())
Preds.push_back(Pred);
// If this block's live-in value is a VPHI, try to pick a machine-value
// for it. This makes the machine-value available and propagated
// through all blocks by the time value propagation finishes. We can't
// do this any earlier as it needs to read the block live-outs.
if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) {
// There's a small possibility that on a preceeding path, a VPHI is
// eliminated and transitions from VPHI-with-location to
// live-through-value. As a result, the selected location of any VPHI
// might change, so we need to re-compute it on each iteration.
Optional<ValueIDNum> ValueNum =
pickVPHILoc(*MBB, Var, LiveOutIdx, MOutLocs, Preds);
if (ValueNum) {
InLocsChanged |= LiveIn->ID != *ValueNum;
LiveIn->ID = *ValueNum;
}
}
if (!InLocsChanged && !FirstTrip)
continue;
DbgValue *LiveOut = LiveOutIdx[MBB];
bool OLChanged = false;
// Do transfer function.
auto &VTracker = AllTheVLocs[MBB->getNumber()];
auto TransferIt = VTracker.Vars.find(Var);
if (TransferIt != VTracker.Vars.end()) {
// Erase on empty transfer (DBG_VALUE $noreg).
if (TransferIt->second.Kind == DbgValue::Undef) {
DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal);
if (*LiveOut != NewVal) {
*LiveOut = NewVal;
OLChanged = true;
}
} else {
// Insert new variable value; or overwrite.
if (*LiveOut != TransferIt->second) {
*LiveOut = TransferIt->second;
OLChanged = true;
}
}
} else {
// Just copy live-ins to live-outs, for anything not transferred.
if (*LiveOut != *LiveIn) {
*LiveOut = *LiveIn;
OLChanged = true;
}
}
// If no live-out value changed, there's no need to explore further.
if (!OLChanged)
continue;
// We should visit all successors. Ensure we'll visit any non-backedge
// successors during this dataflow iteration; book backedge successors
// to be visited next time around.
for (auto s : MBB->successors()) {
// Ignore out of scope / not-to-be-explored successors.
if (LiveInIdx.find(s) == LiveInIdx.end())
continue;
if (BBToOrder[s] > BBToOrder[MBB]) {
if (OnWorklist.insert(s).second)
Worklist.push(BBToOrder[s]);
} else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
Pending.push(BBToOrder[s]);
}
}
}
Worklist.swap(Pending);
std::swap(OnWorklist, OnPending);
OnPending.clear();
assert(Pending.empty());
FirstTrip = false;
}
// Save live-ins to output vector. Ignore any that are still marked as being
// VPHIs with no location -- those are variables that we know the value of,
// but are not actually available in the register file.
for (auto *MBB : BlockOrders) {
DbgValue *BlockLiveIn = LiveInIdx[MBB];
if (BlockLiveIn->Kind == DbgValue::NoVal)
continue;
if (BlockLiveIn->Kind == DbgValue::VPHI &&
BlockLiveIn->ID == ValueIDNum::EmptyValue)
continue;
if (BlockLiveIn->Kind == DbgValue::VPHI)
BlockLiveIn->Kind = DbgValue::Def;
assert(BlockLiveIn->Properties.DIExpr->getFragmentInfo() ==
Var.getFragment() && "Fragment info missing during value prop");
Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn));
}
} // Per-variable loop.
BlockOrders.clear();
BlocksToExplore.clear();
}
void InstrRefBasedLDV::placePHIsForSingleVarDefinition(
const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
MachineBasicBlock *AssignMBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
const DebugVariable &Var, LiveInsT &Output) {
// If there is a single definition of the variable, then working out it's
// value everywhere is very simple: it's every block dominated by the
// definition. At the dominance frontier, the usual algorithm would:
// * Place PHIs,
// * Propagate values into them,
// * Find there's no incoming variable value from the other incoming branches
// of the dominance frontier,
// * Specify there's no variable value in blocks past the frontier.
// This is a common case, hence it's worth special-casing it.
// Pick out the variables value from the block transfer function.
