1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
|
//===- InstrRefBasedImpl.h - Tracking Debug Value MIs ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
#define LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/UniqueVector.h"
#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "LiveDebugValues.h"
class TransferTracker;
// Forward dec of unit test class, so that we can peer into the LDV object.
class InstrRefLDVTest;
namespace LiveDebugValues {
class MLocTracker;
using namespace llvm;
/// Handle-class for a particular "location". This value-type uniquely
/// symbolises a register or stack location, allowing manipulation of locations
/// without concern for where that location is. Practically, this allows us to
/// treat the state of the machine at a particular point as an array of values,
/// rather than a map of values.
class LocIdx {
unsigned Location;
// Default constructor is private, initializing to an illegal location number.
// Use only for "not an entry" elements in IndexedMaps.
LocIdx() : Location(UINT_MAX) {}
public:
#define NUM_LOC_BITS 24
LocIdx(unsigned L) : Location(L) {
assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
}
static LocIdx MakeIllegalLoc() { return LocIdx(); }
static LocIdx MakeTombstoneLoc() {
LocIdx L = LocIdx();
--L.Location;
return L;
}
bool isIllegal() const { return Location == UINT_MAX; }
uint64_t asU64() const { return Location; }
bool operator==(unsigned L) const { return Location == L; }
bool operator==(const LocIdx &L) const { return Location == L.Location; }
bool operator!=(unsigned L) const { return !(*this == L); }
bool operator!=(const LocIdx &L) const { return !(*this == L); }
bool operator<(const LocIdx &Other) const {
return Location < Other.Location;
}
};
// The location at which a spilled value resides. It consists of a register and
// an offset.
struct SpillLoc {
unsigned SpillBase;
StackOffset SpillOffset;
bool operator==(const SpillLoc &Other) const {
return std::make_pair(SpillBase, SpillOffset) ==
std::make_pair(Other.SpillBase, Other.SpillOffset);
}
bool operator<(const SpillLoc &Other) const {
return std::make_tuple(SpillBase, SpillOffset.getFixed(),
SpillOffset.getScalable()) <
std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(),
Other.SpillOffset.getScalable());
}
};
/// Unique identifier for a value defined by an instruction, as a value type.
/// Casts back and forth to a uint64_t. Probably replacable with something less
/// bit-constrained. Each value identifies the instruction and machine location
/// where the value is defined, although there may be no corresponding machine
/// operand for it (ex: regmasks clobbering values). The instructions are
/// one-based, and definitions that are PHIs have instruction number zero.
///
/// The obvious limits of a 1M block function or 1M instruction blocks are
/// problematic; but by that point we should probably have bailed out of
/// trying to analyse the function.
class ValueIDNum {
union {
struct {
uint64_t BlockNo : 20; /// The block where the def happens.
uint64_t InstNo : 20; /// The Instruction where the def happens.
/// One based, is distance from start of block.
uint64_t LocNo
: NUM_LOC_BITS; /// The machine location where the def happens.
} s;
uint64_t Value;
} u;
static_assert(sizeof(u) == 8, "Badly packed ValueIDNum?");
public:
// Default-initialize to EmptyValue. This is necessary to make IndexedMaps
// of values to work.
ValueIDNum() { u.Value = EmptyValue.asU64(); }
ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) {
u.s = {Block, Inst, Loc};
}
ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) {
u.s = {Block, Inst, Loc.asU64()};
}
uint64_t getBlock() const { return u.s.BlockNo; }
uint64_t getInst() const { return u.s.InstNo; }
uint64_t getLoc() const { return u.s.LocNo; }
bool isPHI() const { return u.s.InstNo == 0; }
uint64_t asU64() const { return u.Value; }
static ValueIDNum fromU64(uint64_t v) {
ValueIDNum Val;
Val.u.Value = v;
return Val;
}
bool operator<(const ValueIDNum &Other) const {
return asU64() < Other.asU64();
}
bool operator==(const ValueIDNum &Other) const {
return u.Value == Other.u.Value;
}
bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }
std::string asString(const std::string &mlocname) const {
return Twine("Value{bb: ")
.concat(Twine(u.s.BlockNo)
.concat(Twine(", inst: ")
.concat((u.s.InstNo ? Twine(u.s.InstNo)
: Twine("live-in"))
.concat(Twine(", loc: ").concat(
Twine(mlocname)))
.concat(Twine("}")))))
.str();
}
static ValueIDNum EmptyValue;
static ValueIDNum TombstoneValue;
};
/// Thin wrapper around an integer -- designed to give more type safety to
/// spill location numbers.
class SpillLocationNo {
public:
explicit SpillLocationNo(unsigned SpillNo) : SpillNo(SpillNo) {}
unsigned SpillNo;
unsigned id() const { return SpillNo; }
bool operator<(const SpillLocationNo &Other) const {
return SpillNo < Other.SpillNo;
}
bool operator==(const SpillLocationNo &Other) const {
return SpillNo == Other.SpillNo;
}
bool operator!=(const SpillLocationNo &Other) const {
return !(*this == Other);
}
};
/// Meta qualifiers for a value. Pair of whatever expression is used to qualify
/// the the value, and Boolean of whether or not it's indirect.
class DbgValueProperties {
public:
DbgValueProperties(const DIExpression *DIExpr, bool Indirect)
: DIExpr(DIExpr), Indirect(Indirect) {}
/// Extract properties from an existing DBG_VALUE instruction.