VLocTracker &VLocs = AllTheVLocs[AssignMBB->getNumber()];
auto ValueIt = VLocs.Vars.find(Var);
const DbgValue &Value = ValueIt->second;
// If it's an explicit assignment of "undef", that means there is no location
// anyway, anywhere.
if (Value.Kind == DbgValue::Undef)
return;
// Assign the variable value to entry to each dominated block that's in scope.
// Skip the definition block -- it's assigned the variable value in the middle
// of the block somewhere.
for (auto *ScopeBlock : InScopeBlocks) {
if (!DomTree->properlyDominates(AssignMBB, ScopeBlock))
continue;
Output[ScopeBlock->getNumber()].push_back({Var, Value});
}
// All blocks that aren't dominated have no live-in value, thus no variable
// value will be given to them.
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void InstrRefBasedLDV::dump_mloc_transfer(
const MLocTransferMap &mloc_transfer) const {
for (auto &P : mloc_transfer) {
std::string foo = MTracker->LocIdxToName(P.first);
std::string bar = MTracker->IDAsString(P.second);
dbgs() << "Loc " << foo << " --> " << bar << "\n";
}
}
#endif
void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
// Build some useful data structures.
LLVMContext &Context = MF.getFunction().getContext();
EmptyExpr = DIExpression::get(Context, {});
auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
if (const DebugLoc &DL = MI.getDebugLoc())
return DL.getLine() != 0;
return false;
};
// Collect a set of all the artificial blocks.
for (auto &MBB : MF)
if (none_of(MBB.instrs(), hasNonArtificialLocation))
ArtificialBlocks.insert(&MBB);
// Compute mappings of block <=> RPO order.
ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
unsigned int RPONumber = 0;
for (MachineBasicBlock *MBB : RPOT) {
OrderToBB[RPONumber] = MBB;
BBToOrder[MBB] = RPONumber;
BBNumToRPO[MBB->getNumber()] = RPONumber;
++RPONumber;
}
// Order value substitutions by their "source" operand pair, for quick lookup.
llvm::sort(MF.DebugValueSubstitutions);
#ifdef EXPENSIVE_CHECKS
// As an expensive check, test whether there are any duplicate substitution
// sources in the collection.
if (MF.DebugValueSubstitutions.size() > 2) {
for (auto It = MF.DebugValueSubstitutions.begin();
It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
assert(It->Src != std::next(It)->Src && "Duplicate variable location "
"substitution seen");
}
}
#endif
}
// Produce an "ejection map" for blocks, i.e., what's the highest-numbered
// lexical scope it's used in. When exploring in DFS order and we pass that
// scope, the block can be processed and any tracking information freed.
void InstrRefBasedLDV::makeDepthFirstEjectionMap(
SmallVectorImpl<unsigned> &EjectionMap,
const ScopeToDILocT &ScopeToDILocation,
ScopeToAssignBlocksT &ScopeToAssignBlocks) {
SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
auto *TopScope = LS.getCurrentFunctionScope();
// Unlike lexical scope explorers, we explore in reverse order, to find the
// "last" lexical scope used for each block early.
WorkStack.push_back({TopScope, TopScope->getChildren().size() - 1});
while (!WorkStack.empty()) {
auto &ScopePosition = WorkStack.back();
LexicalScope *WS = ScopePosition.first;
ssize_t ChildNum = ScopePosition.second--;
const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
if (ChildNum >= 0) {
// If ChildNum is positive, there are remaining children to explore.
// Push the child and its children-count onto the stack.
auto &ChildScope = Children[ChildNum];
WorkStack.push_back(
std::make_pair(ChildScope, ChildScope->getChildren().size() - 1));
} else {
WorkStack.pop_back();
// We've explored all children and any later blocks: examine all blocks
// in our scope. If they haven't yet had an ejection number set, then
// this scope will be the last to use that block.
auto DILocationIt = ScopeToDILocation.find(WS);
if (DILocationIt != ScopeToDILocation.end()) {
getBlocksForScope(DILocationIt->second, BlocksToExplore,
ScopeToAssignBlocks.find(WS)->second);
for (auto *MBB : BlocksToExplore) {
unsigned BBNum = MBB->getNumber();
if (EjectionMap[BBNum] == 0)
EjectionMap[BBNum] = WS->getDFSOut();
}
BlocksToExplore.clear();
}
}
}
}
bool InstrRefBasedLDV::depthFirstVLocAndEmit(
unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation,
const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToAssignBlocks,
LiveInsT &Output, ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF,
DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
const TargetPassConfig &TPC) {
TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
unsigned NumLocs = MTracker->getNumLocs();
VTracker = nullptr;
// No scopes? No variable locations.