DbgValueProperties(const MachineInstr &MI) {
assert(MI.isDebugValue());
DIExpr = MI.getDebugExpression();
Indirect = MI.getOperand(1).isImm();
}
bool operator==(const DbgValueProperties &Other) const {
return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect);
}
bool operator!=(const DbgValueProperties &Other) const {
return !(*this == Other);
}
const DIExpression *DIExpr;
bool Indirect;
};
/// Class recording the (high level) _value_ of a variable. Identifies either
/// the value of the variable as a ValueIDNum, or a constant MachineOperand.
/// This class also stores meta-information about how the value is qualified.
/// Used to reason about variable values when performing the second
/// (DebugVariable specific) dataflow analysis.
class DbgValue {
public:
/// If Kind is Def, the value number that this value is based on. VPHIs set
/// this field to EmptyValue if there is no machine-value for this VPHI, or
/// the corresponding machine-value if there is one.
ValueIDNum ID;
/// If Kind is Const, the MachineOperand defining this value.
Optional<MachineOperand> MO;
/// For a NoVal or VPHI DbgValue, which block it was generated in.
int BlockNo;
/// Qualifiers for the ValueIDNum above.
DbgValueProperties Properties;
typedef enum {
Undef, // Represents a DBG_VALUE $noreg in the transfer function only.
Def, // This value is defined by an inst, or is a PHI value.
Const, // A constant value contained in the MachineOperand field.
VPHI, // Incoming values to BlockNo differ, those values must be joined by
// a PHI in this block.
NoVal, // Empty DbgValue indicating an unknown value. Used as initializer,
// before dominating blocks values are propagated in.
} KindT;
/// Discriminator for whether this is a constant or an in-program value.
KindT Kind;
DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind)
: ID(Val), MO(None), BlockNo(0), Properties(Prop), Kind(Kind) {
assert(Kind == Def);
}
DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
: ID(ValueIDNum::EmptyValue), MO(None), BlockNo(BlockNo),
Properties(Prop), Kind(Kind) {
assert(Kind == NoVal || Kind == VPHI);
}
DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind)
: ID(ValueIDNum::EmptyValue), MO(MO), BlockNo(0), Properties(Prop),
Kind(Kind) {
assert(Kind == Const);
}
DbgValue(const DbgValueProperties &Prop, KindT Kind)
: ID(ValueIDNum::EmptyValue), MO(None), BlockNo(0), Properties(Prop),
Kind(Kind) {
assert(Kind == Undef &&
"Empty DbgValue constructor must pass in Undef kind");
}
#ifndef NDEBUG
void dump(const MLocTracker *MTrack) const;
#endif
bool operator==(const DbgValue &Other) const {
if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
return false;
else if (Kind == Def && ID != Other.ID)
return false;
else if (Kind == NoVal && BlockNo != Other.BlockNo)
return false;
else if (Kind == Const)
return MO->isIdenticalTo(*Other.MO);
else if (Kind == VPHI && BlockNo != Other.BlockNo)
return false;
else if (Kind == VPHI && ID != Other.ID)
return false;
return true;
}
bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
};
class LocIdxToIndexFunctor {
public:
using argument_type = LocIdx;
unsigned operator()(const LocIdx &L) const { return L.asU64(); }
};
/// Tracker for what values are in machine locations. Listens to the Things
/// being Done by various instructions, and maintains a table of what machine
/// locations have what values (as defined by a ValueIDNum).
///
/// There are potentially a much larger number of machine locations on the
/// target machine than the actual working-set size of the function. On x86 for
/// example, we're extremely unlikely to want to track values through control
/// or debug registers. To avoid doing so, MLocTracker has several layers of
/// indirection going on, described below, to avoid unnecessarily tracking
/// any location.
///
/// Here's a sort of diagram of the indexes, read from the bottom up:
///
/// Size on stack Offset on stack
/// \ /
/// Stack Idx (Where in slot is this?)
/// /
/// /
/// Slot Num (%stack.0) /
/// FrameIdx => SpillNum /
/// \ /
/// SpillID (int) Register number (int)
/// \ /
/// LocationID => LocIdx
/// |
/// LocIdx => ValueIDNum
///
/// The aim here is that the LocIdx => ValueIDNum vector is just an array of
/// values in numbered locations, so that later analyses can ignore whether the
/// location is a register or otherwise. To map a register / spill location to
/// a LocIdx, you have to use the (sparse) LocationID => LocIdx map. And to
/// build a LocationID for a stack slot, you need to combine identifiers for
/// which stack slot it is and where within that slot is being described.
///
/// Register mask operands cause trouble by technically defining every register;
/// various hacks are used to avoid tracking registers that are never read and
/// only written by regmasks.
class MLocTracker {
public:
MachineFunction &MF;
const TargetInstrInfo &TII;
const TargetRegisterInfo &TRI;
const TargetLowering &TLI;
/// IndexedMap type, mapping from LocIdx to ValueIDNum.
using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>;
/// Map of LocIdxes to the ValueIDNums that they store. This is tightly
/// packed, entries only exist for locations that are being tracked.