if (!LS.getCurrentFunctionScope()) {
// FIXME: this is a sticking plaster to prevent a memory leak, these
// pointers will be automagically freed by being unique pointers, shortly.
for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
delete[] MInLocs[I];
delete[] MOutLocs[I];
}
return false;
}
// Build map from block number to the last scope that uses the block.
SmallVector<unsigned, 16> EjectionMap;
EjectionMap.resize(MaxNumBlocks, 0);
makeDepthFirstEjectionMap(EjectionMap, ScopeToDILocation,
ScopeToAssignBlocks);
// Helper lambda for ejecting a block -- if nothing is going to use the block,
// we can translate the variable location information into DBG_VALUEs and then
// free all of InstrRefBasedLDV's data structures.
auto EjectBlock = [&](MachineBasicBlock &MBB) -> void {
unsigned BBNum = MBB.getNumber();
AllTheVLocs[BBNum].clear();
// Prime the transfer-tracker, and then step through all the block
// instructions, installing transfers.
MTracker->reset();
MTracker->loadFromArray(MInLocs[BBNum], BBNum);
TTracker->loadInlocs(MBB, MInLocs[BBNum], Output[BBNum], NumLocs);
CurBB = BBNum;
CurInst = 1;
for (auto &MI : MBB) {
process(MI, MOutLocs, MInLocs);
TTracker->checkInstForNewValues(CurInst, MI.getIterator());
++CurInst;
}
// Free machine-location tables for this block.
delete[] MInLocs[BBNum];
delete[] MOutLocs[BBNum];
// Make ourselves brittle to use-after-free errors.
MInLocs[BBNum] = nullptr;
MOutLocs[BBNum] = nullptr;
// We don't need live-in variable values for this block either.
Output[BBNum].clear();
AllTheVLocs[BBNum].clear();
};
SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
WorkStack.push_back({LS.getCurrentFunctionScope(), 0});
unsigned HighestDFSIn = 0;
// Proceed to explore in depth first order.
while (!WorkStack.empty()) {
auto &ScopePosition = WorkStack.back();
LexicalScope *WS = ScopePosition.first;
ssize_t ChildNum = ScopePosition.second++;
// We obesrve scopes with children twice here, once descending in, once
// ascending out of the scope nest. Use HighestDFSIn as a ratchet to ensure
// we don't process a scope twice. Additionally, ignore scopes that don't
// have a DILocation -- by proxy, this means we never tracked any variable
// assignments in that scope.
auto DILocIt = ScopeToDILocation.find(WS);
if (HighestDFSIn <= WS->getDFSIn() && DILocIt != ScopeToDILocation.end()) {
const DILocation *DILoc = DILocIt->second;
auto &VarsWeCareAbout = ScopeToVars.find(WS)->second;
auto &BlocksInScope = ScopeToAssignBlocks.find(WS)->second;
buildVLocValueMap(DILoc, VarsWeCareAbout, BlocksInScope, Output, MOutLocs,
MInLocs, AllTheVLocs);
}
HighestDFSIn = std::max(HighestDFSIn, WS->getDFSIn());
// Descend into any scope nests.
const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
if (ChildNum < (ssize_t)Children.size()) {
// There are children to explore -- push onto stack and continue.
auto &ChildScope = Children[ChildNum];
WorkStack.push_back(std::make_pair(ChildScope, 0));
} else {
WorkStack.pop_back();
// We've explored a leaf, or have explored all the children of a scope.