LocToValueType LocIdxToIDNum;
/// "Map" of machine location IDs (i.e., raw register or spill number) to the
/// LocIdx key / number for that location. There are always at least as many
/// as the number of registers on the target -- if the value in the register
/// is not being tracked, then the LocIdx value will be zero. New entries are
/// appended if a new spill slot begins being tracked.
/// This, and the corresponding reverse map persist for the analysis of the
/// whole function, and is necessarying for decoding various vectors of
/// values.
std::vector<LocIdx> LocIDToLocIdx;
/// Inverse map of LocIDToLocIdx.
IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID;
/// When clobbering register masks, we chose to not believe the machine model
/// and don't clobber SP. Do the same for SP aliases, and for efficiency,
/// keep a set of them here.
SmallSet<Register, 8> SPAliases;
/// Unique-ification of spill. Used to number them -- their LocID number is
/// the index in SpillLocs minus one plus NumRegs.
UniqueVector<SpillLoc> SpillLocs;
// If we discover a new machine location, assign it an mphi with this
// block number.
unsigned CurBB;
/// Cached local copy of the number of registers the target has.
unsigned NumRegs;
/// Number of slot indexes the target has -- distinct segments of a stack
/// slot that can take on the value of a subregister, when a super-register
/// is written to the stack.
unsigned NumSlotIdxes;
/// Collection of register mask operands that have been observed. Second part
/// of pair indicates the instruction that they happened in. Used to
/// reconstruct where defs happened if we start tracking a location later
/// on.
SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks;
/// Pair for describing a position within a stack slot -- first the size in
/// bits, then the offset.
typedef std::pair<unsigned short, unsigned short> StackSlotPos;
/// Map from a size/offset pair describing a position in a stack slot, to a
/// numeric identifier for that position. Allows easier identification of
/// individual positions.
DenseMap<StackSlotPos, unsigned> StackSlotIdxes;
/// Inverse of StackSlotIdxes.
DenseMap<unsigned, StackSlotPos> StackIdxesToPos;
/// Iterator for locations and the values they contain. Dereferencing
/// produces a struct/pair containing the LocIdx key for this location,
/// and a reference to the value currently stored. Simplifies the process
/// of seeking a particular location.
class MLocIterator {
LocToValueType &ValueMap;
LocIdx Idx;
public:
class value_type {
public:
value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) {}
const LocIdx Idx; /// Read-only index of this location.
ValueIDNum &Value; /// Reference to the stored value at this location.
};
MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
: ValueMap(ValueMap), Idx(Idx) {}
bool operator==(const MLocIterator &Other) const {
assert(&ValueMap == &Other.ValueMap);
return Idx == Other.Idx;
}
bool operator!=(const MLocIterator &Other) const {
return !(*this == Other);
}
void operator++() { Idx = LocIdx(Idx.asU64() + 1); }
value_type operator*() { return value_type(Idx, ValueMap[LocIdx(Idx)]); }
};
MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
const TargetRegisterInfo &TRI, const TargetLowering &TLI);
/// Produce location ID number for a Register. Provides some small amount of
/// type safety.
/// \param Reg The register we're looking up.
unsigned getLocID(Register Reg) { return Reg.id(); }
/// Produce location ID number for a spill position.
/// \param Spill The number of the spill we're fetching the location for.
/// \param SpillSubReg Subregister within the spill we're addressing.
unsigned getLocID(SpillLocationNo Spill, unsigned SpillSubReg) {
unsigned short Size = TRI.getSubRegIdxSize(SpillSubReg);
unsigned short Offs = TRI.getSubRegIdxOffset(SpillSubReg);
return getLocID(Spill, {Size, Offs});
}
/// Produce location ID number for a spill position.
/// \param Spill The number of the spill we're fetching the location for.
/// \apram SpillIdx size/offset within the spill slot to be addressed.
unsigned getLocID(SpillLocationNo Spill, StackSlotPos Idx) {
unsigned SlotNo = Spill.id() - 1;
SlotNo *= NumSlotIdxes;
assert(StackSlotIdxes.find(Idx) != StackSlotIdxes.end());
SlotNo += StackSlotIdxes[Idx];
SlotNo += NumRegs;
return SlotNo;
}
/// Given a spill number, and a slot within the spill, calculate the ID number
/// for that location.
unsigned getSpillIDWithIdx(SpillLocationNo Spill, unsigned Idx) {
unsigned SlotNo = Spill.id() - 1;
SlotNo *= NumSlotIdxes;
SlotNo += Idx;
SlotNo += NumRegs;
return SlotNo;
}
/// Return the spill number that a location ID corresponds to.
SpillLocationNo locIDToSpill(unsigned ID) const {
assert(ID >= NumRegs);
ID -= NumRegs;
// Truncate away the index part, leaving only the spill number.
ID /= NumSlotIdxes;
return SpillLocationNo(ID + 1); // The UniqueVector is one-based.
}
/// Returns the spill-slot size/offs that a location ID corresponds to.
StackSlotPos locIDToSpillIdx(unsigned ID) const {
assert(ID >= NumRegs);
ID -= NumRegs;
unsigned Idx = ID % NumSlotIdxes;
return StackIdxesToPos.find(Idx)->second;
}
unsigned getNumLocs() const { return LocIdxToIDNum.size(); }
/// Reset all locations to contain a PHI value at the designated block. Used
/// sometimes for actual PHI values, othertimes to indicate the block entry
/// value (before any more information is known).
void setMPhis(unsigned NewCurBB) {
CurBB = NewCurBB;
for (auto Location : locations())
Location.Value = {CurBB, 0, Location.Idx};
}
/// Load values for each location from array of ValueIDNums. Take current
/// bbnum just in case we read a value from a hitherto untouched register.
void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) {
CurBB = NewCurBB;
// Iterate over all tracked locations, and load each locations live-in
// value into our local index.
for (auto Location : locations())
Location.Value = Locs[Location.Idx.asU64()];
}
/// Wipe any un-necessary location records after traversing a block.
void reset() {
// We could reset all the location values too; however either loadFromArray
// or setMPhis should be called before this object is re-used. Just
// clear Masks, they're definitely not needed.
Masks.clear();
}
/// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
/// the information in this pass uninterpretable.
void clear() {
reset();
LocIDToLocIdx.clear();
LocIdxToLocID.clear();
LocIdxToIDNum.clear();
// SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from
// 0
SpillLocs = decltype(SpillLocs)();
StackSlotIdxes.clear();
StackIdxesToPos.clear();
LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
}
/// Set a locaiton to a certain value.
void setMLoc(LocIdx L, ValueIDNum Num) {
assert(L.asU64() < LocIdxToIDNum.size());
LocIdxToIDNum[L] = Num;
}
/// Read the value of a particular location
ValueIDNum readMLoc(LocIdx L) {
assert(L.asU64() < LocIdxToIDNum.size());
return LocIdxToIDNum[L];
}
/// Create a LocIdx for an untracked register ID. Initialize it to either an
/// mphi value representing a live-in, or a recent register mask clobber.
LocIdx trackRegister(unsigned ID);
LocIdx lookupOrTrackRegister(unsigned ID) {
LocIdx &Index = LocIDToLocIdx[ID];
if (Index.isIllegal())
Index = trackRegister(ID);
return Index;
}
/// Is register R currently tracked by MLocTracker?
bool isRegisterTracked(Register R) {
LocIdx &Index = LocIDToLocIdx[R];
return !Index.isIllegal();
}
/// Record a definition of the specified register at the given block / inst.
/// This doesn't take a ValueIDNum, because the definition and its location
/// are synonymous.
void defReg(Register R, unsigned BB, unsigned Inst) {
unsigned ID = getLocID(R);
LocIdx Idx = lookupOrTrackRegister(ID);
ValueIDNum ValueID = {BB, Inst, Idx};
LocIdxToIDNum[Idx] = ValueID;
}
/// Set a register to a value number. To be used if the value number is
/// known in advance.
void setReg(Register R, ValueIDNum ValueID) {
unsigned ID = getLocID(R);
LocIdx Idx = lookupOrTrackRegister(ID);
LocIdxToIDNum[Idx] = ValueID;
}
ValueIDNum readReg(Register R) {
unsigned ID = getLocID(R);
LocIdx Idx = lookupOrTrackRegister(ID);
return LocIdxToIDNum[Idx];
}
/// Reset a register value to zero / empty. Needed to replicate the
/// VarLoc implementation where a copy to/from a register effectively
/// clears the contents of the source register. (Values can only have one
/// machine location in VarLocBasedImpl).
void wipeRegister(Register R) {
unsigned ID = getLocID(R);
LocIdx Idx = LocIDToLocIdx[ID];
LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue;
}
/// Determine the LocIdx of an existing register.
LocIdx getRegMLoc(Register R) {
unsigned ID = getLocID(R);
assert(ID < LocIDToLocIdx.size());
assert(LocIDToLocIdx[ID] != UINT_MAX); // Sentinal for IndexedMap.
return LocIDToLocIdx[ID];
}
/// Record a RegMask operand being executed. Defs any register we currently
/// track, stores a pointer to the mask in case we have to account for it
/// later.
void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID);
/// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
/// Returns None when in scenarios where a spill slot could be tracked, but
/// we would likely run into resource limitations.
Optional<SpillLocationNo> getOrTrackSpillLoc(SpillLoc L);
// Get LocIdx of a spill ID.
LocIdx getSpillMLoc(unsigned SpillID) {
assert(LocIDToLocIdx[SpillID] != UINT_MAX); // Sentinal for IndexedMap.
return LocIDToLocIdx[SpillID];
}
/// Return true if Idx is a spill machine location.
bool isSpill(LocIdx Idx) const { return LocIdxToLocID[Idx] >= NumRegs; }
MLocIterator begin() { return MLocIterator(LocIdxToIDNum, 0); }
MLocIterator end() {
return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size());
}
/// Return a range over all locations currently tracked.
iterator_range<MLocIterator> locations() {
return llvm::make_range(begin(), end());
}
std::string LocIdxToName(LocIdx Idx) const;
std::string IDAsString(const ValueIDNum &Num) const;
#ifndef NDEBUG
LLVM_DUMP_METHOD void dump();
LLVM_DUMP_METHOD void dump_mloc_map();
#endif
/// Create a DBG_VALUE based on machine location \p MLoc. Qualify it with the
/// information in \pProperties, for variable Var. Don't insert it anywhere,
/// just return the builder for it.
MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var,
const DbgValueProperties &Properties);
};
/// Types for recording sets of variable fragments that overlap. For a given
/// local variable, we record all other fragments of that variable that could
/// overlap it, to reduce search time.
using FragmentOfVar =
std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
using OverlapMap =
DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
/// Collection of DBG_VALUEs observed when traversing a block. Records each
/// variable and the value the DBG_VALUE refers to. Requires the machine value
/// location dataflow algorithm to have run already, so that values can be
/// identified.
class VLocTracker {
public:
/// Map DebugVariable to the latest Value it's defined to have.
/// Needs to be a MapVector because we determine order-in-the-input-MIR from
/// the order in this container.
/// We only retain the last DbgValue in each block for each variable, to
/// determine the blocks live-out variable value. The Vars container forms the
/// transfer function for this block, as part of the dataflow analysis. The
/// movement of values between locations inside of a block is handled at a
/// much later stage, in the TransferTracker class.
MapVector<DebugVariable, DbgValue> Vars;
SmallDenseMap<DebugVariable, const DILocation *, 8> Scopes;
MachineBasicBlock *MBB = nullptr;
const OverlapMap &OverlappingFragments;
DbgValueProperties EmptyProperties;
public:
VLocTracker(const OverlapMap &O, const DIExpression *EmptyExpr)
: OverlappingFragments(O), EmptyProperties(EmptyExpr, false) {}
void defVar(const MachineInstr &MI, const DbgValueProperties &Properties,
Optional<ValueIDNum> ID) {
assert(MI.isDebugValue() || MI.isDebugRef());
DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
MI.getDebugLoc()->getInlinedAt());
DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def)
: DbgValue(Properties, DbgValue::Undef);
// Attempt insertion; overwrite if it's already mapped.
auto Result = Vars.insert(std::make_pair(Var, Rec));
if (!Result.second)
Result.first->second = Rec;
Scopes[Var] = MI.getDebugLoc().get();
considerOverlaps(Var, MI.getDebugLoc().get());
}
void defVar(const MachineInstr &MI, const MachineOperand &MO) {
// Only DBG_VALUEs can define constant-valued variables.
assert(MI.isDebugValue());
DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
MI.getDebugLoc()->getInlinedAt());
DbgValueProperties Properties(MI);
DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const);
// Attempt insertion; overwrite if it's already mapped.
auto Result = Vars.insert(std::make_pair(Var, Rec));
if (!Result.second)
Result.first->second = Rec;
Scopes[Var] = MI.getDebugLoc().get();
considerOverlaps(Var, MI.getDebugLoc().get());
}
void considerOverlaps(const DebugVariable &Var, const DILocation *Loc) {
auto Overlaps = OverlappingFragments.find(
{Var.getVariable(), Var.getFragmentOrDefault()});
if (Overlaps == OverlappingFragments.end())
return;
// Otherwise: terminate any overlapped variable locations.
for (auto FragmentInfo : Overlaps->second) {
// The "empty" fragment is stored as DebugVariable::DefaultFragment, so
// that it overlaps with everything, however its cannonical representation
// in a DebugVariable is as "None".
Optional<DIExpression::FragmentInfo> OptFragmentInfo = FragmentInfo;
if (DebugVariable::isDefaultFragment(FragmentInfo))
OptFragmentInfo = None;
DebugVariable Overlapped(Var.getVariable(), OptFragmentInfo,
Var.getInlinedAt());
DbgValue Rec = DbgValue(EmptyProperties, DbgValue::Undef);
// Attempt insertion; overwrite if it's already mapped.
auto Result = Vars.insert(std::make_pair(Overlapped, Rec));
if (!Result.second)
Result.first->second = Rec;
Scopes[Overlapped] = Loc;
}
}
void clear() {
Vars.clear();
Scopes.clear();
}
};
// XXX XXX docs
class InstrRefBasedLDV : public LDVImpl {
public:
friend class ::InstrRefLDVTest;
using FragmentInfo = DIExpression::FragmentInfo;
using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
// Helper while building OverlapMap, a map of all fragments seen for a given
// DILocalVariable.
using VarToFragments =
DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
/// Machine location/value transfer function, a mapping of which locations
/// are assigned which new values.
using MLocTransferMap = SmallDenseMap<LocIdx, ValueIDNum>;
/// Live in/out structure for the variable values: a per-block map of
/// variables to their values.
using LiveIdxT = DenseMap<const MachineBasicBlock *, DbgValue *>;
using VarAndLoc = std::pair<DebugVariable, DbgValue>;
/// Type for a live-in value: the predecessor block, and its value.
using InValueT = std::pair<MachineBasicBlock *, DbgValue *>;
/// Vector (per block) of a collection (inner smallvector) of live-ins.