// Try to eject any blocks where this is the last scope it's relevant to.
auto DILocationIt = ScopeToDILocation.find(WS);
if (DILocationIt == ScopeToDILocation.end())
continue;
getBlocksForScope(DILocationIt->second, BlocksToExplore,
ScopeToAssignBlocks.find(WS)->second);
for (auto *MBB : BlocksToExplore)
if (WS->getDFSOut() == EjectionMap[MBB->getNumber()])
EjectBlock(const_cast<MachineBasicBlock &>(*MBB));
BlocksToExplore.clear();
}
}
// Some artificial blocks may not have been ejected, meaning they're not
// connected to an actual legitimate scope. This can technically happen
// with things like the entry block. In theory, we shouldn't need to do
// anything for such out-of-scope blocks, but for the sake of being similar
// to VarLocBasedLDV, eject these too.
for (auto *MBB : ArtificialBlocks)
if (MOutLocs[MBB->getNumber()])
EjectBlock(*MBB);
// Finally, there might have been gaps in the block numbering, from dead
// blocks being deleted or folded. In those scenarios, we might allocate a
// block-table that's never ejected, meaning we have to free it at the end.
for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
if (MInLocs[I]) {
delete[] MInLocs[I];
delete[] MOutLocs[I];
}
}
return emitTransfers(AllVarsNumbering);
}
bool InstrRefBasedLDV::emitTransfers(
DenseMap<DebugVariable, unsigned> &AllVarsNumbering) {
// Go through all the transfers recorded in the TransferTracker -- this is
// both the live-ins to a block, and any movements of values that happen
// in the middle.
for (const auto &P : TTracker->Transfers) {
// We have to insert DBG_VALUEs in a consistent order, otherwise they
// appear in DWARF in different orders. Use the order that they appear
// when walking through each block / each instruction, stored in
// AllVarsNumbering.
SmallVector<std::pair<unsigned, MachineInstr *>> Insts;
for (MachineInstr *MI : P.Insts) {
DebugVariable Var(MI->getDebugVariable(), MI->getDebugExpression(),
MI->getDebugLoc()->getInlinedAt());
Insts.emplace_back(AllVarsNumbering.find(Var)->second, MI);
}
llvm::sort(Insts,
[](const auto &A, const auto &B) { return A.first < B.first; });
// Insert either before or after the designated point...
if (P.MBB) {
MachineBasicBlock &MBB = *P.MBB;
for (const auto &Pair : Insts)
MBB.insert(P.Pos, Pair.second);
} else {
// Terminators, like tail calls, can clobber things. Don't try and place
// transfers after them.
if (P.Pos->isTerminator())
continue;
MachineBasicBlock &MBB = *P.Pos->getParent();
for (const auto &Pair : Insts)
MBB.insertAfterBundle(P.Pos, Pair.second);
}
}
return TTracker->Transfers.size() != 0;
}
/// Calculate the liveness information for the given machine function and
/// extend ranges across basic blocks.
bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
MachineDominatorTree *DomTree,
TargetPassConfig *TPC,
unsigned InputBBLimit,
unsigned InputDbgValLimit) {
// No subprogram means this function contains no debuginfo.
if (!MF.getFunction().getSubprogram())
return false;
LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
this->TPC = TPC;
this->DomTree = DomTree;
TRI = MF.getSubtarget().getRegisterInfo();
MRI = &MF.getRegInfo();
TII = MF.getSubtarget().getInstrInfo();
TFI = MF.getSubtarget().getFrameLowering();
TFI->getCalleeSaves(MF, CalleeSavedRegs);
MFI = &MF.getFrameInfo();
LS.initialize(MF);
const auto &STI = MF.getSubtarget();
AdjustsStackInCalls = MFI->adjustsStack() &&
STI.getFrameLowering()->stackProbeFunctionModifiesSP();
if (AdjustsStackInCalls)
StackProbeSymbolName = STI.getTargetLowering()->getStackProbeSymbolName(MF);
MTracker =
new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
VTracker = nullptr;
TTracker = nullptr;
SmallVector<MLocTransferMap, 32> MLocTransfer;
SmallVector<VLocTracker, 8> vlocs;
LiveInsT SavedLiveIns;
int MaxNumBlocks = -1;
for (auto &MBB : MF)
MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
assert(MaxNumBlocks >= 0);
++MaxNumBlocks;
MLocTransfer.resize(MaxNumBlocks);
vlocs.resize(MaxNumBlocks, VLocTracker(OverlapFragments, EmptyExpr));
SavedLiveIns.resize(MaxNumBlocks);
initialSetup(MF);
produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
// Allocate and initialize two array-of-arrays for the live-in and live-out
// machine values. The outer dimension is the block number; while the inner
// dimension is a LocIdx from MLocTracker.
ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks];
ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks];
unsigned NumLocs = MTracker->getNumLocs();
for (int i = 0; i < MaxNumBlocks; ++i) {
// These all auto-initialize to ValueIDNum::EmptyValue
MOutLocs[i] = new ValueIDNum[NumLocs];
MInLocs[i] = new ValueIDNum[NumLocs];
}
// Solve the machine value dataflow problem using the MLocTransfer function,
// storing the computed live-ins / live-outs into the array-of-arrays. We use
// both live-ins and live-outs for decision making in the variable value
// dataflow problem.
buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer);
// Patch up debug phi numbers, turning unknown block-live-in values into
// either live-through machine values, or PHIs.
for (auto &DBG_PHI : DebugPHINumToValue) {
// Identify unresolved block-live-ins.
ValueIDNum &Num = DBG_PHI.ValueRead;
if (!Num.isPHI())
continue;
unsigned BlockNo = Num.getBlock();
LocIdx LocNo = Num.getLoc();
Num = MInLocs[BlockNo][LocNo.asU64()];
}
// Later, we'll be looking up ranges of instruction numbers.
llvm::sort(DebugPHINumToValue);
// Walk back through each block / instruction, collecting DBG_VALUE
// instructions and recording what machine value their operands refer to.
for (auto &OrderPair : OrderToBB) {
MachineBasicBlock &MBB = *OrderPair.second;
CurBB = MBB.getNumber();
VTracker = &vlocs[CurBB];
VTracker->MBB = &MBB;
MTracker->loadFromArray(MInLocs[CurBB], CurBB);
CurInst = 1;
for (auto &MI : MBB) {
process(MI, MOutLocs, MInLocs);
++CurInst;
}
MTracker->reset();
}
// Number all variables in the order that they appear, to be used as a stable
// insertion order later.
DenseMap<DebugVariable, unsigned> AllVarsNumbering;
// Map from one LexicalScope to all the variables in that scope.
ScopeToVarsT ScopeToVars;
// Map from One lexical scope to all blocks where assignments happen for
// that scope.
ScopeToAssignBlocksT ScopeToAssignBlocks;
// Store map of DILocations that describes scopes.
ScopeToDILocT ScopeToDILocation;
// To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
// the order is unimportant, it just has to be stable.
unsigned VarAssignCount = 0;
for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
auto *MBB = OrderToBB[I];
auto *VTracker = &vlocs[MBB->getNumber()];
// Collect each variable with a DBG_VALUE in this block.
for (auto &idx : VTracker->Vars) {
const auto &Var = idx.first;
const DILocation *ScopeLoc = VTracker->Scopes[Var];
assert(ScopeLoc != nullptr);
auto *Scope = LS.findLexicalScope(ScopeLoc);
// No insts in scope -> shouldn't have been recorded.
assert(Scope != nullptr);
AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
ScopeToVars[Scope].insert(Var);
ScopeToAssignBlocks[Scope].insert(VTracker->MBB);
ScopeToDILocation[Scope] = ScopeLoc;
++VarAssignCount;
}
}
bool Changed = false;
// If we have an extremely large number of variable assignments and blocks,
// bail out at this point. We've burnt some time doing analysis already,
// however we should cut our losses.
if ((unsigned)MaxNumBlocks > InputBBLimit &&
VarAssignCount > InputDbgValLimit) {
LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
<< " has " << MaxNumBlocks << " basic blocks and "
<< VarAssignCount
<< " variable assignments, exceeding limits.\n");
// Perform memory cleanup that emitLocations would do otherwise.
for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) {
delete[] MOutLocs[Idx];
delete[] MInLocs[Idx];
}
} else {
// Optionally, solve the variable value problem and emit to blocks by using
// a lexical-scope-depth search. It should be functionally identical to
// the "else" block of this condition.