/// Used as the result type for the variable value dataflow problem.
using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>;
/// Mapping from lexical scopes to a DILocation in that scope.
using ScopeToDILocT = DenseMap<const LexicalScope *, const DILocation *>;
/// Mapping from lexical scopes to variables in that scope.
using ScopeToVarsT = DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>>;
/// Mapping from lexical scopes to blocks where variables in that scope are
/// assigned. Such blocks aren't necessarily "in" the lexical scope, it's
/// just a block where an assignment happens.
using ScopeToAssignBlocksT = DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>;
private:
MachineDominatorTree *DomTree;
const TargetRegisterInfo *TRI;
const MachineRegisterInfo *MRI;
const TargetInstrInfo *TII;
const TargetFrameLowering *TFI;
const MachineFrameInfo *MFI;
BitVector CalleeSavedRegs;
LexicalScopes LS;
TargetPassConfig *TPC;
// An empty DIExpression. Used default / placeholder DbgValueProperties
// objects, as we can't have null expressions.
const DIExpression *EmptyExpr;
/// Object to track machine locations as we step through a block. Could
/// probably be a field rather than a pointer, as it's always used.
MLocTracker *MTracker = nullptr;
/// Number of the current block LiveDebugValues is stepping through.
unsigned CurBB;
/// Number of the current instruction LiveDebugValues is evaluating.
unsigned CurInst;
/// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
/// steps through a block. Reads the values at each location from the
/// MLocTracker object.
VLocTracker *VTracker = nullptr;
/// Tracker for transfers, listens to DBG_VALUEs and transfers of values
/// between locations during stepping, creates new DBG_VALUEs when values move
/// location.
TransferTracker *TTracker = nullptr;
/// Blocks which are artificial, i.e. blocks which exclusively contain
/// instructions without DebugLocs, or with line 0 locations.
SmallPtrSet<MachineBasicBlock *, 16> ArtificialBlocks;
// Mapping of blocks to and from their RPOT order.
DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
DenseMap<const MachineBasicBlock *, unsigned int> BBToOrder;
DenseMap<unsigned, unsigned> BBNumToRPO;
/// Pair of MachineInstr, and its 1-based offset into the containing block.
using InstAndNum = std::pair<const MachineInstr *, unsigned>;
/// Map from debug instruction number to the MachineInstr labelled with that
/// number, and its location within the function. Used to transform
/// instruction numbers in DBG_INSTR_REFs into machine value numbers.
std::map<uint64_t, InstAndNum> DebugInstrNumToInstr;
/// Record of where we observed a DBG_PHI instruction.
class DebugPHIRecord {
public:
uint64_t InstrNum; ///< Instruction number of this DBG_PHI.
MachineBasicBlock *MBB; ///< Block where DBG_PHI occurred.
ValueIDNum ValueRead; ///< The value number read by the DBG_PHI.
LocIdx ReadLoc; ///< Register/Stack location the DBG_PHI reads.
operator unsigned() const { return InstrNum; }
};
/// Map from instruction numbers defined by DBG_PHIs to a record of what that
/// DBG_PHI read and where. Populated and edited during the machine value
/// location problem -- we use LLVMs SSA Updater to fix changes by
/// optimizations that destroy PHI instructions.
SmallVector<DebugPHIRecord, 32> DebugPHINumToValue;
// Map of overlapping variable fragments.
OverlapMap OverlapFragments;
VarToFragments SeenFragments;
/// Mapping of DBG_INSTR_REF instructions to their values, for those
/// DBG_INSTR_REFs that call resolveDbgPHIs. These variable references solve
/// a mini SSA problem caused by DBG_PHIs being cloned, this collection caches
/// the result.
DenseMap<MachineInstr *, Optional<ValueIDNum>> SeenDbgPHIs;
/// True if we need to examine call instructions for stack clobbers. We
/// normally assume that they don't clobber SP, but stack probes on Windows
/// do.
bool AdjustsStackInCalls = false;
/// If AdjustsStackInCalls is true, this holds the name of the target's stack
/// probe function, which is the function we expect will alter the stack
/// pointer.
StringRef StackProbeSymbolName;
/// Tests whether this instruction is a spill to a stack slot.
Optional<SpillLocationNo> isSpillInstruction(const MachineInstr &MI,
MachineFunction *MF);
/// Decide if @MI is a spill instruction and return true if it is. We use 2
/// criteria to make this decision:
/// - Is this instruction a store to a spill slot?
/// - Is there a register operand that is both used and killed?
/// TODO: Store optimization can fold spills into other stores (including
/// other spills). We do not handle this yet (more than one memory operand).
bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
unsigned &Reg);
/// If a given instruction is identified as a spill, return the spill slot
/// and set \p Reg to the spilled register.
Optional<SpillLocationNo> isRestoreInstruction(const MachineInstr &MI,
MachineFunction *MF, unsigned &Reg);
/// Given a spill instruction, extract the spill slot information, ensure it's
/// tracked, and return the spill number.
Optional<SpillLocationNo>
extractSpillBaseRegAndOffset(const MachineInstr &MI);
/// Observe a single instruction while stepping through a block.
void process(MachineInstr &MI, ValueIDNum **MLiveOuts = nullptr,
ValueIDNum **MLiveIns = nullptr);
/// Examines whether \p MI is a DBG_VALUE and notifies trackers.
/// \returns true if MI was recognized and processed.
bool transferDebugValue(const MachineInstr &MI);
/// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers.