Changed = depthFirstVLocAndEmit(
MaxNumBlocks, ScopeToDILocation, ScopeToVars, ScopeToAssignBlocks,
SavedLiveIns, MOutLocs, MInLocs, vlocs, MF, AllVarsNumbering, *TPC);
}
// Elements of these arrays will be deleted by emitLocations.
delete[] MOutLocs;
delete[] MInLocs;
delete MTracker;
delete TTracker;
MTracker = nullptr;
VTracker = nullptr;
TTracker = nullptr;
ArtificialBlocks.clear();
OrderToBB.clear();
BBToOrder.clear();
BBNumToRPO.clear();
DebugInstrNumToInstr.clear();
DebugPHINumToValue.clear();
OverlapFragments.clear();
SeenFragments.clear();
SeenDbgPHIs.clear();
return Changed;
}
LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
return new InstrRefBasedLDV();
}
namespace {
class LDVSSABlock;
class LDVSSAUpdater;
// Pick a type to identify incoming block values as we construct SSA. We
// can't use anything more robust than an integer unfortunately, as SSAUpdater
// expects to zero-initialize the type.
typedef uint64_t BlockValueNum;
/// Represents an SSA PHI node for the SSA updater class. Contains the block
/// this PHI is in, the value number it would have, and the expected incoming
/// values from parent blocks.
class LDVSSAPhi {
public:
SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
LDVSSABlock *ParentBlock;
BlockValueNum PHIValNum;
LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
: ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
LDVSSABlock *getParent() { return ParentBlock; }
};
/// Thin wrapper around a block predecessor iterator. Only difference from a
/// normal block iterator is that it dereferences to an LDVSSABlock.
class LDVSSABlockIterator {
public:
MachineBasicBlock::pred_iterator PredIt;
LDVSSAUpdater &Updater;
LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
LDVSSAUpdater &Updater)
: PredIt(PredIt), Updater(Updater) {}
bool operator!=(const LDVSSABlockIterator &OtherIt) const {
return OtherIt.PredIt != PredIt;
}
LDVSSABlockIterator &operator++() {
++PredIt;
return *this;
}
LDVSSABlock *operator*();
};
/// Thin wrapper around a block for SSA Updater interface. Necessary because
/// we need to track the PHI value(s) that we may have observed as necessary
/// in this block.
class LDVSSABlock {
public:
MachineBasicBlock &BB;
LDVSSAUpdater &Updater;
using PHIListT = SmallVector<LDVSSAPhi, 1>;
/// List of PHIs in this block. There should only ever be one.
PHIListT PHIList;
LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
: BB(BB), Updater(Updater) {}
LDVSSABlockIterator succ_begin() {
return LDVSSABlockIterator(BB.succ_begin(), Updater);
}
LDVSSABlockIterator succ_end() {
return LDVSSABlockIterator(BB.succ_end(), Updater);
}
/// SSAUpdater has requested a PHI: create that within this block record.
LDVSSAPhi *newPHI(BlockValueNum Value) {
PHIList.emplace_back(Value, this);
return &PHIList.back();
}
/// SSAUpdater wishes to know what PHIs already exist in this block.
PHIListT &phis() { return PHIList; }
};
/// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
/// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
// SSAUpdaterTraits<LDVSSAUpdater>.
class LDVSSAUpdater {
public:
/// Map of value numbers to PHI records.
DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
/// Map of which blocks generate Undef values -- blocks that are not
/// dominated by any Def.
DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
/// Map of machine blocks to our own records of them.
DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
/// Machine location where any PHI must occur.
LocIdx Loc;
/// Table of live-in machine value numbers for blocks / locations.
ValueIDNum **MLiveIns;
LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {}
void reset() {
for (auto &Block : BlockMap)
delete Block.second;
PHIs.clear();
UndefMap.clear();
BlockMap.clear();
}
~LDVSSAUpdater() { reset(); }
/// For a given MBB, create a wrapper block for it. Stores it in the
/// LDVSSAUpdater block map.
LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
auto it = BlockMap.find(BB);
if (it == BlockMap.end()) {
BlockMap[BB] = new LDVSSABlock(*BB, *this);
it = BlockMap.find(BB);
}
return it->second;
}
/// Find the live-in value number for the given block. Looks up the value at
/// the PHI location on entry.