/// \returns true if MI was recognized and processed.
bool transferDebugInstrRef(MachineInstr &MI, ValueIDNum **MLiveOuts,
ValueIDNum **MLiveIns);
/// Stores value-information about where this PHI occurred, and what
/// instruction number is associated with it.
/// \returns true if MI was recognized and processed.
bool transferDebugPHI(MachineInstr &MI);
/// Examines whether \p MI is copy instruction, and notifies trackers.
/// \returns true if MI was recognized and processed.
bool transferRegisterCopy(MachineInstr &MI);
/// Examines whether \p MI is stack spill or restore instruction, and
/// notifies trackers. \returns true if MI was recognized and processed.
bool transferSpillOrRestoreInst(MachineInstr &MI);
/// Examines \p MI for any registers that it defines, and notifies trackers.
void transferRegisterDef(MachineInstr &MI);
/// Copy one location to the other, accounting for movement of subregisters
/// too.
void performCopy(Register Src, Register Dst);
void accumulateFragmentMap(MachineInstr &MI);
/// Determine the machine value number referred to by (potentially several)
/// DBG_PHI instructions. Block duplication and tail folding can duplicate
/// DBG_PHIs, shifting the position where values in registers merge, and
/// forming another mini-ssa problem to solve.
/// \p Here the position of a DBG_INSTR_REF seeking a machine value number
/// \p InstrNum Debug instruction number defined by DBG_PHI instructions.
/// \returns The machine value number at position Here, or None.
Optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF,
ValueIDNum **MLiveOuts,
ValueIDNum **MLiveIns, MachineInstr &Here,
uint64_t InstrNum);
Optional<ValueIDNum> resolveDbgPHIsImpl(MachineFunction &MF,
ValueIDNum **MLiveOuts,
ValueIDNum **MLiveIns,
MachineInstr &Here,
uint64_t InstrNum);
/// Step through the function, recording register definitions and movements
/// in an MLocTracker. Convert the observations into a per-block transfer
/// function in \p MLocTransfer, suitable for using with the machine value
/// location dataflow problem.
void
produceMLocTransferFunction(MachineFunction &MF,
SmallVectorImpl<MLocTransferMap> &MLocTransfer,
unsigned MaxNumBlocks);
/// Solve the machine value location dataflow problem. Takes as input the
/// transfer functions in \p MLocTransfer. Writes the output live-in and
/// live-out arrays to the (initialized to zero) multidimensional arrays in
/// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
/// number, the inner by LocIdx.
void buildMLocValueMap(MachineFunction &MF, ValueIDNum **MInLocs,
ValueIDNum **MOutLocs,
SmallVectorImpl<MLocTransferMap> &MLocTransfer);
/// Examine the stack indexes (i.e. offsets within the stack) to find the
/// basic units of interference -- like reg units, but for the stack.
void findStackIndexInterference(SmallVectorImpl<unsigned> &Slots);
/// Install PHI values into the live-in array for each block, according to
/// the IDF of each register.
void placeMLocPHIs(MachineFunction &MF,
SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
ValueIDNum **MInLocs,
SmallVectorImpl<MLocTransferMap> &MLocTransfer);
/// Propagate variable values to blocks in the common case where there's
/// only one value assigned to the variable. This function has better
/// performance as it doesn't have to find the dominance frontier between
/// different assignments.
void placePHIsForSingleVarDefinition(
const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
MachineBasicBlock *MBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
const DebugVariable &Var, LiveInsT &Output);
/// Calculate the iterated-dominance-frontier for a set of defs, using the
/// existing LLVM facilities for this. Works for a single "value" or
/// machine/variable location.
/// \p AllBlocks Set of blocks where we might consume the value.
/// \p DefBlocks Set of blocks where the value/location is defined.
/// \p PHIBlocks Output set of blocks where PHIs must be placed.
void BlockPHIPlacement(const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
SmallVectorImpl<MachineBasicBlock *> &PHIBlocks);
/// Perform a control flow join (lattice value meet) of the values in machine
/// locations at \p MBB. Follows the algorithm described in the file-comment,
/// reading live-outs of predecessors from \p OutLocs, the current live ins
/// from \p InLocs, and assigning the newly computed live ins back into
/// \p InLocs. \returns two bools -- the first indicates whether a change
/// was made, the second whether a lattice downgrade occurred. If the latter
/// is true, revisiting this block is necessary.
bool mlocJoin(MachineBasicBlock &MBB,
SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
ValueIDNum **OutLocs, ValueIDNum *InLocs);
/// Produce a set of blocks that are in the current lexical scope. This means
/// those blocks that contain instructions "in" the scope, blocks where
/// assignments to variables in scope occur, and artificial blocks that are
/// successors to any of the earlier blocks. See https://llvm.org/PR48091 for
/// more commentry on what "in scope" means.
/// \p DILoc A location in the scope that we're fetching blocks for.
/// \p Output Set to put in-scope-blocks into.
/// \p AssignBlocks Blocks known to contain assignments of variables in scope.
void
getBlocksForScope(const DILocation *DILoc,
SmallPtrSetImpl<const MachineBasicBlock *> &Output,
const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks);
/// Solve the variable value dataflow problem, for a single lexical scope.