BlockValueNum getValue(LDVSSABlock *LDVBB) {
return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
}
};
LDVSSABlock *LDVSSABlockIterator::operator*() {
return Updater.getSSALDVBlock(*PredIt);
}
#ifndef NDEBUG
raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
out << "SSALDVPHI " << PHI.PHIValNum;
return out;
}
#endif
} // namespace
namespace llvm {
/// Template specialization to give SSAUpdater access to CFG and value
/// information. SSAUpdater calls methods in these traits, passing in the
/// LDVSSAUpdater object, to learn about blocks and the values they define.
/// It also provides methods to create PHI nodes and track them.
template <> class SSAUpdaterTraits<LDVSSAUpdater> {
public:
using BlkT = LDVSSABlock;
using ValT = BlockValueNum;
using PhiT = LDVSSAPhi;
using BlkSucc_iterator = LDVSSABlockIterator;
// Methods to access block successors -- dereferencing to our wrapper class.
static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
/// Iterator for PHI operands.
class PHI_iterator {
private:
LDVSSAPhi *PHI;
unsigned Idx;
public:
explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
: PHI(P), Idx(0) {}
PHI_iterator(LDVSSAPhi *P, bool) // end iterator
: PHI(P), Idx(PHI->IncomingValues.size()) {}
PHI_iterator &operator++() {
Idx++;
return *this;
}
bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
};
static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
static inline PHI_iterator PHI_end(PhiT *PHI) {
return PHI_iterator(PHI, true);
}
/// FindPredecessorBlocks - Put the predecessors of BB into the Preds
/// vector.
static void FindPredecessorBlocks(LDVSSABlock *BB,
SmallVectorImpl<LDVSSABlock *> *Preds) {
for (MachineBasicBlock *Pred : BB->BB.predecessors())
Preds->push_back(BB->Updater.getSSALDVBlock(Pred));
}
/// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
/// register. For LiveDebugValues, represents a block identified as not having
/// any DBG_PHI predecessors.
static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
// Create a value number for this block -- it needs to be unique and in the
// "undef" collection, so that we know it's not real. Use a number
// representing a PHI into this block.
BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
Updater->UndefMap[&BB->BB] = Num;
return Num;
}
/// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
/// SSAUpdater will populate it with information about incoming values. The
/// value number of this PHI is whatever the machine value number problem
/// solution determined it to be. This includes non-phi values if SSAUpdater
/// tries to create a PHI where the incoming values are identical.
static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
LDVSSAUpdater *Updater) {
BlockValueNum PHIValNum = Updater->getValue(BB);
LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
Updater->PHIs[PHIValNum] = PHI;
return PHIValNum;
}
/// AddPHIOperand - Add the specified value as an operand of the PHI for
/// the specified predecessor block.
static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
}
/// ValueIsPHI - Check if the instruction that defines the specified value
/// is a PHI instruction.
static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
auto PHIIt = Updater->PHIs.find(Val);
if (PHIIt == Updater->PHIs.end())
return nullptr;
return PHIIt->second;
}
/// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
/// operands, i.e., it was just added.
static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
if (PHI && PHI->IncomingValues.size() == 0)
return PHI;
return nullptr;
}
/// GetPHIValue - For the specified PHI instruction, return the value
/// that it defines.
static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
};
} // end namespace llvm
Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF,
ValueIDNum **MLiveOuts,
ValueIDNum **MLiveIns,
MachineInstr &Here,
uint64_t InstrNum) {
// This function will be called twice per DBG_INSTR_REF, and might end up
// computing lots of SSA information: memoize it.
auto SeenDbgPHIIt = SeenDbgPHIs.find(&Here);
if (SeenDbgPHIIt != SeenDbgPHIs.end())
return SeenDbgPHIIt->second;
Optional<ValueIDNum> Result =
resolveDbgPHIsImpl(MF, MLiveOuts, MLiveIns, Here, InstrNum);
SeenDbgPHIs.insert({&Here, Result});
return Result;
}
Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIsImpl(
MachineFunction &MF, ValueIDNum **MLiveOuts, ValueIDNum **MLiveIns,
MachineInstr &Here, uint64_t InstrNum) {
// Pick out records of DBG_PHI instructions that have been observed. If there
// are none, then we cannot compute a value number.
auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
DebugPHINumToValue.end(), InstrNum);
auto LowerIt = RangePair.first;
auto UpperIt = RangePair.second;
// No DBG_PHI means there can be no location.
if (LowerIt == UpperIt)
return None;
// If there's only one DBG_PHI, then that is our value number.
if (std::distance(LowerIt, UpperIt) == 1)
return LowerIt->ValueRead;
auto DBGPHIRange = make_range(LowerIt, UpperIt);
// Pick out the location (physreg, slot) where any PHIs must occur. It's
// technically possible for us to merge values in different registers in each
// block, but highly unlikely that LLVM will generate such code after register
// allocation.
LocIdx Loc = LowerIt->ReadLoc;
// We have several DBG_PHIs, and a use position (the Here inst). All each
// DBG_PHI does is identify a value at a program position. We can treat each
// DBG_PHI like it's a Def of a value, and the use position is a Use of a
// value, just like SSA. We use the bulk-standard LLVM SSA updater class to
// determine which Def is used at the Use, and any PHIs that happen along
// the way.
// Adapted LLVM SSA Updater:
LDVSSAUpdater Updater(Loc, MLiveIns);
// Map of which Def or PHI is the current value in each block.
DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
// Set of PHIs that we have created along the way.
SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
// Each existing DBG_PHI is a Def'd value under this model. Record these Defs
// for the SSAUpdater.
for (const auto &DBG_PHI : DBGPHIRange) {
LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
const ValueIDNum &Num = DBG_PHI.ValueRead;
AvailableValues.insert(std::make_pair(Block, Num.asU64()));
}
LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
const auto &AvailIt = AvailableValues.find(HereBlock);
if (AvailIt != AvailableValues.end()) {
// Actually, we already know what the value is -- the Use is in the same
// block as the Def.
return ValueIDNum::fromU64(AvailIt->second);
}
// Otherwise, we must use the SSA Updater. It will identify the value number
// that we are to use, and the PHIs that must happen along the way.
SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
// We have the number for a PHI, or possibly live-through value, to be used
// at this Use. There are a number of things we have to check about it though:
// * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
// Use was not completely dominated by DBG_PHIs and we should abort.
// * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
// we've left SSA form. Validate that the inputs to each PHI are the
// expected values.
// * Is a PHI we've created actually a merging of values, or are all the
// predecessor values the same, leading to a non-PHI machine value number?
// (SSAUpdater doesn't know that either). Remap validated PHIs into the
// the ValidatedValues collection below to sort this out.
DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
// Define all the input DBG_PHI values in ValidatedValues.
for (const auto &DBG_PHI : DBGPHIRange) {
LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
const ValueIDNum &Num = DBG_PHI.ValueRead;
ValidatedValues.insert(std::make_pair(Block, Num));
}
// Sort PHIs to validate into RPO-order.
SmallVector<LDVSSAPhi *, 8> SortedPHIs;
for (auto &PHI : CreatedPHIs)
SortedPHIs.push_back(PHI);
std::sort(
SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) {
return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
});
for (auto &PHI : SortedPHIs) {
ValueIDNum ThisBlockValueNum =
MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
// Are all these things actually defined?
for (auto &PHIIt : PHI->IncomingValues) {
// Any undef input means DBG_PHIs didn't dominate the use point.
if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
return None;
ValueIDNum ValueToCheck;
ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
auto VVal = ValidatedValues.find(PHIIt.first);
if (VVal == ValidatedValues.end()) {
// We cross a loop, and this is a backedge. LLVMs tail duplication
// happens so late that DBG_PHI instructions should not be able to
// migrate into loops -- meaning we can only be live-through this
// loop.
ValueToCheck = ThisBlockValueNum;
} else {
// Does the block have as a live-out, in the location we're examining,
// the value that we expect? If not, it's been moved or clobbered.
ValueToCheck = VVal->second;
}
if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
return None;
}
// Record this value as validated.
ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
}
// All the PHIs are valid: we can return what the SSAUpdater said our value
// number was.
return Result;
}
|