/// Uses the algorithm from the file comment to resolve control flow joins
/// using PHI placement and value propagation. Reads the locations of machine
/// values from the \p MInLocs and \p MOutLocs arrays (see buildMLocValueMap)
/// and reads the variable values transfer function from \p AllTheVlocs.
/// Live-in and Live-out variable values are stored locally, with the live-ins
/// permanently stored to \p Output once a fixedpoint is reached.
/// \p VarsWeCareAbout contains a collection of the variables in \p Scope
/// that we should be tracking.
/// \p AssignBlocks contains the set of blocks that aren't in \p DILoc's
/// scope, but which do contain DBG_VALUEs, which VarLocBasedImpl tracks
/// locations through.
void buildVLocValueMap(const DILocation *DILoc,
const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
LiveInsT &Output, ValueIDNum **MOutLocs,
ValueIDNum **MInLocs,
SmallVectorImpl<VLocTracker> &AllTheVLocs);
/// Attempt to eliminate un-necessary PHIs on entry to a block. Examines the
/// live-in values coming from predecessors live-outs, and replaces any PHIs
/// already present in this blocks live-ins with a live-through value if the
/// PHI isn't needed.
/// \p LiveIn Old live-in value, overwritten with new one if live-in changes.
/// \returns true if any live-ins change value, either from value propagation
/// or PHI elimination.
bool vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
DbgValue &LiveIn);
/// For the given block and live-outs feeding into it, try to find a
/// machine location where all the variable values join together.
/// \returns Value ID of a machine PHI if an appropriate one is available.
Optional<ValueIDNum>
pickVPHILoc(const MachineBasicBlock &MBB, const DebugVariable &Var,
const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders);
/// Take collections of DBG_VALUE instructions stored in TTracker, and
/// install them into their output blocks. Preserves a stable order of
/// DBG_VALUEs produced (which would otherwise cause nondeterminism) through
/// the AllVarsNumbering order.
bool emitTransfers(DenseMap<DebugVariable, unsigned> &AllVarsNumbering);
/// Boilerplate computation of some initial sets, artifical blocks and
/// RPOT block ordering.
void initialSetup(MachineFunction &MF);
/// Produce a map of the last lexical scope that uses a block, using the
/// scopes DFSOut number. Mapping is block-number to DFSOut.
/// \p EjectionMap Pre-allocated vector in which to install the built ma.
/// \p ScopeToDILocation Mapping of LexicalScopes to their DILocations.
/// \p AssignBlocks Map of blocks where assignments happen for a scope.
void makeDepthFirstEjectionMap(SmallVectorImpl<unsigned> &EjectionMap,
const ScopeToDILocT &ScopeToDILocation,
ScopeToAssignBlocksT &AssignBlocks);
/// When determining per-block variable values and emitting to DBG_VALUEs,
/// this function explores by lexical scope depth. Doing so means that per
/// block information can be fully computed before exploration finishes,
/// allowing us to emit it and free data structures earlier than otherwise.
/// It's also good for locality.
bool depthFirstVLocAndEmit(
unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation,
const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToBlocks,
LiveInsT &Output, ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF,
DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
const TargetPassConfig &TPC);
bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree,
TargetPassConfig *TPC, unsigned InputBBLimit,
unsigned InputDbgValLimit) override;
public:
/// Default construct and initialize the pass.
InstrRefBasedLDV();
LLVM_DUMP_METHOD
void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;
bool isCalleeSaved(LocIdx L) const;
bool hasFoldedStackStore(const MachineInstr &MI) {
// Instruction must have a memory operand that's a stack slot, and isn't
// aliased, meaning it's a spill from regalloc instead of a variable.
// If it's aliased, we can't guarantee its value.
if (!MI.hasOneMemOperand())
return false;
auto *MemOperand = *MI.memoperands_begin();
return MemOperand->isStore() &&
MemOperand->getPseudoValue() &&
MemOperand->getPseudoValue()->kind() == PseudoSourceValue::FixedStack
&& !MemOperand->getPseudoValue()->isAliased(MFI);
}
Optional<LocIdx> findLocationForMemOperand(const MachineInstr &MI);
};
} // namespace LiveDebugValues
namespace llvm {
using namespace LiveDebugValues;
template <> struct DenseMapInfo<LocIdx> {
static inline LocIdx getEmptyKey() { return LocIdx::MakeIllegalLoc(); }
static inline LocIdx getTombstoneKey() { return LocIdx::MakeTombstoneLoc(); }
static unsigned getHashValue(const LocIdx &Loc) { return Loc.asU64(); }
static bool isEqual(const LocIdx &A, const LocIdx &B) { return A == B; }
};
template <> struct DenseMapInfo<ValueIDNum> {
static inline ValueIDNum getEmptyKey() { return ValueIDNum::EmptyValue; }
static inline ValueIDNum getTombstoneKey() {
return ValueIDNum::TombstoneValue;
}
static unsigned getHashValue(const ValueIDNum &Val) {
return hash_value(Val.asU64());
}
static bool isEqual(const ValueIDNum &A, const ValueIDNum &B) {
return A == B;
}
};
} // end namespace llvm
#endif /* LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H */
|